18 std::random_device rd;
19 static_assert(std::is_same<decltype(rd()), uint32_t>::value,
20 "random_device is assumed to generate uint32_t");
21 uint64_t unsigned_seed =
22 (
static_cast<uint64_t
>(rd()) << 32) |
static_cast<uint64_t
>(rd());
24 const int64_t seed =
static_cast<int64_t
>(unsigned_seed >> 1);
29 const double poisson_mean2,
30 const int fixed_difference)
31 : a_(2.0 *
std::sqrt(poisson_mean1 * poisson_mean2)),
32 N_(
std::abs(fixed_difference)),
33 N_is_positive_(fixed_difference >= 0) {
34 const auto &log = logger<LogArea::GrandcanThermalizer>();
35 assert(poisson_mean1 >= 0.0);
36 assert(poisson_mean2 >= 0.0);
37 log.debug(
"Bessel sampler",
": Poisson mean N1 = ", poisson_mean1,
38 ", Poisson mean N2 = ", poisson_mean2,
", N1 - N2 fixed to ",
43 const double mean_sqr =
mu_ * (1.0 + 0.5 *
a_ *
r_(N_ + 1,
a_));
45 log.debug(
"m = ",
m_,
" -> using gaussian sampling with mean = ", mu_,
46 ", sigma = ", sigma_);
48 log.debug(
"m = ",
m_,
" -> using direct sampling method");
49 std::vector<double> probabilities;
50 double wi = 1.0, sum = 0.0;
54 probabilities.push_back(wi);
55 wi *= 0.25 *
a_ *
a_ / (i + 1) / (N_ + i + 1);
59 for (
double p : probabilities) {
61 log.debug(
"Probability (", i,
") = ",
p);
73 : std::make_pair(N_smaller, N_smaller +
N_);
77 const double a_inv = 1.0 / a;
85 res = 1.0 / (a_inv * 2 * (n + i) + res);
88 assert(a / (std::sqrt(a * a + (n + 1) * (n + 1)) + n + 1) <= res);
89 assert(res <= a / (std::sqrt(a * a + n * n) + n));
random::discrete_dist< double > dist_
Vector to store tabulated values of probabilities for small m case (m <6).
static constexpr double negligible_probability_
Probabilities smaller than negligibly_probability are neglected.
double mu_
Mean of the Bessel distribution.
std::pair< int, int > sample()
Sample two numbers from given Poissonians with a fixed difference.
BesselSampler(const double poisson_mean1, const double poisson_mean2, const int fixed_difference)
Construct a BesselSampler.
static constexpr double m_switch_method_
Switching mode to normal approximation.
const int N_
First parameter of Bessel distribution (= in Yuan2000).
const bool N_is_positive_
Boolean variable to verify that N > 0.
double sigma_
Standard deviation of the Bessel distribution.
Engine engine
The engine that is used commonly by all distributions.
void reset_weights(const std::vector< T > &plist)
Reset the discrete distribution from a new probability list.
std::mt19937_64 Engine
The random number engine used is the Mersenne Twister.
int64_t generate_63bit_seed()
Generates a seed with a truly random 63-bit value, if possible.
double normal(const T &mean, const T &sigma)
Returns a random number drawn from a normal distribution.
static double r_(int n, double a)
Compute the ratio of two Bessel functions r(n,a) = bessel_I(n+1,a)/bessel_I(n,a) using the continued ...
double m_
Mode of the Bessel function, see Yuan2000 for details.
const double a_
Second parameter of Bessel distribution, see Yuan2000 for details.