Version: SMASH-1.7
nucleus.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2014-2019
3  * SMASH Team
4  *
5  * GNU General Public License (GPLv3 or later)
6  */
7 #include "smash/nucleus.h"
8 
9 #include <fstream>
10 #include <iostream>
11 #include <limits>
12 #include <map>
13 #include <string>
14 
15 #include "smash/angles.h"
16 #include "smash/constants.h"
17 #include "smash/fourvector.h"
18 #include "smash/inputfunctions.h"
19 #include "smash/logging.h"
20 #include "smash/numerics.h"
21 #include "smash/particles.h"
22 #include "smash/pdgcode.h"
23 #include "smash/random.h"
24 #include "smash/threevector.h"
25 
26 namespace smash {
27 
28 Nucleus::Nucleus(const std::map<PdgCode, int> &particle_list, int nTest) {
29  fill_from_list(particle_list, nTest);
31 }
32 
33 Nucleus::Nucleus(Configuration &config, int nTest) {
34  // Fill nuclei with particles.
35  std::map<PdgCode, int> part = config.take({"Particles"});
36  fill_from_list(part, nTest);
37  // Look for user-defined values or take the default parameters.
38  if (config.has_value({"Diffusiveness"}) && config.has_value({"Radius"}) &&
39  config.has_value({"Saturation_Density"})) {
41  } else if (!config.has_value({"Diffusiveness"}) &&
42  !config.has_value({"Radius"}) &&
43  !config.has_value({"Saturation_Density"})) {
45  } else {
46  throw std::invalid_argument(
47  "Diffussiveness, Radius and Saturation_Density "
48  "required to manually configure the Woods-Saxon"
49  " distribution. Only one/two were provided. \n"
50  "Providing none of the above mentioned "
51  "parameters automatically configures the "
52  "distribution based on the atomic number.");
53  }
54 }
55 
56 double Nucleus::mass() const {
57  double total_mass = 0.;
58  for (auto i = cbegin(); i != cend(); i++) {
59  total_mass += i->momentum().abs();
60  }
61  return total_mass / (testparticles_ + 0.0);
62 }
63 
217  // Get the solid angle of the nucleon.
218  Angles dir;
220  // diffusiveness_ zero or negative? Use hard sphere.
221  if (almost_equal(diffusiveness_, 0.)) {
222  return dir.threevec() * nuclear_radius_ * std::cbrt(random::canonical());
223  }
224  if (almost_equal(nuclear_radius_, 0.)) {
225  return smash::ThreeVector();
226  }
227  double radius_scaled = nuclear_radius_ / diffusiveness_;
228  double prob_range1 = 1.0;
229  double prob_range2 = 3. / radius_scaled;
230  double prob_range3 = 2. * prob_range2 / radius_scaled;
231  double prob_range4 = 1. * prob_range3 / radius_scaled;
232  double ranges234 = prob_range2 + prob_range3 + prob_range4;
233  double t;
235  do {
236  double which_range = random::uniform(-prob_range1, ranges234);
237  if (which_range < 0.0) {
238  t = radius_scaled * (std::cbrt(random::canonical()) - 1.);
239  } else {
240  t = -std::log(random::canonical());
241  if (which_range >= prob_range2) {
242  t -= std::log(random::canonical());
243  if (which_range >= prob_range2 + prob_range3) {
244  t -= std::log(random::canonical());
245  }
246  }
247  }
255  } while (random::canonical() > 1. / (1. + std::exp(-std::abs(t))));
257  double position_scaled = t + radius_scaled;
258  double position = position_scaled * diffusiveness_;
259  return dir.threevec() * position;
260 }
261 
262 double Nucleus::woods_saxon(double r) {
263  return r * r / (std::exp((r - nuclear_radius_) / diffusiveness_) + 1);
264 }
265 
267  for (auto i = begin(); i != end(); i++) {
268  // Initialize momentum
269  i->set_4momentum(i->pole_mass(), 0.0, 0.0, 0.0);
270  /* Sampling the Woods-Saxon, get the radial
271  * position and solid angle for the nucleon. */
273 
274  // Set the position of the nucleon.
275  i->set_4position(FourVector(0.0, pos));
276  }
277 
278  // Recenter and rotate
279  align_center();
280  rotate();
281 }
282 
285  int Z = Nucleus::number_of_protons();
286  switch (A) {
287  case 1: // single particle
288  /* In case of testparticles, an infinite reaction loop will be
289  * avoided by a small finite spread according to a single particles
290  * 'nucleus'. The proper solution will be to introduce parallel
291  * ensembles. */
293  ? 0.
294  : 1. - std::exp(-(testparticles_ - 1.) * 0.1));
295  set_diffusiveness(testparticles_ == 1 ? -1. : 0.02);
296  break;
297  case 238: // Uranium
298  // Default values.
299  if (Z == 92) {
300  set_diffusiveness(0.556);
301  set_nuclear_radius(6.86);
302  set_saturation_density(0.166);
303  }
304  break;
305  case 208: // Lead
306  // Default values.
307  if (Z == 82) {
308  set_diffusiveness(0.54);
309  set_nuclear_radius(6.67);
310  set_saturation_density(0.161);
311  }
312  break;
313  case 197: // Gold
314  // Default values.
315  if (Z == 79) {
316  set_diffusiveness(0.535);
317  set_nuclear_radius(6.38);
318  set_saturation_density(0.1695);
319  }
320  break;
321  case 63: // Copper
322  // Default values.
323  if (Z == 29) {
324  set_diffusiveness(0.5977);
325  set_nuclear_radius(4.20641);
326  set_saturation_density(0.1686);
327  }
328  break;
329  case 96:
330  if (Z == 40) { // Zirconium
331  // Default values.
332  set_diffusiveness(0.46);
333  set_nuclear_radius(5.02);
334  set_saturation_density(0.1673);
335  } else if (Z == 44) { // Ruthenium
336  // Default values.
337  set_diffusiveness(0.46);
338  set_nuclear_radius(5.085);
339  set_saturation_density(0.1604);
340  } else {
341  // radius and diffusiveness taken from \iref{Rybczynski:2013yba}
342  set_diffusiveness(0.54);
343  set_nuclear_radius(1.12 * std::pow(A, 1.0 / 3.0) -
344  0.86 * std::pow(A, -1.0 / 3.0));
345  }
346  break;
347 
348  default:
349  // saturation density already has reasonable default
351  if (A <= 16) {
352  set_diffusiveness(0.545);
353  } else {
354  // diffusiveness taken from \iref{Rybczynski:2013yba}
355  set_diffusiveness(0.54);
356  }
357  }
358 }
359 
361  set_diffusiveness(static_cast<double>(config.take({"Diffusiveness"})));
362  set_nuclear_radius(static_cast<double>(config.take({"Radius"})));
363  // Saturation density (normalization for accept/reject sampling)
365  static_cast<double>(config.take({"Saturation_Density"})));
366 }
367 
369  const int N_n = std::count_if(begin(), end(), [](const ParticleData i) {
370  return i.pdgcode() == pdg::n;
371  });
372  const int N_p = std::count_if(begin(), end(), [](const ParticleData i) {
373  return i.pdgcode() == pdg::p;
374  });
375  const FourVector nucleus_center = center();
376  const int A = N_n + N_p;
377  constexpr double pi2_3 = 3.0 * M_PI * M_PI;
378  const auto &log = logger<LogArea::Nucleus>();
379 
380  log.debug() << N_n << " neutrons, " << N_p << " protons.";
381 
382  ThreeVector ptot = ThreeVector(0.0, 0.0, 0.0);
383  for (auto i = begin(); i != end(); i++) {
384  // Only protons and neutrons get Fermi momenta
385  if (i->pdgcode() != pdg::p && i->pdgcode() != pdg::n) {
386  if (i->is_baryon()) {
387  log.warn() << "No rule to calculate Fermi momentum "
388  << "for particle " << i->pdgcode();
389  }
390  continue;
391  }
392  const double r = (i->position() - nucleus_center).abs3();
393  const double theta = (i->position().threevec().get_theta());
394  double rho = nucleon_density(r, cos(theta));
395 
396  if (i->pdgcode() == pdg::p) {
397  rho = rho * N_p / A;
398  }
399  if (i->pdgcode() == pdg::n) {
400  rho = rho * N_n / A;
401  }
402  const double p =
403  hbarc * std::pow(pi2_3 * rho * random::uniform(0.0, 1.0), 1.0 / 3.0);
404  Angles phitheta;
405  phitheta.distribute_isotropically();
406  const ThreeVector ith_3momentum = phitheta.threevec() * p;
407  ptot += ith_3momentum;
408  i->set_3momentum(ith_3momentum);
409  log.debug() << "Particle: " << *i
410  << ", pF[GeV]: " << hbarc * std::pow(pi2_3 * rho, 1.0 / 3.0)
411  << " r[fm]: " << r
412  << " Nuclear radius[fm]: " << nuclear_radius_;
413  }
414  if (A == 0) {
415  // No Fermi momenta should be assigned
416  assert(ptot.x1() == 0.0 && ptot.x2() == 0.0 && ptot.x3() == 0.0);
417  } else {
418  /* Ensure zero total momentum of nucleus - redistribute ptot equally
419  * among protons and neutrons */
420  const ThreeVector centralizer = ptot / A;
421  for (auto i = begin(); i != end(); i++) {
422  if (i->pdgcode() == pdg::p || i->pdgcode() == pdg::n) {
423  i->set_4momentum(i->pole_mass(),
424  i->momentum().threevec() - centralizer);
425  }
426  }
427  }
428 }
429 
430 void Nucleus::boost(double beta_scalar) {
431  double beta_squared = beta_scalar * beta_scalar;
432  double one_over_gamma = std::sqrt(1.0 - beta_squared);
433  double gamma = 1.0 / one_over_gamma;
434  /* We are talking about a /passive/ lorentz transformation here, as
435  * far as I can see, so we need to boost in the direction opposite to
436  * where we want to go
437  * ( The vector we transform - p - stays unchanged, but we go into
438  * a system that moves with -beta. Now in this frame, it seems
439  * like p has been accelerated with +beta.
440  * ) */
441  for (auto i = begin(); i != end(); i++) {
442  /* a real Lorentz Transformation would leave the particles at
443  * different times here, which we would then have to propagate back
444  * to equal times. Since we know the result, we can simply multiply
445  * the z-value with 1/gamma. */
446  FourVector this_position = i->position();
447  this_position.set_x3(this_position.x3() * one_over_gamma);
448  i->set_4position(this_position);
449  /* The simple Lorentz transformation of momenta does not take into account
450  * that nucleus has binding energy. Here we apply the method used
451  * in the JAM code \iref{Nara:1999dz}: p' = p_beam + gamma*p_F.
452  * This formula is derived under assumption that all nucleons have
453  * the same binding energy. */
454  FourVector mom_i = i->momentum();
455  i->set_4momentum(i->pole_mass(), mom_i.x1(), mom_i.x2(),
456  gamma * (beta_scalar * mom_i.x0() + mom_i.x3()));
457  }
458 }
459 
460 void Nucleus::fill_from_list(const std::map<PdgCode, int> &particle_list,
461  int testparticles) {
462  testparticles_ = testparticles;
463  for (auto n = particle_list.cbegin(); n != particle_list.cend(); ++n) {
464  const ParticleType &current_type = ParticleType::find(n->first);
465  double current_mass = current_type.mass();
466  for (unsigned int i = 0; i < n->second * testparticles_; i++) {
467  // append particle to list and set its PDG code.
468  particles_.emplace_back(current_type);
469  particles_.back().set_4momentum(current_mass, 0.0, 0.0, 0.0);
470  }
471  }
472 }
473 
474 void Nucleus::shift(double z_offset, double x_offset, double simulation_time) {
475  // Move the nucleus in z and x directions, and set the time.
476  for (auto i = begin(); i != end(); i++) {
477  FourVector this_position = i->position();
478  this_position.set_x3(this_position.x3() + z_offset);
479  this_position.set_x1(this_position.x1() + x_offset);
480  this_position.set_x0(simulation_time);
481  i->set_4position(this_position);
482  i->set_formation_time(simulation_time);
483  }
484 }
485 
486 void Nucleus::copy_particles(Particles *external_particles) {
487  for (auto p = begin(); p != end(); p++) {
488  external_particles->insert(*p);
489  }
490 }
491 
493  FourVector centerpoint(0.0, 0.0, 0.0, 0.0);
494  for (auto p = cbegin(); p != cend(); p++) {
495  centerpoint += p->position();
496  }
497  centerpoint /= size();
498  return centerpoint;
499 }
500 
502  // Sample euler_theta_ such that cos(theta) is uniform
503  euler_phi_ = twopi * random::uniform(0., 1.);
504  euler_theta_ = std::acos(2 * random::uniform(0., 1.) - 1);
505  euler_psi_ = twopi * random::uniform(0., 1.);
506 }
507 
508 double Nucleus::nucleon_density(double r, double) {
509  return nuclear_density /
510  (std::exp((r - nuclear_radius_) / diffusiveness_) + 1.);
511 }
512 
513 std::ostream &operator<<(std::ostream &out, const Nucleus &n) {
514  return out << " #particles #testparticles mass [GeV] "
515  "radius [fm] diffusiveness [fm]\n"
516  << format(n.number_of_particles(), nullptr, 12)
517  << format(n.size(), nullptr, 17) << format(n.mass(), nullptr, 13)
518  << format(n.get_nuclear_radius(), nullptr, 14)
519  << format(n.get_diffusiveness(), nullptr, 20);
520 }
521 
522 } // namespace smash
FormattingHelper< T > format(const T &value, const char *unit, int width=-1, int precision=-1)
Acts as a stream modifier for std::ostream to output an object with an optional suffix string and wit...
Definition: logging.h:317
double euler_psi_
Euler angel psi.
Definition: nucleus.h:269
PdgCode pdgcode() const
Get the pdgcode of the particle.
Definition: particledata.h:81
void set_diffusiveness(double diffuse)
Sets the diffusiveness of the nucleus.
Definition: nucleus.h:290
The ThreeVector class represents a physical three-vector with the components .
Definition: threevector.h:31
virtual ThreeVector distribute_nucleon()
The distribution of return values from this function is according to a spherically symmetric Woods-Sa...
Definition: nucleus.cc:216
void shift(double z_offset, double x_offset, double simulation_time)
Shifts the nucleus to correct impact parameter and z displacement.
Definition: nucleus.cc:474
double get_nuclear_radius() const
Definition: nucleus.h:335
bool almost_equal(const N x, const N y)
Checks two numbers for relative approximate equality.
Definition: numerics.h:42
void set_nuclear_radius(double rad)
Sets the nuclear radius.
Definition: nucleus.h:330
const FourVector & position() const
Get the particle&#39;s position in Minkowski space.
Definition: particledata.h:185
void set_3momentum(const ThreeVector &mom)
Set the momentum of the particle without modifying the energy.
Definition: particledata.h:177
Collection of useful constants that are known at compile time.
double x3() const
Definition: threevector.h:173
friend std::ostream & operator<<(std::ostream &, const Nucleus &)
Writes the state of the Nucleus object to the output stream.
Definition: nucleus.cc:513
A nucleus is a collection of particles that are initialized, before the beginning of the simulation a...
Definition: nucleus.h:27
double euler_phi_
Euler angel phi.
Definition: nucleus.h:265
FourVector center() const
Calculate geometrical center of the nucleus.
Definition: nucleus.cc:492
virtual void rotate()
Rotates the nucleus.
Definition: nucleus.h:146
ThreeVector threevec() const
Definition: fourvector.h:319
Interface to the SMASH configuration files.
constexpr double hbarc
GeV <-> fm conversion factor.
Definition: constants.h:25
bool has_value(std::initializer_list< const char * > keys) const
Returns whether there is a non-empty value behind the requested keys.
std::vector< ParticleData >::const_iterator cbegin() const
For const iterators over the particle list:
Definition: nucleus.h:279
Generic numerical functions.
void boost(double beta_scalar)
Boosts the nuclei into the computational frame, such that the nucleons have the appropriate momentum ...
Definition: nucleus.cc:430
T canonical()
Definition: random.h:113
void set_x1(double x)
Definition: fourvector.h:309
double x0() const
Definition: fourvector.h:303
void set_saturation_density(double density)
Sets the saturation density of the nucleus.
Definition: nucleus.h:300
virtual double nucleon_density(double r, double)
Return the Woods-Saxon probability density for the given position.
Definition: nucleus.cc:508
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
bool is_baryon() const
Definition: particledata.h:88
void set_x3(double z)
Definition: fourvector.h:317
ThreeVector threevec() const
Definition: angles.h:268
constexpr double twopi
.
Definition: constants.h:42
size_t size() const
Number of numerical (=test-)particles in the nucleus:
Definition: nucleus.h:156
double mass() const
Definition: particletype.h:144
void set_x0(double t)
Definition: fourvector.h:305
Value take(std::initializer_list< const char * > keys)
The default interface for SMASH to read configuration values.
Nucleus()=default
default constructor
double x3() const
Definition: fourvector.h:315
Particle type contains the static properties of a particle species.
Definition: particletype.h:97
void set_4momentum(const FourVector &momentum_vector)
Set the particle&#39;s 4-momentum directly.
Definition: particledata.h:145
virtual void generate_fermi_momenta()
Generates momenta according to Fermi motion for the nucleons.
Definition: nucleus.cc:368
double get_diffusiveness() const
Definition: nucleus.h:295
double woods_saxon(double x)
Woods-Saxon distribution.
Definition: nucleus.cc:262
const ParticleData & insert(const ParticleData &p)
Inserts the particle into the list of particles.
Definition: particles.cc:50
std::vector< ParticleData >::const_iterator cend() const
For const iterators over the particle list:
Definition: nucleus.h:283
double mass() const
Definition: nucleus.cc:56
double euler_theta_
Euler angel theta.
Definition: nucleus.h:267
T uniform(T min, T max)
Definition: random.h:88
double x1() const
Definition: threevector.h:165
void random_euler_angles()
Randomly generate Euler angles.
Definition: nucleus.cc:501
double default_nuclear_radius()
Default nuclear radius calculated as:
Definition: nucleus.h:315
double nuclear_radius_
Nuclear radius of this nucleus.
Definition: nucleus.h:245
double get_theta() const
Definition: threevector.h:271
size_t number_of_protons() const
Number of physical protons in the nucleus:
Definition: nucleus.h:183
double diffusiveness_
Diffusiveness of Woods-Saxon distribution of this nucleus in fm (for diffusiveness_ == 0...
Definition: nucleus.h:241
double pole_mass() const
Get the particle&#39;s pole mass ("on-shell").
Definition: particledata.h:96
void fill_from_list(const std::map< PdgCode, int > &particle_list, int testparticles)
Adds particles from a map PDG code => Number_of_particles_with_that_PDG_code to the nucleus...
Definition: nucleus.cc:460
constexpr int p
Proton.
virtual void arrange_nucleons()
Sets the positions of the nucleons inside a nucleus.
Definition: nucleus.cc:266
constexpr double nuclear_density
Ground state density of symmetric nuclear matter [fm^-3].
Definition: constants.h:45
double x2() const
Definition: threevector.h:169
void copy_particles(Particles *particles)
Copies the particles from this nucleus into the particle list.
Definition: nucleus.cc:486
std::vector< ParticleData > particles_
Particles associated with this nucleus.
Definition: nucleus.h:256
std::vector< ParticleData >::iterator begin()
For iterators over the particle list:
Definition: nucleus.h:273
Angles provides a common interface for generating directions: i.e., two angles that should be interpr...
Definition: angles.h:59
double x2() const
Definition: fourvector.h:311
size_t number_of_particles() const
Number of physical particles in the nucleus:
Definition: nucleus.h:164
The Particles class abstracts the storage and manipulation of particles.
Definition: particles.h:33
void distribute_isotropically()
Populate the object with a new direction.
Definition: angles.h:188
constexpr int n
Neutron.
virtual void set_parameters_automatic()
Sets the deformation parameters of the Woods-Saxon distribution according to the current mass number...
Definition: nucleus.cc:283
size_t testparticles_
Number of testparticles per physical particle.
Definition: nucleus.h:252
The FourVector class holds relevant values in Minkowski spacetime with (+, −, −, −) metric signature.
Definition: fourvector.h:33
double x1() const
Definition: fourvector.h:307
void align_center()
Shifts the nucleus so that its center is at (0,0,0)
Definition: nucleus.h:215
ParticleData contains the dynamic information of a certain particle.
Definition: particledata.h:52
Definition: action.h:24
std::vector< ParticleData >::iterator end()
For iterators over the particle list:
Definition: nucleus.h:277
const FourVector & momentum() const
Get the particle&#39;s 4-momentum.
Definition: particledata.h:139
virtual void set_parameters_from_config(Configuration &config)
Sets the parameters of the Woods-Saxon according to manually added values in the configuration file...
Definition: nucleus.cc:360