Version: SMASH-1.7
grid.cc
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2014-2019
4  * SMASH Team
5  *
6  * GNU General Public License (GPLv3 or later)
7  *
8  */
9 
10 #include "smash/grid.h"
11 
12 #include <stdexcept>
13 
14 #include "smash/algorithms.h"
15 #include "smash/fourvector.h"
16 #include "smash/logging.h"
17 #include "smash/particledata.h"
18 #include "smash/threevector.h"
19 
20 namespace std {
21 template <typename T>
22 static std::ostream &operator<<(std::ostream &out, const std::vector<T> &v) {
23  auto column = out.tellp();
24  out << "{ ";
25  for (const auto &x : v) {
26  if (out.tellp() - column >= 100) {
27  out << '\n';
28  column = out.tellp();
29  }
30  out << x << ' ';
31  }
32  return out << '}';
33 }
34 
35 template <typename T>
36 static std::ostream &operator<<(std::ostream &out,
37  const std::initializer_list<T> &v) {
38  auto column = out.tellp();
39  out << "{ ";
40  for (const auto &x : v) {
41  if (out.tellp() - column >= 100) {
42  out << '\n';
43  column = out.tellp();
44  }
45  out << x << ' ';
46  }
47  return out << '}';
48 }
49 
50 template <typename T, std::size_t N>
51 static std::ostream &operator<<(std::ostream &out, const std::array<T, N> &a) {
52  auto column = out.tellp();
53  out << "{ ";
54  for (const auto &x : a) {
55  if (out.tellp() - column >= 100) {
56  out << '\n';
57  column = out.tellp();
58  }
59  out << x << ' ';
60  }
61  return out << '}';
62 }
63 } // namespace std
64 
65 namespace smash {
66 
68 // GridBase
69 
70 std::pair<std::array<double, 3>, std::array<double, 3>>
71 GridBase::find_min_and_length(const Particles &particles) {
72  std::pair<std::array<double, 3>, std::array<double, 3>> r;
73  auto &min_position = r.first;
74  auto &length = r.second;
75 
76  // intialize min and max position arrays with the position of the first
77  // particle in the list
78  const auto &first_position = particles.front().position();
79  min_position = {{first_position[1], first_position[2], first_position[3]}};
80  auto max_position = min_position;
81  for (const auto &p : particles) {
82  const auto &pos = p.position();
83  min_position[0] = std::min(min_position[0], pos[1]);
84  min_position[1] = std::min(min_position[1], pos[2]);
85  min_position[2] = std::min(min_position[2], pos[3]);
86  max_position[0] = std::max(max_position[0], pos[1]);
87  max_position[1] = std::max(max_position[1], pos[2]);
88  max_position[2] = std::max(max_position[2], pos[3]);
89  }
90  length[0] = max_position[0] - min_position[0];
91  length[1] = max_position[1] - min_position[1];
92  length[2] = max_position[2] - min_position[2];
93  return r;
94 }
95 
97 // Grid
98 
99 template <GridOptions O>
100 Grid<O>::Grid(const std::pair<std::array<double, 3>, std::array<double, 3>>
101  &min_and_length,
102  const Particles &particles, double max_interaction_length,
103  double timestep_duration, CellSizeStrategy strategy)
104  : length_(min_and_length.second) {
105  const auto min_position = min_and_length.first;
106  const SizeType particle_count = particles.size();
107 
108  // very simple setup for non-periodic boundaries and largest cellsize strategy
109  if (O == GridOptions::Normal && strategy == CellSizeStrategy::Largest) {
110  number_of_cells_ = {1, 1, 1};
111  cell_volume_ = length_[0] * length_[1] * length_[2];
112  cells_.clear();
113  cells_.reserve(1);
114  cells_.emplace_back(particles.copy_to_vector());
115  return;
116  }
117 
118  // The number of cells is determined by the min and max coordinates where
119  // particles are positioned and the maximal interaction length (which equals
120  // the length of a cell).
121  // But don't let the number of cells exceed the actual number of particles.
122  // That would be overkill. Let max_cells³ ≤ particle_count (conversion to
123  // int truncates).
124  // Consider that particle placement into cells uses half-open intervals. Thus
125  // a cell includes particles in [0, a[. The next cell [a, 2a[. And so on. This
126  // is important for calculating the number of cells. If length * index_factor
127  // (equivalent to length / max_interaction_length) is integral, then
128  // length * index_factor + 1 determines the number of required cells. That's
129  // because the last cell will then store particles in the interval
130  // [length, length + max_interaction_length[. The code below achieves this
131  // effect by rounding down (floor) and adding 1 afterwards.
132  const int max_cells =
133  (O == GridOptions::Normal)
134  ? std::cbrt(particle_count)
135  : std::max(2, static_cast<int>(std::cbrt(particle_count)));
136 
137  // This normally equals 1/max_interaction_length, but if the number of cells
138  // is reduced (because of low density) then this value is smaller.
139  std::array<double, 3> index_factor = {1. / max_interaction_length,
140  1. / max_interaction_length,
141  1. / max_interaction_length};
142  for (std::size_t i = 0; i < number_of_cells_.size(); ++i) {
143  number_of_cells_[i] =
144  (strategy == CellSizeStrategy::Largest)
145  ? 2
146  : static_cast<int>(std::floor(length_[i] * index_factor[i])) +
147  // The last cell in each direction can be smaller than
148  // max_interaction_length. In that case periodic boundaries
149  // will not work correctly. Thus, we need to reduce the number
150  // of cells in that direction by one and make the last cell
151  // larger. This basically merges a smaller boundary cell into
152  // a full cell inside the grid. There's a ~0% chance that the
153  // given boundaries create an integral number of cells with
154  // length of max_interaction_length. Therefore, just make the
155  // default number of cells one less than for non-periodic
156  // boundaries.
157  (O == GridOptions::Normal ? 1 : 0);
158  if (number_of_cells_[i] == 0) {
159  throw std::runtime_error(
160  "Input error: Your Box is too small for the grid."
161  "\nThe minimal length of the box is given by:\n" +
162  std::to_string(max_interaction_length) +
163  " fm with your current timestep size dt.\n"
164  "If you have large timesteps please reduce them."
165  "\nPlease take a look at your config.");
166  }
167  // std::nextafter implements a safety margin so that no valid position
168  // inside the grid can reference an out-of-bounds cell
169  if (number_of_cells_[i] > max_cells) {
170  number_of_cells_[i] = max_cells;
171  index_factor[i] = number_of_cells_[i] / length_[i];
172  while (index_factor[i] * length_[i] >= number_of_cells_[i]) {
173  index_factor[i] = std::nextafter(index_factor[i], 0.);
174  }
175  assert(index_factor[i] * length_[i] < number_of_cells_[i]);
176  } else if (O == GridOptions::PeriodicBoundaries) {
177  if (number_of_cells_[i] == 1) {
178  number_of_cells_[i] = 2;
179  }
180  index_factor[i] = number_of_cells_[i] / length_[i];
181  while (index_factor[i] * length_[i] >= number_of_cells_[i]) {
182  index_factor[i] = std::nextafter(index_factor[i], 0.);
183  }
184  assert(index_factor[i] * length_[i] < number_of_cells_[i]);
185  }
186  }
187 
189  (length_[1] / number_of_cells_[1]) *
190  (length_[2] / number_of_cells_[2]);
191 
192  const auto &log = logger<LogArea::Grid>();
193  if (O == GridOptions::Normal &&
194  all_of(number_of_cells_, [](SizeType n) { return n <= 2; })) {
195  // dilute limit:
196  // the grid would have <= 2x2x2 cells, meaning every particle has to be
197  // compared with every other particle anyway. Then we can just as well
198  // fall back to not using the grid at all
199  // For a grid with periodic boundaries the situation is different and we
200  // never want to have a grid smaller than 2x2x2.
201  log.debug("There would only be ", number_of_cells_,
202  " cells. Therefore the Grid falls back to a single cell / "
203  "particle list.");
204  number_of_cells_ = {1, 1, 1};
205  cell_volume_ = length_[0] * length_[1] * length_[2];
206  cells_.resize(1);
207  cells_.front().reserve(particles.size());
208  std::copy_if(particles.begin(), particles.end(),
209  std::back_inserter(cells_.front()),
210  [&](const ParticleData &p) {
211  return p.xsec_scaling_factor(timestep_duration) > 0.0;
212  }); // filter out the particles that can not interact
213  } else {
214  // construct a normal grid
215  log.debug("min: ", min_position, "\nlength: ", length_,
216  "\ncell_volume: ", cell_volume_, "\ncells: ", number_of_cells_,
217  "\nindex_factor: ", index_factor);
218 
219  // After the grid parameters are determined, we can start placing the
220  // particles in cells.
221  cells_.resize(number_of_cells_[0] * number_of_cells_[1] *
222  number_of_cells_[2]);
223 
224  // Returns the one-dimensional cell-index from the position vector inside
225  // the grid.
226  // This simply calculates the distance to min_position and multiplies it
227  // with index_factor to determine the 3 x,y,z indexes to pass to make_index.
228  auto &&cell_index_for = [&](const ParticleData &p) {
229  return make_index(
230  std::floor((p.position()[1] - min_position[0]) * index_factor[0]),
231  std::floor((p.position()[2] - min_position[1]) * index_factor[1]),
232  std::floor((p.position()[3] - min_position[2]) * index_factor[2]));
233  };
234 
235  for (const auto &p : particles) {
236  if (p.xsec_scaling_factor(timestep_duration) > 0.0) {
237  const auto idx = cell_index_for(p);
238 #ifndef NDEBUG
239  if (idx >= SizeType(cells_.size())) {
240  log.fatal(
242  "\nan out-of-bounds access would be necessary for the "
243  "particle ",
244  p, "\nfor a grid with the following parameters:\nmin: ",
245  min_position, "\nlength: ", length_,
246  "\ncells: ", number_of_cells_, "\nindex_factor: ", index_factor,
247  "\ncells_.size: ", cells_.size(), "\nrequested index: ", idx);
248  throw std::runtime_error("out-of-bounds grid access on construction");
249  }
250 #endif
251  cells_[idx].push_back(p);
252  }
253  }
254  }
255 
256  log.debug(cells_);
257 }
258 
259 template <GridOptions Options>
261  SizeType x, SizeType y, SizeType z) const {
262  return (z * number_of_cells_[1] + y) * number_of_cells_[0] + x;
263 }
264 
265 static const std::initializer_list<GridBase::SizeType> ZERO{0};
266 static const std::initializer_list<GridBase::SizeType> ZERO_ONE{0, 1};
267 static const std::initializer_list<GridBase::SizeType> MINUS_ONE_ZERO{-1, 0};
268 static const std::initializer_list<GridBase::SizeType> MINUS_ONE_ZERO_ONE{-1, 0,
269  1};
270 
271 template <>
274  const std::function<void(const ParticleList &)> &search_cell_callback,
275  const std::function<void(const ParticleList &, const ParticleList &)>
276  &neighbor_cell_callback) const {
277  std::array<SizeType, 3> search_index;
278  SizeType &x = search_index[0];
279  SizeType &y = search_index[1];
280  SizeType &z = search_index[2];
281  SizeType search_cell_index = 0;
282  for (z = 0; z < number_of_cells_[2]; ++z) {
283  for (y = 0; y < number_of_cells_[1]; ++y) {
284  for (x = 0; x < number_of_cells_[0]; ++x, ++search_cell_index) {
285  assert(search_cell_index == make_index(search_index));
286  assert(search_cell_index >= 0);
287  assert(search_cell_index < SizeType(cells_.size()));
288  const ParticleList &search = cells_[search_cell_index];
289  search_cell_callback(search);
290 
291  const auto &dz_list = z == number_of_cells_[2] - 1 ? ZERO : ZERO_ONE;
292  const auto &dy_list = number_of_cells_[1] == 1
293  ? ZERO
294  : y == 0 ? ZERO_ONE
295  : y == number_of_cells_[1] - 1
298  const auto &dx_list = number_of_cells_[0] == 1
299  ? ZERO
300  : x == 0 ? ZERO_ONE
301  : x == number_of_cells_[0] - 1
304  for (SizeType dz : dz_list) {
305  for (SizeType dy : dy_list) {
306  for (SizeType dx : dx_list) {
307  const auto di = make_index(dx, dy, dz);
308  if (di > 0) {
309  neighbor_cell_callback(search, cells_[search_cell_index + di]);
310  }
311  }
312  }
313  }
314  }
315  }
316  }
317 }
318 
328 
335 };
336 
337 template <>
340  const std::function<void(const ParticleList &)> &search_cell_callback,
341  const std::function<void(const ParticleList &, const ParticleList &)>
342  &neighbor_cell_callback) const {
343  const auto &log = logger<LogArea::Grid>();
344 
345  std::array<SizeType, 3> search_index;
346  SizeType &x = search_index[0];
347  SizeType &y = search_index[1];
348  SizeType &z = search_index[2];
349  SizeType search_cell_index = 0;
350 
351  // defaults:
352  std::array<NeighborLookup, 2> dz_list;
353  std::array<NeighborLookup, 3> dy_list;
354  std::array<NeighborLookup, 3> dx_list;
355 
356  assert(number_of_cells_[2] >= 2);
357  assert(number_of_cells_[1] >= 2);
358  assert(number_of_cells_[0] >= 2);
359 
360  for (z = 0; z < number_of_cells_[2]; ++z) {
361  dz_list[0].index = z;
362  dz_list[1].index = z + 1;
363  if (dz_list[1].index == number_of_cells_[2]) {
364  dz_list[1].index = 0;
365  // last z in the loop, so no need to reset wrap again
366  dz_list[1].wrap = NeedsToWrap::MinusLength;
367  }
368  for (y = 0; y < number_of_cells_[1]; ++y) {
369  dy_list[0].index = y;
370  dy_list[1].index = y - 1;
371  dy_list[2].index = y + 1;
372  dy_list[2].wrap = NeedsToWrap::No;
373  if (y == 0) {
374  dy_list[1] = dy_list[2];
375  dy_list[2].index = number_of_cells_[1] - 1;
376  dy_list[2].wrap = NeedsToWrap::PlusLength;
377  } else if (dy_list[2].index == number_of_cells_[1]) {
378  dy_list[2].index = 0;
379  dy_list[2].wrap = NeedsToWrap::MinusLength;
380  }
381  for (x = 0; x < number_of_cells_[0]; ++x, ++search_cell_index) {
382  dx_list[0].index = x;
383  dx_list[1].index = x - 1;
384  dx_list[2].index = x + 1;
385  dx_list[2].wrap = NeedsToWrap::No;
386  if (x == 0) {
387  dx_list[1] = dx_list[2];
388  dx_list[2].index = number_of_cells_[0] - 1;
389  dx_list[2].wrap = NeedsToWrap::PlusLength;
390  } else if (dx_list[2].index == number_of_cells_[0]) {
391  dx_list[2].index = 0;
392  dx_list[2].wrap = NeedsToWrap::MinusLength;
393  }
394 
395  assert(search_cell_index == make_index(search_index));
396  assert(search_cell_index >= 0);
397  assert(search_cell_index < SizeType(cells_.size()));
398  ParticleList search = cells_[search_cell_index];
399  search_cell_callback(search);
400 
401  auto virtual_search_index = search_index;
402  ThreeVector wrap_vector = {}; // no change
403  auto current_wrap_vector = wrap_vector;
404 
405  for (const auto &dz : dz_list) {
406  if (dz.wrap == NeedsToWrap::MinusLength) {
407  // last dz in the loop, so no need to undo the wrap
408  wrap_vector[2] = -length_[2];
409  virtual_search_index[2] = -1;
410  }
411  for (const auto &dy : dy_list) {
412  // only the last dy in dy_list can wrap
413  if (dy.wrap == NeedsToWrap::MinusLength) {
414  wrap_vector[1] = -length_[1];
415  virtual_search_index[1] = -1;
416  } else if (dy.wrap == NeedsToWrap::PlusLength) {
417  wrap_vector[1] = length_[1];
418  virtual_search_index[1] = number_of_cells_[1];
419  }
420  for (const auto &dx : dx_list) {
421  // only the last dx in dx_list can wrap
422  if (dx.wrap == NeedsToWrap::MinusLength) {
423  wrap_vector[0] = -length_[0];
424  virtual_search_index[0] = -1;
425  } else if (dx.wrap == NeedsToWrap::PlusLength) {
426  wrap_vector[0] = length_[0];
427  virtual_search_index[0] = number_of_cells_[0];
428  }
429  assert(dx.index >= 0);
430  assert(dx.index < number_of_cells_[0]);
431  assert(dy.index >= 0);
432  assert(dy.index < number_of_cells_[1]);
433  assert(dz.index >= 0);
434  assert(dz.index < number_of_cells_[2]);
435  const auto neighbor_cell_index =
436  make_index(dx.index, dy.index, dz.index);
437  assert(neighbor_cell_index >= 0);
438  assert(neighbor_cell_index < SizeType(cells_.size()));
439  if (neighbor_cell_index <= make_index(virtual_search_index)) {
440  continue;
441  }
442 
443  if (wrap_vector != current_wrap_vector) {
444  log.debug("translating search cell by ",
445  wrap_vector - current_wrap_vector);
446  for_each(search, [&](ParticleData &p) {
447  p = p.translated(wrap_vector - current_wrap_vector);
448  });
449  current_wrap_vector = wrap_vector;
450  }
451  neighbor_cell_callback(search, cells_[neighbor_cell_index]);
452  }
453  virtual_search_index[0] = search_index[0];
454  wrap_vector[0] = 0;
455  }
456  virtual_search_index[1] = search_index[1];
457  wrap_vector[1] = 0;
458  }
459  }
460  }
461  }
462 }
463 
465  const std::pair<std::array<double, 3>, std::array<double, 3>>
466  &min_and_length,
467  const Particles &particles, double max_interaction_length,
468  double timestep_duration, CellSizeStrategy strategy);
470  const std::pair<std::array<double, 3>, std::array<double, 3>>
471  &min_and_length,
472  const Particles &particles, double max_interaction_length,
473  double timestep_duration, CellSizeStrategy strategy);
474 } // namespace smash
NeedsToWrap
The options determining what to do if a particle flies out of the grids PlusLength: Used if a periodi...
Definition: grid.cc:327
ParticleData & front()
Definition: particles.h:359
ParticleData translated(const ThreeVector &delta) const
Translate the particle position.
Definition: particledata.h:205
With ghost cells for periodic boundaries.
The ThreeVector class represents a physical three-vector with the components .
Definition: threevector.h:31
Without ghost cells.
const FourVector & position() const
Get the particle&#39;s position in Minkowski space.
Definition: particledata.h:185
iterator begin()
Definition: particles.h:380
static const std::initializer_list< GridBase::SizeType > ZERO_ONE
Definition: grid.cc:266
STL namespace.
std::vector< ParticleList > cells_
The cell storage.
Definition: grid.h:169
ParticleList copy_to_vector() const
Definition: particles.h:44
Grid(const Particles &particles, double min_cell_length, double timestep_duration, CellSizeStrategy strategy=CellSizeStrategy::Optimal)
Constructs a grid from the given particle list particles.
Definition: grid.h:93
void iterate_cells(const std::function< void(const ParticleList &)> &search_cell_callback, const std::function< void(const ParticleList &, const ParticleList &)> &neighbor_cell_callback) const
Iterates over all cells in the grid and calls the callback arguments with a search cell and 0 to 13 n...
#define source_location
Hackery that is required to output the location in the source code where the log statement occurs...
Definition: logging.h:253
double xsec_scaling_factor(double delta_time=0.) const
Return the cross section scaling factor at a given time.
Definition: particledata.cc:73
Generic algorithms on containers and ranges.
size_t size() const
Definition: particles.h:87
std::array< int, 3 > number_of_cells_
The number of cells in x, y, and z direction.
Definition: grid.h:166
int SizeType
A type to store the sizes.
Definition: grid.h:53
double cell_volume_
The volume of a single cell.
Definition: grid.h:163
bool all_of(Container &&c, UnaryPredicate &&p)
Convenience wrapper for std::all_of that operates on a complete container.
Definition: algorithms.h:80
UnaryFunction for_each(Container &&c, UnaryFunction &&f)
Convenience wrapper for std::for_each that operates on a complete container.
Definition: algorithms.h:96
static const std::initializer_list< GridBase::SizeType > MINUS_ONE_ZERO
Definition: grid.cc:267
iterator end()
Definition: particles.h:404
static const std::initializer_list< GridBase::SizeType > MINUS_ONE_ZERO_ONE
Definition: grid.cc:268
A strust containing the informations needed to search the neighboring cell.
Definition: grid.cc:330
constexpr int p
Proton.
static const std::initializer_list< GridBase::SizeType > ZERO
Definition: grid.cc:265
CellSizeStrategy
Indentifies the strategy of determining the cell size.
Definition: grid.h:33
The Particles class abstracts the storage and manipulation of particles.
Definition: particles.h:33
constexpr int n
Neutron.
Abstracts a list of cells that partition the particles in the experiment into regions of space that c...
Definition: grid.h:79
Make cells as large as possible.
SizeType make_index(SizeType x, SizeType y, SizeType z) const
Definition: grid.cc:260
const std::array< double, 3 > length_
The 3 lengths of the complete grid. Used for periodic boundary wrapping.
Definition: grid.h:160
ParticleData contains the dynamic information of a certain particle.
Definition: particledata.h:52
Definition: action.h:24