Version: SMASH-1.6
random.cc
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2014-2019
4  * SMASH Team
5  *
6  * GNU General Public License (GPLv3 or later)
7  *
8  */
9 
10 #include "smash/random.h"
11 #include <random>
12 #include "smash/logging.h"
13 
14 namespace smash {
15 /*thread_local (see #3075)*/ random::Engine random::engine;
16 
18  std::random_device rd;
19  static_assert(std::is_same<decltype(rd()), uint32_t>::value,
20  "random_device is assumed to generate uint32_t");
21  uint64_t unsigned_seed =
22  (static_cast<uint64_t>(rd()) << 32) | static_cast<uint64_t>(rd());
23  // Discard the highest bit to make sure it fits into a positive int64_t
24  const int64_t seed = static_cast<int64_t>(unsigned_seed >> 1);
25  return seed;
26 }
27 
28 random::BesselSampler::BesselSampler(const double poisson_mean1,
29  const double poisson_mean2,
30  const int fixed_difference)
31  : a_(2.0 * std::sqrt(poisson_mean1 * poisson_mean2)),
32  N_(std::abs(fixed_difference)),
33  N_is_positive_(fixed_difference >= 0) {
34  const auto &log = logger<LogArea::GrandcanThermalizer>();
35  assert(poisson_mean1 >= 0.0);
36  assert(poisson_mean2 >= 0.0);
37  log.debug("Bessel sampler", ": Poisson mean N1 = ", poisson_mean1,
38  ", Poisson mean N2 = ", poisson_mean2, ", N1 - N2 fixed to ",
39  fixed_difference);
40  m_ = 0.5 * (std::sqrt(a_ * a_ + N_ * N_) - N_);
41  if (m_ >= m_switch_method_) {
42  mu_ = 0.5 * a_ * r_(N_, a_);
43  const double mean_sqr = mu_ * (1.0 + 0.5 * a_ * r_(N_ + 1, a_));
44  sigma_ = std::sqrt(mean_sqr - mu_ * mu_);
45  log.debug("m = ", m_, " -> using gaussian sampling with mean = ", mu_,
46  ", sigma = ", sigma_);
47  } else {
48  log.debug("m = ", m_, " -> using direct sampling method");
49  std::vector<double> probabilities;
50  double wi = 1.0, sum = 0.0;
51  int i = 0;
52  do {
53  sum += wi;
54  probabilities.push_back(wi);
55  wi *= 0.25 * a_ * a_ / (i + 1) / (N_ + i + 1);
56  i++;
57  } while (wi > negligible_probability_);
58  i = 0;
59  for (double p : probabilities) {
60  p /= sum;
61  log.debug("Probability (", i, ") = ", p);
62  i++;
63  }
64  dist_.reset_weights(probabilities);
65  }
66 }
67 
68 std::pair<int, int> random::BesselSampler::sample() {
69  const int N_smaller = (m_ >= m_switch_method_)
70  ? std::round(random::normal(mu_, sigma_))
71  : dist_();
72  return N_is_positive_ ? std::make_pair(N_smaller + N_, N_smaller)
73  : std::make_pair(N_smaller, N_smaller + N_);
74 }
75 
76 double random::BesselSampler::r_(int n, double a) {
77  const double a_inv = 1.0 / a;
78  double res = 0.0;
79  // |x - continued fraction of order n| < 2^(-n+1), see the book
80  // "Continued fractions" by Khinchin. For 10^-16 = ~2^-50 precision
81  // 50 iterations should be sufficient. However, I found that for some
82  // numerical reason at least 100 terms are needed.
83  int i = 200;
84  for (; i > 0; i--) {
85  res = 1.0 / (a_inv * 2 * (n + i) + res);
86  }
87  // Check the known property of r(n,a) function, see iref{Yuan2000}.
88  assert(a / (std::sqrt(a * a + (n + 1) * (n + 1)) + n + 1) <= res);
89  assert(res <= a / (std::sqrt(a * a + n * n) + n));
90  return res;
91 }
92 
93 } // namespace smash
random::discrete_dist< double > dist_
Vector to store tabulated values of probabilities for small m case (m <6).
Definition: random.h:410
static constexpr double negligible_probability_
Probabilities smaller than negligibly_probability are neglected.
Definition: random.h:432
STL namespace.
double mu_
Mean of the Bessel distribution.
Definition: random.h:435
std::pair< int, int > sample()
Sample two numbers from given Poissonians with a fixed difference.
Definition: random.cc:68
BesselSampler(const double poisson_mean1, const double poisson_mean2, const int fixed_difference)
Construct a BesselSampler.
Definition: random.cc:28
static constexpr double m_switch_method_
Switching mode to normal approximation.
Definition: random.h:429
const int N_
First parameter of Bessel distribution (= in Yuan2000).
Definition: random.h:419
const bool N_is_positive_
Boolean variable to verify that N > 0.
Definition: random.h:422
double sigma_
Standard deviation of the Bessel distribution.
Definition: random.h:438
Engine engine
The engine that is used commonly by all distributions.
Definition: random.cc:15
constexpr int p
Proton.
void reset_weights(const std::vector< T > &plist)
Reset the discrete distribution from a new probability list.
Definition: random.h:280
std::mt19937_64 Engine
The random number engine used is the Mersenne Twister.
Definition: random.h:27
int64_t generate_63bit_seed()
Generates a seed with a truly random 63-bit value, if possible.
Definition: random.cc:17
double normal(const T &mean, const T &sigma)
Returns a random number drawn from a normal distribution.
Definition: random.h:250
static double r_(int n, double a)
Compute the ratio of two Bessel functions r(n,a) = bessel_I(n+1,a)/bessel_I(n,a) using the continued ...
Definition: random.cc:76
double m_
Mode of the Bessel function, see Yuan2000 for details.
Definition: random.h:413
constexpr int n
Neutron.
const double a_
Second parameter of Bessel distribution, see Yuan2000 for details.
Definition: random.h:416
Definition: action.h:24