Version: SMASH-1.6
smash::ScatterActionPhoton Class Reference

#include <scatteractionphoton.h>

ScatterActionPhoton is a special action which takes two incoming particles and performs a perturbative electromagnetic scattering.

The final state particles are not further propagated, only written to the output.

Definition at line 27 of file scatteractionphoton.h.

Inheritance diagram for smash::ScatterActionPhoton:
[legend]
Collaboration diagram for smash::ScatterActionPhoton:
[legend]

Public Types

enum  ReactionType {
  ReactionType::no_reaction, ReactionType::pi_z_pi_p_rho_p, ReactionType::pi_z_pi_m_rho_m, ReactionType::pi_p_rho_z_pi_p,
  ReactionType::pi_m_rho_z_pi_m, ReactionType::pi_m_rho_p_pi_z, ReactionType::pi_p_rho_m_pi_z, ReactionType::pi_z_rho_p_pi_p,
  ReactionType::pi_z_rho_m_pi_m, ReactionType::pi_p_pi_m_rho_z, ReactionType::pi_z_rho_z_pi_z
}
 Enum for encoding the photon process. More...
 

Public Member Functions

 ScatterActionPhoton (const ParticleList &in, const double time, const int n_frac_photons, const double hadronic_cross_section_input)
 Construct a ScatterActionPhoton object. More...
 
void perform_photons (const OutputsList &outputs)
 Create the photon final state and write to output. More...
 
void generate_final_state () override
 Generate the final-state for the photon scatter process. More...
 
double get_total_weight () const override
 Return the weight of the last created photon. More...
 
double hadronic_cross_section () const
 Return the total cross section of the underlying hadronic scattering. More...
 
double sample_out_hadron_mass (const ParticleTypePtr out_type)
 Sample the mass of the outgoing hadron. More...
 
void add_dummy_hadronic_process (double reaction_cross_section)
 Adds one hadronic process with a given cross-section. More...
 
void add_single_process ()
 Add the photonic process. More...
 
- Public Member Functions inherited from smash::ScatterAction
 ScatterAction (const ParticleData &in_part1, const ParticleData &in_part2, double time, bool isotropic=false, double string_formation_time=1.0)
 Construct a ScatterAction object. More...
 
void add_collision (CollisionBranchPtr p)
 Add a new collision channel. More...
 
void add_collisions (CollisionBranchList pv)
 Add several new collision channels at once. More...
 
double transverse_distance_sqr () const
 Calculate the transverse distance of the two incoming particles in their local rest frame. More...
 
double get_partial_weight () const override
 Get the partial cross section of the chosen channel. More...
 
void sample_angles (std::pair< double, double > masses, double kinetic_energy_cm) override
 Sample final-state angles in a 2->2 collision (possibly anisotropic). More...
 
void add_all_scatterings (double elastic_parameter, bool two_to_one, ReactionsBitSet included_2to2, double low_snn_cut, bool strings_switch, bool use_AQM, bool strings_with_probability, NNbarTreatment nnbar_treatment)
 Add all possible scattering subprocesses for this action object. More...
 
const CollisionBranchList & collision_channels ()
 Get list of possible collision channels. More...
 
void set_string_interface (StringProcess *str_proc)
 Set the StringProcess object to be used. More...
 
virtual double cross_section () const
 Get the total cross section of the scattering particles. More...
 
- Public Member Functions inherited from smash::Action
 Action (const ParticleList &in_part, double time)
 Construct an action object with incoming particles and relative time. More...
 
 Action (const ParticleData &in_part, const ParticleData &out_part, double time, ProcessType type)
 Construct an action object with the incoming particles, relative time, and the already known outgoing particles and type of the process. More...
 
 Action (const ParticleList &in_part, const ParticleList &out_part, double absolute_execution_time, ProcessType type)
 Construct an action object with the incoming particles, absolute time, and the already known outgoing particles and type of the process. More...
 
 Action (const Action &)=delete
 Copying is disabled. Use pointers or create a new Action. More...
 
virtual ~Action ()
 Virtual Destructor. More...
 
bool operator< (const Action &rhs) const
 Determine whether one action takes place before another in time. More...
 
virtual ProcessType get_type () const
 Get the process type. More...
 
template<typename Branch >
void add_process (ProcessBranchPtr< Branch > &p, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add a new subprocess. More...
 
template<typename Branch >
void add_processes (ProcessBranchList< Branch > pv, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add several new subprocesses at once. More...
 
virtual void perform (Particles *particles, uint32_t id_process)
 Actually perform the action, e.g. More...
 
bool is_valid (const Particles &particles) const
 Check whether the action still applies. More...
 
bool is_pauli_blocked (const Particles &particles, const PauliBlocker &p_bl) const
 Check if the action is Pauli-blocked. More...
 
const ParticleList & incoming_particles () const
 Get the list of particles that go into the action. More...
 
void update_incoming (const Particles &particles)
 Update the incoming particles that are stored in this action to the state they have in the global particle list. More...
 
const ParticleList & outgoing_particles () const
 Get the list of particles that resulted from the action. More...
 
double time_of_execution () const
 Get the time at which the action is supposed to be performed. More...
 
void check_conservation (const uint32_t id_process) const
 Check various conservation laws. More...
 
double sqrt_s () const
 Determine the total energy in the center-of-mass frame [GeV]. More...
 
FourVector total_momentum_of_outgoing_particles () const
 Calculate the total kinetic momentum of the outgoing particles. More...
 
FourVector get_interaction_point () const
 Get the interaction point. More...
 
std::pair< FourVector, FourVectorget_potential_at_interaction_point () const
 Get the skyrme and asymmetry potential at the interaction point. More...
 

Static Public Member Functions

static ReactionType photon_reaction_type (const ParticleList &in)
 Determine photon process from incoming particles. More...
 
static bool is_photon_reaction (const ParticleList &in)
 Check if particles can undergo an implemented photon process. More...
 
static ParticleTypePtr outgoing_hadron_type (const ParticleList &in)
 Return ParticleTypePtr of hadron in the out channel, given the incoming particles. More...
 
static ParticleTypePtr outgoing_hadron_type (const ReactionType reaction)
 Return ParticleTypePtr of hadron in the out channel, given the ReactionType. More...
 
static bool is_kinematically_possible (const double s_sqrt, const ParticleList &in)
 Check if CM-energy is sufficient to produce hadron in final state. More...
 

Private Types

enum  MediatorType { MediatorType::SUM, MediatorType::PION, MediatorType::OMEGA }
 Compile-time switch for setting the handling of processes which can happen via different mediating particles. More...
 

Private Member Functions

double diff_cross_section (const double t, const double m_rho, MediatorType mediator=default_mediator_) const
 Calculate the differential cross section of photon process. More...
 
double rho_mass () const
 Find the mass of the participating rho-particle. More...
 
CollisionBranchList photon_cross_sections (MediatorType mediator=default_mediator_)
 Computes the total cross section of the photon process. More...
 
std::pair< double, double > diff_cross_section_single (const double t, const double m_rho)
 For processes which can happen via (pi, a1, rho) and omega exchange, return the differential cross section for the (pi, a1, rho) process in the first argument, for the omega process in the second. More...
 
std::pair< double, double > form_factor_single (const double E_photon)
 For processes which can happen via (pi, a1, rho) and omega exchange, return the form factor for the (pi, a1, rho) process in the first argument, for the omega process in the second. More...
 
double form_factor_pion (const double E_photon) const
 Compute the form factor for a process with a pion as the lightest exchange particle. More...
 
double form_factor_omega (const double E_photon) const
 Compute the form factor for a process with a omega as the lightest exchange particle. More...
 
double diff_cross_section_w_ff (const double t, const double m_rho, const double E_photon)
 Compute the differential cross section with form factors included. More...
 

Private Attributes

CollisionBranchList collision_processes_photons_
 Holds the photon branch. More...
 
const ReactionType reac_
 Photonic process as determined from incoming particles. More...
 
const int number_of_fractional_photons_
 Number of photons created for each hadronic scattering, needed for correct weighting. More...
 
const ParticleTypePtr hadron_out_t_
 ParticleTypePtr to the type of the outgoing hadron. More...
 
const double hadron_out_mass_
 Mass of outgoing hadron. More...
 
double weight_ = 0.0
 Weight of the produced photon. More...
 
double cross_section_photons_ = 0.0
 Total cross section of photonic process. More...
 
const double hadronic_cross_section_
 Total hadronic cross section. More...
 

Static Private Attributes

static constexpr MediatorType default_mediator_ = MediatorType::SUM
 Value used for default exchange particle. See MediatorType. More...
 

Additional Inherited Members

- Protected Member Functions inherited from smash::ScatterAction
double mandelstam_s () const
 Determine the Mandelstam s variable,. More...
 
double cm_momentum () const
 Get the momentum of the center of mass of the incoming particles in the calculation frame. More...
 
double cm_momentum_squared () const
 Get the squared momentum of the center of mass of the incoming particles in the calculation frame. More...
 
ThreeVector beta_cm () const
 Get the velocity of the center of mass of the scattering particles in the calculation frame. More...
 
double gamma_cm () const
 Get the gamma factor corresponding to a boost to the center of mass frame of the colliding particles. More...
 
void elastic_scattering ()
 Perform an elastic two-body scattering, i.e. just exchange momentum. More...
 
void inelastic_scattering ()
 Perform an inelastic two-body scattering, i.e. new particles are formed. More...
 
void string_excitation ()
 Todo(ryu): document better - it is not really UrQMD-based, isn't it? Perform the UrQMD-based string excitation and decay. More...
 
void format_debug_output (std::ostream &out) const override
 Writes information about this scatter action to the out stream. More...
 
- Protected Member Functions inherited from smash::Action
FourVector total_momentum () const
 Sum of 4-momenta of incoming particles. More...
 
template<typename Branch >
const Branch * choose_channel (const ProcessBranchList< Branch > &subprocesses, double total_weight)
 Decide for a particular final-state channel via Monte-Carlo and return it as a ProcessBranch. More...
 
virtual std::pair< double, double > sample_masses (double kinetic_energy_cm) const
 Sample final-state masses in general X->2 processes (thus also fixing the absolute c.o.m. More...
 
void sample_2body_phasespace ()
 Sample the full 2-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
virtual void sample_3body_phasespace ()
 Sample the full 3-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
- Protected Attributes inherited from smash::ScatterAction
CollisionBranchList collision_channels_
 List of possible collisions. More...
 
double total_cross_section_
 Total hadronic cross section. More...
 
double partial_cross_section_
 Partial cross-section to the chosen outgoing channel. More...
 
bool isotropic_ = false
 Do this collision isotropically? More...
 
double string_formation_time_ = 1.0
 Time fragments take to be fully formed in hard string excitation. More...
 
- Protected Attributes inherited from smash::Action
ParticleList incoming_particles_
 List with data of incoming particles. More...
 
ParticleList outgoing_particles_
 Initially this stores only the PDG codes of final-state particles. More...
 
const double time_of_execution_
 Time at which the action is supposed to be performed (absolute time in the lab frame in fm/c). More...
 
ProcessType process_type_
 type of process More...
 

Member Enumeration Documentation

Enum for encoding the photon process.

It is uniquely determined by the incoming particles. The naming scheme is : Incoming_1__Incoming_2__Outgoing_hadron. The photon is omitted in the naming.

Enumerator
no_reaction 
pi_z_pi_p_rho_p 
pi_z_pi_m_rho_m 
pi_p_rho_z_pi_p 
pi_m_rho_z_pi_m 
pi_m_rho_p_pi_z 
pi_p_rho_m_pi_z 
pi_z_rho_p_pi_p 
pi_z_rho_m_pi_m 
pi_p_pi_m_rho_z 
pi_z_rho_z_pi_z 

Definition at line 112 of file scatteractionphoton.h.

112  {
113  no_reaction,
114  pi_z_pi_p_rho_p,
115  pi_z_pi_m_rho_m,
116  pi_p_rho_z_pi_p,
117  pi_m_rho_z_pi_m,
118  pi_m_rho_p_pi_z,
119  pi_p_rho_m_pi_z,
120  pi_z_rho_p_pi_p,
121  pi_z_rho_m_pi_m,
122  pi_p_pi_m_rho_z,
123  pi_z_rho_z_pi_z
124  };

Compile-time switch for setting the handling of processes which can happen via different mediating particles.

Relevant only for the processes pi0 + rho => pi + y and pi + rho => pi0 + gamma, which both can happen via exchange of (rho, a1, pi) or omega. If MediatorType::SUM is set, the cross section for both processes is added. If MediatorType::PION/ OMEGA is set, only the respective processes are computed.

Enumerator
SUM 
PION 
OMEGA 

Definition at line 215 of file scatteractionphoton.h.

215 { SUM, PION, OMEGA };

Constructor & Destructor Documentation

smash::ScatterActionPhoton::ScatterActionPhoton ( const ParticleList &  in,
const double  time,
const int  n_frac_photons,
const double  hadronic_cross_section_input 
)

Construct a ScatterActionPhoton object.

Parameters
[in]inParticleList of incoming particles.
[in]timeTime relative to underlying hadronic action.
[in]n_frac_photonsNumber of photons to produce for each hadronic scattering.
[in]hadronic_cross_section_inputCross-section of underlying hadronic cross-section.
Returns
The constructed object.

Definition at line 29 of file scatteractionphoton.cc.

32  : ScatterAction(in[0], in[1], time),
34  number_of_fractional_photons_(n_frac_photons),
37  hadronic_cross_section_(hadronic_cross_section_input) {}
static ParticleTypePtr outgoing_hadron_type(const ParticleList &in)
Return ParticleTypePtr of hadron in the out channel, given the incoming particles.
const double hadronic_cross_section_
Total hadronic cross section.
ScatterAction(const ParticleData &in_part1, const ParticleData &in_part2, double time, bool isotropic=false, double string_formation_time=1.0)
Construct a ScatterAction object.
const int number_of_fractional_photons_
Number of photons created for each hadronic scattering, needed for correct weighting.
const ReactionType reac_
Photonic process as determined from incoming particles.
double sample_out_hadron_mass(const ParticleTypePtr out_type)
Sample the mass of the outgoing hadron.
const double hadron_out_mass_
Mass of outgoing hadron.
const ParticleTypePtr hadron_out_t_
ParticleTypePtr to the type of the outgoing hadron.
static ReactionType photon_reaction_type(const ParticleList &in)
Determine photon process from incoming particles.

Member Function Documentation

void smash::ScatterActionPhoton::perform_photons ( const OutputsList &  outputs)

Create the photon final state and write to output.

Parameters
[in]outputsList of all outputs. Does not have to be a specific photon output, the function will take care of this.

Definition at line 92 of file scatteractionphoton.cc.

92  {
93  for (int i = 0; i < number_of_fractional_photons_; i++) {
95  for (const auto &output : outputs) {
96  if (output->is_photon_output()) {
97  // we do not care about the local density
98  output->at_interaction(*this, 0.0);
99  }
100  }
101  }
102 }
void generate_final_state() override
Generate the final-state for the photon scatter process.
const int number_of_fractional_photons_
Number of photons created for each hadronic scattering, needed for correct weighting.

Here is the call graph for this function:

void smash::ScatterActionPhoton::generate_final_state ( )
overridevirtual

Generate the final-state for the photon scatter process.

Generates only one photon / hadron pair

Reimplemented from smash::ScatterAction.

Definition at line 193 of file scatteractionphoton.cc.

193  {
194  // we have only one reaction per incoming particle pair
195  if (collision_processes_photons_.size() != 1) {
196  const auto &log = logger<LogArea::ScatterAction>();
197  log.fatal() << "Problem in ScatterActionPhoton::generate_final_state().\n";
198  throw std::runtime_error("");
199  }
200  auto *proc = collision_processes_photons_[0].get();
201 
202  outgoing_particles_ = proc->particle_list();
203  process_type_ = proc->get_type();
204 
205  FourVector middle_point = get_interaction_point();
206 
207  // t is defined to be the momentum exchanged between the rho meson and the
208  // photon in pi + rho -> pi + photon channel. Therefore,
209  // get_t_range needs to be called with m2 being the rho mass instead of the
210  // pion mass. So, particles 1 and 2 are swapped if necessary.
211 
212  if (!incoming_particles_[0].pdgcode().is_pion()) {
213  std::swap(incoming_particles_[0], incoming_particles_[1]);
214  }
215 
216  // 2->2 inelastic scattering
217  // Sample the particle momenta in CM system
218  const double m1 = incoming_particles_[0].effective_mass();
219  const double m2 = incoming_particles_[1].effective_mass();
220 
221  const double &m_out = hadron_out_mass_;
222 
223  const double s = mandelstam_s();
224  const double sqrts = sqrt_s();
225  std::array<double, 2> mandelstam_t = get_t_range(sqrts, m1, m2, m_out, 0.0);
226  const double t1 = mandelstam_t[1];
227  const double t2 = mandelstam_t[0];
228  const double pcm_in = cm_momentum();
229  const double pcm_out = pCM(sqrts, m_out, 0.0);
230 
231  const double t = random::uniform(t1, t2);
232 
233  double costheta = (t - pow_int(m2, 2) +
234  0.5 * (s + pow_int(m2, 2) - pow_int(m1, 2)) *
235  (s - pow_int(m_out, 2)) / s) /
236  (pcm_in * (s - pow_int(m_out, 2)) / sqrts);
237 
238  // on very rare occasions near the kinematic threshold numerical issues give
239  // unphysical angles.
240  if (costheta > 1 || costheta < -1) {
241  const auto &log = logger<LogArea::ScatterAction>();
242  log.warn() << "Cos(theta)of photon scattering out of physical bounds in "
243  "the following scattering: "
244  << incoming_particles_ << "Clamping to [-1,1].";
245  if (costheta > 1.0)
246  costheta = 1.0;
247  if (costheta < -1.0)
248  costheta = -1.0;
249  }
250  Angles phitheta(random::uniform(0.0, twopi), costheta);
251  outgoing_particles_[0].set_4momentum(hadron_out_mass_,
252  phitheta.threevec() * pcm_out);
253  outgoing_particles_[1].set_4momentum(0.0, -phitheta.threevec() * pcm_out);
254 
255  // Set positions & boost to computational frame.
256  for (ParticleData &new_particle : outgoing_particles_) {
257  new_particle.set_4position(middle_point);
258  new_particle.boost_momentum(-beta_cm());
259  }
260 
261  const double E_Photon = outgoing_particles_[1].momentum()[0];
262 
263  // if rho in final state take already sampled mass (same as m_out). If rho is
264  // incoming take the mass of the incoming particle
265  const double m_rho = rho_mass();
266 
267  // compute the differential cross section with form factor included
268  const double diff_xs = diff_cross_section_w_ff(t, m_rho, E_Photon);
269 
270  // Weighing of the fractional photons
272  weight_ = diff_xs * (t2 - t1) /
274  } else {
275  weight_ = proc->weight() / hadronic_cross_section();
276  }
277  // Photons are not really part of the normal processes, so we have to set a
278  // constant arbitrary number.
279  const auto id_process = ID_PROCESS_PHOTON;
280  Action::check_conservation(id_process);
281 }
double sqrt_s() const
Determine the total energy in the center-of-mass frame [GeV].
Definition: action.h:265
double hadronic_cross_section() const
Return the total cross section of the underlying hadronic scattering.
constexpr std::uint32_t ID_PROCESS_PHOTON
Process ID for any photon process.
Definition: constants.h:128
ProcessType process_type_
type of process
Definition: action.h:320
double weight_
Weight of the produced photon.
constexpr T pow_int(const T base, unsigned const exponent)
Efficient template for calculating integer powers using squaring.
Definition: pow.h:23
double rho_mass() const
Find the mass of the participating rho-particle.
const int number_of_fractional_photons_
Number of photons created for each hadronic scattering, needed for correct weighting.
CollisionBranchList collision_processes_photons_
Holds the photon branch.
constexpr double twopi
.
Definition: constants.h:39
std::array< T, 2 > get_t_range(const T sqrts, const T m1, const T m2, const T m3, const T m4)
Get the range of Mandelstam-t values allowed in a particular 2->2 process, see PDG 2014 booklet...
Definition: kinematics.h:109
ParticleList outgoing_particles_
Initially this stores only the PDG codes of final-state particles.
Definition: action.h:311
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:303
T uniform(T min, T max)
Definition: random.h:88
FourVector get_interaction_point() const
Get the interaction point.
Definition: action.cc:68
void check_conservation(const uint32_t id_process) const
Check various conservation laws.
Definition: action.cc:247
ThreeVector beta_cm() const
Get the velocity of the center of mass of the scattering particles in the calculation frame...
const double hadron_out_mass_
Mass of outgoing hadron.
double diff_cross_section_w_ff(const double t, const double m_rho, const double E_photon)
Compute the differential cross section with form factors included.
T pCM(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:79
double cm_momentum() const
Get the momentum of the center of mass of the incoming particles in the calculation frame...
double mandelstam_s() const
Determine the Mandelstam s variable,.

Here is the call graph for this function:

Here is the caller graph for this function:

double smash::ScatterActionPhoton::get_total_weight ( ) const
inlineoverridevirtual

Return the weight of the last created photon.

Returns
The total weight.

Reimplemented from smash::ScatterAction.

Definition at line 64 of file scatteractionphoton.h.

64 { return weight_; }
double weight_
Weight of the produced photon.
double smash::ScatterActionPhoton::hadronic_cross_section ( ) const
inline

Return the total cross section of the underlying hadronic scattering.

Returns
total cross-section [mb]

Definition at line 71 of file scatteractionphoton.h.

71 { return hadronic_cross_section_; }
const double hadronic_cross_section_
Total hadronic cross section.

Here is the call graph for this function:

Here is the caller graph for this function:

double smash::ScatterActionPhoton::sample_out_hadron_mass ( const ParticleTypePtr  out_type)

Sample the mass of the outgoing hadron.

Returns the pole mass if particle is stable.

Parameters
[in]out_typeTypePtr of the outgoing hadron.
Returns
Mass of outgoing hadron [GeV]

Definition at line 291 of file scatteractionphoton.cc.

292  {
293  double mass = out_t->mass();
294  const double cms_energy = sqrt_s();
295  if (cms_energy <= out_t->min_mass_kinematic()) {
296  throw InvalidResonanceFormation(
297  "Problem in ScatterActionPhoton::sample_hadron_mass");
298  }
299 
300  if (!out_t->is_stable()) {
301  mass = out_t->sample_resonance_mass(0, cms_energy);
302  }
303 
304  return mass;
305 }
double sqrt_s() const
Determine the total energy in the center-of-mass frame [GeV].
Definition: action.h:265

Here is the call graph for this function:

Here is the caller graph for this function:

void smash::ScatterActionPhoton::add_dummy_hadronic_process ( double  reaction_cross_section)

Adds one hadronic process with a given cross-section.

The intended use is to add the hadronic cross-section from the already performed hadronic action without recomputing it.

Parameters
[in]reaction_cross_sectionTotal cross-section of underlying hadronic process [mb]

Definition at line 283 of file scatteractionphoton.cc.

284  {
285  CollisionBranchPtr dummy_process = make_unique<CollisionBranch>(
286  incoming_particles_[0].type(), incoming_particles_[1].type(),
287  reaction_cross_section, ProcessType::TwoToTwo);
288  add_collision(std::move(dummy_process));
289 }
void add_collision(CollisionBranchPtr p)
Add a new collision channel.
2->2 inelastic scattering
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:303

Here is the call graph for this function:

Here is the caller graph for this function:

void smash::ScatterActionPhoton::add_single_process ( )
inline

Add the photonic process.

Also compute the total cross section as a side effect.

Definition at line 100 of file scatteractionphoton.h.

100  {
101  add_processes<CollisionBranch>(photon_cross_sections(),
104  }
double cross_section_photons_
Total cross section of photonic process.
CollisionBranchList collision_processes_photons_
Holds the photon branch.
CollisionBranchList photon_cross_sections(MediatorType mediator=default_mediator_)
Computes the total cross section of the photon process.

Here is the call graph for this function:

ScatterActionPhoton::ReactionType smash::ScatterActionPhoton::photon_reaction_type ( const ParticleList &  in)
static

Determine photon process from incoming particles.

If incoming particles are not part of any implemented photonic process, return no_reaction.

Parameters
[in]inParticleList of incoming particles.
Returns
ReactionType enum-member

Definition at line 39 of file scatteractionphoton.cc.

40  {
41  if (in.size() != 2) {
43  }
44 
45  PdgCode a = in[0].pdgcode();
46  PdgCode b = in[1].pdgcode();
47 
48  // swap so that pion is first and there are less cases to be listed
49  if (!a.is_pion()) {
50  std::swap(a, b);
51  }
52 
53  switch (pack(a.code(), b.code())) {
54  case (pack(pdg::pi_p, pdg::pi_z)):
55  case (pack(pdg::pi_z, pdg::pi_p)):
57 
58  case (pack(pdg::pi_m, pdg::pi_z)):
59  case (pack(pdg::pi_z, pdg::pi_m)):
61 
62  case (pack(pdg::pi_p, pdg::rho_z)):
64 
65  case (pack(pdg::pi_m, pdg::rho_z)):
67 
68  case (pack(pdg::pi_m, pdg::rho_p)):
70 
71  case (pack(pdg::pi_p, pdg::rho_m)):
73 
74  case (pack(pdg::pi_z, pdg::rho_p)):
76 
77  case (pack(pdg::pi_z, pdg::rho_m)):
79 
80  case (pack(pdg::pi_p, pdg::pi_m)):
81  case (pack(pdg::pi_m, pdg::pi_p)):
83 
84  case (pack(pdg::pi_z, pdg::rho_z)):
86 
87  default:
89  }
90 }
constexpr uint64_t pack(int32_t x, int32_t y)
Pack two int32_t into an uint64_t.
constexpr int rho_z
ρ⁰.
constexpr int pi_z
π⁰.
constexpr int rho_p
ρ⁺.
constexpr int pi_p
π⁺.
constexpr int rho_m
ρ⁻.
constexpr int pi_m
π⁻.

Here is the call graph for this function:

Here is the caller graph for this function:

static bool smash::ScatterActionPhoton::is_photon_reaction ( const ParticleList &  in)
inlinestatic

Check if particles can undergo an implemented photon process.

This function does not check the involved kinematics.

Parameters
[in]inParticleList of incoming particles.
Returns
bool if photon reaction implemented.

Definition at line 145 of file scatteractionphoton.h.

145  {
147  }
static ReactionType photon_reaction_type(const ParticleList &in)
Determine photon process from incoming particles.

Here is the call graph for this function:

ParticleTypePtr smash::ScatterActionPhoton::outgoing_hadron_type ( const ParticleList &  in)
static

Return ParticleTypePtr of hadron in the out channel, given the incoming particles.

This function is overloaded since we need the hadron type in different places.

Parameters
[in]inParticleList of incoming particles.
Returns
ParticeTypePtr to hadron in outgoing channel.

Definition at line 150 of file scatteractionphoton.cc.

151  {
152  auto reac = photon_reaction_type(in);
153  return outgoing_hadron_type(reac);
154 }
static ParticleTypePtr outgoing_hadron_type(const ParticleList &in)
Return ParticleTypePtr of hadron in the out channel, given the incoming particles.
static ReactionType photon_reaction_type(const ParticleList &in)
Determine photon process from incoming particles.

Here is the call graph for this function:

Here is the caller graph for this function:

ParticleTypePtr smash::ScatterActionPhoton::outgoing_hadron_type ( const ReactionType  reaction)
static

Return ParticleTypePtr of hadron in the out channel, given the ReactionType.

This function is overloaded since we need the hadron type in different places.

Parameters
[in]reactionReactionType, determined from incoming particles.
Returns
ParticeTypePtr to hadron in outgoing channel.

Definition at line 104 of file scatteractionphoton.cc.

105  {
106  static const ParticleTypePtr rho_z_particle_ptr =
108  static const ParticleTypePtr rho_p_particle_ptr =
110  static const ParticleTypePtr rho_m_particle_ptr =
112  static const ParticleTypePtr pi_z_particle_ptr =
114  static const ParticleTypePtr pi_p_particle_ptr =
116  static const ParticleTypePtr pi_m_particle_ptr =
118 
119  switch (reaction) {
121  return rho_p_particle_ptr;
122  break;
124  return rho_m_particle_ptr;
125  break;
127  return rho_z_particle_ptr;
128  break;
129 
132  return pi_p_particle_ptr;
133 
136  return pi_m_particle_ptr;
137 
141  return pi_z_particle_ptr;
142  break;
143  default:
144  // default constructor constructs p with invalid index
145  ParticleTypePtr p{};
146  return p;
147  }
148 }
constexpr int rho_z
ρ⁰.
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
constexpr int pi_z
π⁰.
constexpr int rho_p
ρ⁺.
constexpr int pi_p
π⁺.
constexpr int rho_m
ρ⁻.
constexpr int p
Proton.
constexpr int pi_m
π⁻.

Here is the call graph for this function:

bool smash::ScatterActionPhoton::is_kinematically_possible ( const double  s_sqrt,
const ParticleList &  in 
)
static

Check if CM-energy is sufficient to produce hadron in final state.

Parameters
[in]s_sqrtCM-energy [GeV]
[in]inParticleList of incoming hadrons
Returns
true if particles can be produced.

Definition at line 156 of file scatteractionphoton.cc.

157  {
158  auto reac = photon_reaction_type(in);
159  auto hadron = outgoing_hadron_type(in);
160 
161  if (reac == ReactionType::no_reaction)
162  return false;
163 
166  return false;
167  }
168 
169  // C15 has only s-channel. Make sure that CM-energy is high
170  // enough to produce mediating omega meson
171  if ((reac == ReactionType::pi_m_rho_p_pi_z ||
174  if (s_sqrt < omega_mass) {
175  return false;
176  }
177  }
178 
179  // for all other processes: if cm-energy is not high enough to produce final
180  // state particle reject the collision.
181  if (hadron->is_stable() && s_sqrt < hadron->mass()) {
182  return false;
183  // Make sure energy is high enough to not only create final state particle,
184  // but to also assign momentum.
185  } else if (!hadron->is_stable() &&
186  s_sqrt < (hadron->min_mass_spectral() + really_small)) {
187  return false;
188  } else {
189  return true;
190  }
191 }
constexpr double really_small
Numerical error tolerance.
Definition: constants.h:34
static ParticleTypePtr outgoing_hadron_type(const ParticleList &in)
Return ParticleTypePtr of hadron in the out channel, given the incoming particles.
static constexpr MediatorType default_mediator_
Value used for default exchange particle. See MediatorType.
constexpr double omega_mass
omega mass in GeV.
Definition: constants.h:73
static ReactionType photon_reaction_type(const ParticleList &in)
Determine photon process from incoming particles.

Here is the call graph for this function:

Here is the caller graph for this function:

double smash::ScatterActionPhoton::diff_cross_section ( const double  t,
const double  m_rho,
MediatorType  mediator = default_mediator_ 
) const
private

Calculate the differential cross section of photon process.

Formfactors are not included

Parameters
[in]tMandelstam-t [GeV^2].
[in]m_rhoMass of the incoming or outgoing rho-particle [GeV]
[in]mediatorSwitch for determing which mediating particle to use
Returns
Differential cross section. [mb/ \(GeV^2\)]

Definition at line 417 of file scatteractionphoton.cc.

419  {
420  const double s = mandelstam_s();
421  double diff_xsection = 0.0;
422 
423  CrosssectionsPhoton<ComputationMethod::Analytic> xs_object;
424 
425  switch (reac_) {
427  diff_xsection = xs_object.xs_diff_pi_pi_rho0(s, t, m_rho);
428  break;
429 
432  diff_xsection = xs_object.xs_diff_pi_pi0_rho(s, t, m_rho);
433  break;
434 
437  diff_xsection = xs_object.xs_diff_pi_rho0_pi(s, t, m_rho);
438  break;
439 
442  if (mediator == MediatorType::SUM) {
443  diff_xsection =
444  xs_object.xs_diff_pi_rho_pi0_rho_mediated(s, t, m_rho) +
445  xs_object.xs_diff_pi_rho_pi0_omega_mediated(s, t, m_rho);
446  } else if (mediator == MediatorType::OMEGA) {
447  diff_xsection =
448  xs_object.xs_diff_pi_rho_pi0_omega_mediated(s, t, m_rho);
449  } else if (mediator == MediatorType::PION) {
450  diff_xsection = xs_object.xs_diff_pi_rho_pi0_rho_mediated(s, t, m_rho);
451  }
452  break;
453 
456  if (mediator == MediatorType::SUM) {
457  diff_xsection =
458  xs_object.xs_diff_pi0_rho_pi_rho_mediated(s, t, m_rho) +
459  xs_object.xs_diff_pi0_rho_pi_omega_mediated(s, t, m_rho);
460  } else if (mediator == MediatorType::OMEGA) {
461  diff_xsection =
462  xs_object.xs_diff_pi0_rho_pi_omega_mediated(s, t, m_rho);
463  } else if (mediator == MediatorType::PION) {
464  diff_xsection = xs_object.xs_diff_pi0_rho_pi_rho_mediated(s, t, m_rho);
465  }
466  break;
467 
469  diff_xsection = xs_object.xs_diff_pi0_rho0_pi0(s, t, m_rho);
470  break;
472  // never reached
473  break;
474  }
475  return diff_xsection;
476 }
const ReactionType reac_
Photonic process as determined from incoming particles.
double mandelstam_s() const
Determine the Mandelstam s variable,.

Here is the call graph for this function:

Here is the caller graph for this function:

double smash::ScatterActionPhoton::rho_mass ( ) const
private

Find the mass of the participating rho-particle.

In case of a rho in the incoming channel it is the mass of the incoming rho, in case of an rho in the outgoing channel it is the mass sampled in the constructor. When an rho acts in addition as a mediator, its mass is the same as the incoming / outgoing rho. This function returns the alrady sampled mass or the mass of the incoming rho, depending on the process.

Returns
mass of participating rho [GeV]

Definition at line 307 of file scatteractionphoton.cc.

307  {
308  assert(reac_ != ReactionType::no_reaction);
309  switch (reac_) {
310  // rho in final state. use already sampled mass
314  return hadron_out_mass_;
315  // rho in initial state, use its mass
323  return (incoming_particles_[0].is_rho())
324  ? incoming_particles_[0].effective_mass()
325  : incoming_particles_[1].effective_mass();
327  default:
328  throw std::runtime_error(
329  "Invalid ReactionType in ScatterActionPhoton::rho_mass()");
330  }
331 }
const ReactionType reac_
Photonic process as determined from incoming particles.
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:303
const double hadron_out_mass_
Mass of outgoing hadron.

Here is the caller graph for this function:

CollisionBranchList smash::ScatterActionPhoton::photon_cross_sections ( MediatorType  mediator = default_mediator_)
private

Computes the total cross section of the photon process.

Parameters
[in]mediatorSwitch for determing which mediating particle to use.
Returns
List of photon reaction branches.

Definition at line 333 of file scatteractionphoton.cc.

334  {
335  CollisionBranchList process_list;
336  CrosssectionsPhoton<ComputationMethod::Analytic> xs_object;
337 
338  static ParticleTypePtr photon_particle = &ParticleType::find(pdg::photon);
339 
340  const double s = mandelstam_s();
341  // the mass of the mediating particle depends on the channel. For an incoming
342  // rho it is the mass of the incoming particle, for an outgoing rho it is the
343  // sampled mass
344  const double m_rho = rho_mass();
345  double xsection = 0.0;
346 
347  switch (reac_) {
349  xsection = xs_object.xs_pi_pi_rho0(s, m_rho);
350  break;
351 
354  xsection = xs_object.xs_pi_pi0_rho(s, m_rho);
355  break;
356 
359  xsection = xs_object.xs_pi_rho0_pi(s, m_rho);
360  break;
361 
364  if (mediator == MediatorType::SUM) {
365  xsection = xs_object.xs_pi_rho_pi0(s, m_rho);
366  break;
367  } else if (mediator == MediatorType::PION) {
368  xsection = xs_object.xs_pi_rho_pi0_rho_mediated(s, m_rho);
369  break;
370  } else if (mediator == MediatorType::OMEGA) {
371  xsection = xs_object.xs_pi_rho_pi0_omega_mediated(s, m_rho);
372  break;
373  } else {
374  throw std::runtime_error("");
375  }
378  if (mediator == MediatorType::SUM) {
379  xsection = xs_object.xs_pi0_rho_pi(s, m_rho);
380  break;
381  } else if (mediator == MediatorType::PION) {
382  xsection = xs_object.xs_pi0_rho_pi_rho_mediated(s, m_rho);
383  break;
384  } else if (mediator == MediatorType::OMEGA) {
385  xsection = xs_object.xs_pi0_rho_pi_omega_mediated(s, m_rho);
386  break;
387  } else {
388  throw std::runtime_error("");
389  }
390 
392  xsection = xs_object.xs_pi0_rho0_pi0(s, m_rho);
393  break;
394 
396  // never reached
397  break;
398  }
399 
400  // Due to numerical reasons it can happen that the calculated cross sections
401  // are negative (approximately -1e-15) if sqrt(s) is close to the threshold
402  // energy. In those cases the cross section is manually set to 0.1 mb, which
403  // is a reasonable value for the processes we are looking at (C14,C15,C16).
404 
405  if (xsection <= 0) {
406  xsection = 0.1;
407  const auto &log = logger<LogArea::ScatterAction>();
408  log.warn("Calculated negative cross section.\nParticles ",
409  incoming_particles_, " mass rho particle: ", m_rho,
410  ", sqrt_s: ", std::sqrt(s));
411  }
412  process_list.push_back(make_unique<CollisionBranch>(
413  *hadron_out_t_, *photon_particle, xsection, ProcessType::TwoToTwo));
414  return process_list;
415 }
constexpr int photon
Photon.
double rho_mass() const
Find the mass of the participating rho-particle.
2->2 inelastic scattering
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
const ReactionType reac_
Photonic process as determined from incoming particles.
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:303
const ParticleTypePtr hadron_out_t_
ParticleTypePtr to the type of the outgoing hadron.
double mandelstam_s() const
Determine the Mandelstam s variable,.

Here is the call graph for this function:

Here is the caller graph for this function:

std::pair< double, double > smash::ScatterActionPhoton::diff_cross_section_single ( const double  t,
const double  m_rho 
)
private

For processes which can happen via (pi, a1, rho) and omega exchange, return the differential cross section for the (pi, a1, rho) process in the first argument, for the omega process in the second.

If only one process exists, both values are the same.

Parameters
[in]tMandelstam-t [GeV^2]
[in]m_rhoMass of the incoming or outgoing rho-particle [GeV]
Returns
diff. cross section for (pi,a1,rho) in the first argument, for omega in the second.

Definition at line 574 of file scatteractionphoton.cc.

575  {
576  const double diff_xs_rho = diff_cross_section(t, m_rho, MediatorType::PION);
577  const double diff_xs_omega =
579 
580  return std::pair<double, double>(diff_xs_rho, diff_xs_omega);
581 }
double diff_cross_section(const double t, const double m_rho, MediatorType mediator=default_mediator_) const
Calculate the differential cross section of photon process.

Here is the call graph for this function:

Here is the caller graph for this function:

std::pair< double, double > smash::ScatterActionPhoton::form_factor_single ( const double  E_photon)
private

For processes which can happen via (pi, a1, rho) and omega exchange, return the form factor for the (pi, a1, rho) process in the first argument, for the omega process in the second.

If only one process exists, both values are the same.

Parameters
[in]E_photonEnergy of the photon [GeV]
Returns
Form factor for (pi,a1,rho) in the first argument, for omega in the second.

Definition at line 568 of file scatteractionphoton.cc.

569  {
570  return std::pair<double, double>(form_factor_pion(E_photon),
571  form_factor_omega(E_photon));
572 }
double form_factor_pion(const double E_photon) const
Compute the form factor for a process with a pion as the lightest exchange particle.
double form_factor_omega(const double E_photon) const
Compute the form factor for a process with a omega as the lightest exchange particle.

Here is the call graph for this function:

Here is the caller graph for this function:

double smash::ScatterActionPhoton::form_factor_pion ( const double  E_photon) const
private

Compute the form factor for a process with a pion as the lightest exchange particle.

See wiki for details how form factors are handled.

Parameters
[in]E_photonEnergy of photon [GeV]
Returns
form factor

Definition at line 543 of file scatteractionphoton.cc.

543  {
544  const double Lambda = 1.0;
545  const double Lambda2 = Lambda * Lambda;
546 
547  const double t_ff = 34.5096 * std::pow(E_photon, 0.737) -
548  67.557 * std::pow(E_photon, 0.7584) +
549  32.858 * std::pow(E_photon, 0.7806);
550  const double ff = 2 * Lambda2 / (2 * Lambda2 - t_ff);
551 
552  return ff * ff;
553 }
constexpr int Lambda
Λ.

Here is the caller graph for this function:

double smash::ScatterActionPhoton::form_factor_omega ( const double  E_photon) const
private

Compute the form factor for a process with a omega as the lightest exchange particle.

See wiki for details how form factors are handled.

Parameters
[in]E_photonEnergy of photon [GeV]
Returns
form factor

Definition at line 555 of file scatteractionphoton.cc.

555  {
556  const double Lambda = 1.0;
557  const double Lambda2 = Lambda * Lambda;
558 
559  const double t_ff = -61.595 * std::pow(E_photon, 0.9979) +
560  28.592 * std::pow(E_photon, 1.1579) +
561  37.738 * std::pow(E_photon, 0.9317) -
562  5.282 * std::pow(E_photon, 1.3686);
563  const double ff = 2 * Lambda2 / (2 * Lambda2 - t_ff);
564 
565  return ff * ff;
566 }
constexpr int Lambda
Λ.

Here is the caller graph for this function:

double smash::ScatterActionPhoton::diff_cross_section_w_ff ( const double  t,
const double  m_rho,
const double  E_photon 
)
private

Compute the differential cross section with form factors included.

Takes care of correct handling of reactions with multiple processes by reading the default_mediator_ member variable.

Parameters
[in]tMandelstam-t [GeV^2]
[in]m_rhoMass of the incoming or outgoing rho-particle [GeV]
[in]E_photonof outgoing photon [GeV]
Returns
diff. cross section [mb / GeV \(^2\)]

The form factor is assumed to be a hadronic dipole form factor which takes the shape: FF = (2*Lambda^2/(2*Lambda^2 - t))^2 with Lambda = 1.0 GeV. t depends on the lightest possible exchange particle in the different channels. This could either be a pion or an omega meson. For the computation the parametrizations given in (Turbide:2006) are used.

Definition at line 478 of file scatteractionphoton.cc.

480  {
490  /* C12, C13, C15, C16 need special treatment. These processes have identical
491  incoming and outgoing particles, but diffrent mediating particles and
492  hence different form factors. If both channels are added up
493  (MediatorType::SUM), each contribution is corrected by the corresponding
494  form factor.
495  */
496  switch (reac_) {
502  std::pair<double, double> FF = form_factor_single(E_photon);
503  std::pair<double, double> diff_xs = diff_cross_section_single(t, m_rho);
504  const double xs_ff = pow_int(FF.first, 4) * diff_xs.first +
505  pow_int(FF.second, 4) * diff_xs.second;
506  return xs_ff;
507  } else if (default_mediator_ == MediatorType::PION) {
508  const double FF = form_factor_pion(E_photon);
509  const double diff_xs = diff_cross_section(t, m_rho);
510  return pow_int(FF, 4) * diff_xs;
511  } else if (default_mediator_ == MediatorType::OMEGA) {
512  const double FF = form_factor_omega(E_photon);
513  const double diff_xs = diff_cross_section(t, m_rho);
514  return pow_int(FF, 4) * diff_xs;
515  }
516  break;
517  }
523  const double FF = form_factor_pion(E_photon);
524  const double xs = diff_cross_section(t, m_rho);
525  const double xs_ff = pow_int(FF, 4) * xs;
526  return xs_ff;
527  }
528 
530  const double FF = form_factor_omega(E_photon);
531  const double xs = diff_cross_section(t, m_rho);
532  const double xs_ff = pow_int(FF, 4) * xs;
533  return xs_ff;
534  }
535 
537  default:
538  throw std::runtime_error("");
539  return 0;
540  }
541 }
double form_factor_pion(const double E_photon) const
Compute the form factor for a process with a pion as the lightest exchange particle.
constexpr T pow_int(const T base, unsigned const exponent)
Efficient template for calculating integer powers using squaring.
Definition: pow.h:23
static constexpr MediatorType default_mediator_
Value used for default exchange particle. See MediatorType.
const ReactionType reac_
Photonic process as determined from incoming particles.
std::pair< double, double > diff_cross_section_single(const double t, const double m_rho)
For processes which can happen via (pi, a1, rho) and omega exchange, return the differential cross se...
double diff_cross_section(const double t, const double m_rho, MediatorType mediator=default_mediator_) const
Calculate the differential cross section of photon process.
std::pair< double, double > form_factor_single(const double E_photon)
For processes which can happen via (pi, a1, rho) and omega exchange, return the form factor for the (...
double form_factor_omega(const double E_photon) const
Compute the form factor for a process with a omega as the lightest exchange particle.

Here is the call graph for this function:

Here is the caller graph for this function:

Member Data Documentation

CollisionBranchList smash::ScatterActionPhoton::collision_processes_photons_
private

Holds the photon branch.

As of now, this will always hold only one branch.

Definition at line 188 of file scatteractionphoton.h.

const ReactionType smash::ScatterActionPhoton::reac_
private

Photonic process as determined from incoming particles.

Definition at line 191 of file scatteractionphoton.h.

const int smash::ScatterActionPhoton::number_of_fractional_photons_
private

Number of photons created for each hadronic scattering, needed for correct weighting.

Note that in generate_final_state() only one photon + hadron is created.

Definition at line 198 of file scatteractionphoton.h.

const ParticleTypePtr smash::ScatterActionPhoton::hadron_out_t_
private

ParticleTypePtr to the type of the outgoing hadron.

Definition at line 201 of file scatteractionphoton.h.

const double smash::ScatterActionPhoton::hadron_out_mass_
private

Mass of outgoing hadron.

Definition at line 204 of file scatteractionphoton.h.

constexpr MediatorType smash::ScatterActionPhoton::default_mediator_ = MediatorType::SUM
staticprivate

Value used for default exchange particle. See MediatorType.

Definition at line 217 of file scatteractionphoton.h.

double smash::ScatterActionPhoton::weight_ = 0.0
private

Weight of the produced photon.

Definition at line 220 of file scatteractionphoton.h.

double smash::ScatterActionPhoton::cross_section_photons_ = 0.0
private

Total cross section of photonic process.

Definition at line 223 of file scatteractionphoton.h.

const double smash::ScatterActionPhoton::hadronic_cross_section_
private

Total hadronic cross section.

Definition at line 226 of file scatteractionphoton.h.


The documentation for this class was generated from the following files: