Version: SMASH-1.8
smash::GrandCanThermalizer Class Reference

#include <grandcan_thermalizer.h>

The GrandCanThermalizer class implements the following functionality:

  1. Create a lattice and find the local rest frame energy density in each cell from the particles.
  2. Remove particles from the cells, where the energy density is high enough. Save the energy, momentum and quantum numbers of the removed particles.
  3. Sample new particles instead of the removed ones according to the grand-canonical thermal distribution, but with an additional constraint: the energy, momentum and quantum numbers should be the same as those of the removed particles.

The step 3. is a challenging task, so several algorithms are implemented that try to fulfil the requirements. The algorithms are a trade-off between mathematical rigour and computational speed. All of them are shown to reproduce the mean values of multiplicities correctly. However, this is not the case for multiplicity fluctuations. For details see Oliinychenko:2016vkg [33].

Definition at line 217 of file grandcan_thermalizer.h.

Collaboration diagram for smash::GrandCanThermalizer:
[legend]

Public Member Functions

 GrandCanThermalizer (const std::array< double, 3 > lat_sizes, const std::array< int, 3 > n_cells, const std::array< double, 3 > origin, bool periodicity, double e_critical, double t_start, double delta_t, ThermalizationAlgorithm algo, bool BF_microcanonical)
 Default constructor for the GranCanThermalizer to allocate the lattice. More...
 
 GrandCanThermalizer (Configuration &conf, const std::array< double, 3 > lat_sizes, const std::array< double, 3 > origin, bool periodicity)
 
bool is_time_to_thermalize (std::unique_ptr< Clock > &clock) const
 Check that the clock is close to n * period of thermalization, since the thermalization only happens at these times. More...
 
void update_thermalizer_lattice (const Particles &particles, const DensityParameters &par, bool ignore_cells_under_threshold=true)
 Compute all the thermodynamical quantities on the lattice from particles. More...
 
ThreeVector uniform_in_cell () const
 
void renormalize_momenta (ParticleList &plist, const FourVector required_total_momentum)
 Changes energy and momenta of the particles in plist to match the required_total_momentum. More...
 
void sample_multinomial (HadronClass particle_class, int N)
 The sample_multinomial function samples integer numbers n_i distributed according to the multinomial distribution with sum N: \( p(n_1, n_2, \dots) = \prod a_i^{n_i} \times \frac{N!}{n_1!n_2! \dots} \) if \( \sum n_i = N \) and \( p = 0 \) otherwise. More...
 
void sample_in_random_cell_BF_algo (ParticleList &plist, const double time, size_t type_index)
 The total number of particles of species type_index is defined by mult_int_ array that is returned by. More...
 
void thermalize_BF_algo (QuantumNumbers &conserved_initial, double time, int ntest)
 Samples particles according to the BF algorithm by making use of the. More...
 
template<typename F >
void compute_N_in_cells_mode_algo (F &&condition)
 Computes average number of particles in each cell for the mode algorithm. More...
 
template<typename F >
ParticleData sample_in_random_cell_mode_algo (const double time, F &&condition)
 Samples one particle and the species, cell, momentum and coordinate are chosen from the corresponding distributions. More...
 
void thermalize_mode_algo (QuantumNumbers &conserved_initial, double time)
 Samples particles to the according to the mode algorithm. More...
 
void thermalize (const Particles &particles, double time, int ntest)
 Main thermalize function, that chooses the algorithm to follow (BF or mode sampling). More...
 
void print_statistics (const Clock &clock) const
 Generates standard output with information about the thermodynamic properties of the lattice, the thermalized region and the volume to be thermalized above the critical energy density. More...
 
RectangularLattice< ThermLatticeNode > & lattice () const
 Getter function for the lattice. More...
 
double e_crit () const
 Get the critical energy density. More...
 
ParticleList particles_to_remove () const
 List of particles to be removed from the simulation. More...
 
ParticleList particles_to_insert () const
 List of newly created particles to be inserted in the simulation. More...
 

Private Member Functions

ParticleTypePtrList list_eos_particles () const
 Extracts the particles in the hadron gas equation of state from the complete list of particle types in SMASH. More...
 
HadronClass get_class (size_t typelist_index) const
 Defines the class of hadrons by quantum numbers. More...
 
double mult_class (const HadronClass cl) const
 

Private Attributes

std::vector< double > N_in_cells_
 Number of particles to be sampled in one cell. More...
 
std::vector< size_t > cells_to_sample_
 Cells above critical energy density. More...
 
HadronGasEos eos_ = HadronGasEos(true, false)
 Hadron gas equation of state. More...
 
std::unique_ptr< RectangularLattice< ThermLatticeNode > > lat_
 The lattice on which the thermodynamic quantities are calculated. More...
 
ParticleList to_remove_
 Particles to be removed after this thermalization step. More...
 
ParticleList sampled_list_
 Newly generated particles by thermalizer. More...
 
const ParticleTypePtrList eos_typelist_
 List of particle types from which equation of state is computed. More...
 
const size_t N_sorts_
 Number of different species to be sampled. More...
 
std::vector< double > mult_sort_
 Real number multiplicity for each particle type. More...
 
std::vector< int > mult_int_
 Integer multiplicity for each particle type. More...
 
std::array< double, 7 > mult_classes_
 The different hadron species according to the enum defined in. More...
 
double N_total_in_cells_
 Total number of particles over all cells in thermalization region. More...
 
double cell_volume_
 Volume of a single cell, necessary to convert thermal densities to actual particle numbers. More...
 
const double e_crit_
 Critical energy density above which cells are thermalized. More...
 
const double t_start_
 Starting time of the simulation. More...
 
const double period_
 Defines periodicity of the lattice in fm. More...
 
const ThermalizationAlgorithm algorithm_
 Algorithm to choose for sampling of particles obeying conservation laws. More...
 
const bool BF_enforce_microcanonical_
 Enforce energy conservation as part of BF sampling algorithm or not. More...
 

Constructor & Destructor Documentation

◆ GrandCanThermalizer() [1/2]

smash::GrandCanThermalizer::GrandCanThermalizer ( const std::array< double, 3 >  lat_sizes,
const std::array< int, 3 >  n_cells,
const std::array< double, 3 >  origin,
bool  periodicity,
double  e_critical,
double  t_start,
double  delta_t,
ThermalizationAlgorithm  algo,
bool  BF_microcanonical 
)

Default constructor for the GranCanThermalizer to allocate the lattice.

Parameters
[in]lat_sizesSize of lattice in x,y and z-direction in fm.
[in]n_cellsNumber of cells in x, y and z-direction.
[in]originCoordinates of the left, down, near corner of the lattice in fm.
[in]periodicityBoolean to decide, if the lattice is periodically extended to infinity or not
[in]e_criticalCritical energy density above which the cells are thermalized
[in]t_startStarting time of the simulation
[in]delta_tTimestep of the simulation
[in]algoChoice of algorithm for the canonical sampling
[in]BF_microcanonicalEnforce energy conservation in BF sampling algorithms or nor

Definition at line 99 of file grandcan_thermalizer.cc.

107  N_sorts_(eos_typelist_.size()),
108  e_crit_(e_critical),
109  t_start_(t_start),
110  period_(delta_t),
111  algorithm_(algo),
112  BF_enforce_microcanonical_(BF_microcanonical) {
114  lat_ = make_unique<RectangularLattice<ThermLatticeNode>>(
115  lat_sizes, n_cells, origin, periodicity, upd);
116  const std::array<double, 3> abc = lat_->cell_sizes();
117  cell_volume_ = abc[0] * abc[1] * abc[2];
118  cells_to_sample_.resize(50000);
119  mult_sort_.resize(N_sorts_);
120  mult_int_.resize(N_sorts_);
121 }

◆ GrandCanThermalizer() [2/2]

smash::GrandCanThermalizer::GrandCanThermalizer ( Configuration conf,
const std::array< double, 3 >  lat_sizes,
const std::array< double, 3 >  origin,
bool  periodicity 
)
inline
See also
GrandCanThermalizer Exactly the same but taking values from config

Definition at line 241 of file grandcan_thermalizer.h.

245  lat_sizes, conf.take({"Cell_Number"}), origin, periodicity,
246  conf.take({"Critical_Edens"}), conf.take({"Start_Time"}),
247  conf.take({"Timestep"}),
248  conf.take({"Algorithm"}, ThermalizationAlgorithm::BiasedBF),
249  conf.take({"Microcanonical"}, false)) {}

Member Function Documentation

◆ is_time_to_thermalize()

bool smash::GrandCanThermalizer::is_time_to_thermalize ( std::unique_ptr< Clock > &  clock) const
inline

Check that the clock is close to n * period of thermalization, since the thermalization only happens at these times.

Parameters
[in]clockCurrent system time

Definition at line 255 of file grandcan_thermalizer.h.

255  {
256  const double t = clock->current_time();
257  const int n = static_cast<int>(std::floor((t - t_start_) / period_));
258  return (t > t_start_ &&
259  t < t_start_ + n * period_ + clock->timestep_duration());
260  }

◆ update_thermalizer_lattice()

void smash::GrandCanThermalizer::update_thermalizer_lattice ( const Particles particles,
const DensityParameters par,
bool  ignore_cells_under_threshold = true 
)

Compute all the thermodynamical quantities on the lattice from particles.

Parameters
[in]particlesCurrent list of particles
See also
Particles
Parameters
[in]parParameters necessary for density determination
See also
DensityParameters
Parameters
[in]ignore_cells_under_thresholdBoolean that is true by default

Definition at line 123 of file grandcan_thermalizer.cc.

125  {
126  const DensityType dens_type = DensityType::Hadron;
128  update_lattice(lat_.get(), update, dens_type, dens_par, particles);
129  for (auto &node : *lat_) {
130  /* If energy density is definitely below e_crit -
131  no need to find T, mu, etc. So if e = T00 - T0i*vi <=
132  T00 + sum abs(T0i) < e_crit, no efforts are necessary. */
133  if (!ignore_cells_under_treshold ||
134  node.Tmu0().x0() + std::abs(node.Tmu0().x1()) +
135  std::abs(node.Tmu0().x2()) + std::abs(node.Tmu0().x3()) >=
136  e_crit_) {
137  node.compute_rest_frame_quantities(eos_);
138  } else {
139  node = ThermLatticeNode();
140  }
141  }
142 }
Here is the call graph for this function:

◆ uniform_in_cell()

ThreeVector smash::GrandCanThermalizer::uniform_in_cell ( ) const
Returns
3 vector uniformly sampled from the rectangular cell.

Definition at line 144 of file grandcan_thermalizer.cc.

144  {
145  return ThreeVector(random::uniform(-0.5 * lat_->cell_sizes()[0],
146  +0.5 * lat_->cell_sizes()[0]),
147  random::uniform(-0.5 * lat_->cell_sizes()[1],
148  +0.5 * lat_->cell_sizes()[1]),
149  random::uniform(-0.5 * lat_->cell_sizes()[2],
150  +0.5 * lat_->cell_sizes()[2]));
151 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ renormalize_momenta()

void smash::GrandCanThermalizer::renormalize_momenta ( ParticleList &  plist,
const FourVector  required_total_momentum 
)

Changes energy and momenta of the particles in plist to match the required_total_momentum.

The procedure is described in Oliinychenko:2016vkg [33].

Parameters
[in]plistList of particles
See also
ParticleList
Parameters
[in]required_total_momentumThe necessary total momentum of the cell

Definition at line 153 of file grandcan_thermalizer.cc.

154  {
155  // Centralize momenta
156  QuantumNumbers conserved = QuantumNumbers(plist);
157  logg[LGrandcanThermalizer].info("Required 4-momentum: ",
158  required_total_momentum);
159  logg[LGrandcanThermalizer].info("Sampled 4-momentum: ", conserved.momentum());
160  const ThreeVector mom_to_add =
161  (required_total_momentum.threevec() - conserved.momentum().threevec()) /
162  plist.size();
163  logg[LGrandcanThermalizer].info("Adjusting momenta by ", mom_to_add);
164  for (auto &particle : plist) {
165  particle.set_4momentum(particle.type().mass(),
166  particle.momentum().threevec() + mom_to_add);
167  }
168 
169  // Boost every particle to the common center of mass frame
170  conserved = QuantumNumbers(plist);
171  const ThreeVector beta_CM_generated = conserved.momentum().velocity();
172  const ThreeVector beta_CM_required = required_total_momentum.velocity();
173 
174  double E = 0.0;
175  double E_expected = required_total_momentum.abs();
176  for (auto &particle : plist) {
177  particle.boost_momentum(beta_CM_generated);
178  E += particle.momentum().x0();
179  }
180  // Renorm. momenta by factor (1+a) to get the right energy, binary search
181  const double tolerance = really_small;
182  double a, a_min, a_max, er;
183  const int max_iter = 100;
184  int iter = 0;
185  if (E_expected >= E) {
186  a_min = 0.0;
187  a_max = 10.0;
188  } else {
189  a_min = -1.0;
190  a_max = 0.0;
191  }
192  do {
193  a = 0.5 * (a_min + a_max);
194  E = 0.0;
195  for (const auto &particle : plist) {
196  const double p2 = particle.momentum().threevec().sqr();
197  const double E2 = particle.momentum().x0() * particle.momentum().x0();
198  E += std::sqrt(E2 + a * (a + 2.0) * p2);
199  }
200  er = E - E_expected;
201  if (er >= 0.0) {
202  a_max = a;
203  } else {
204  a_min = a;
205  }
206  logg[LGrandcanThermalizer].debug("Iteration ", iter, ": a = ", a,
207  ", Δ = ", er);
208  iter++;
209  } while (std::abs(er) > tolerance && iter < max_iter);
210 
211  logg[LGrandcanThermalizer].info("Renormalizing momenta by factor 1+a, a = ",
212  a);
213  for (auto &particle : plist) {
214  particle.set_4momentum(particle.type().mass(),
215  (1 + a) * particle.momentum().threevec());
216  particle.boost_momentum(-beta_CM_required);
217  }
218 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sample_multinomial()

void smash::GrandCanThermalizer::sample_multinomial ( HadronClass  particle_class,
int  N 
)

The sample_multinomial function samples integer numbers n_i distributed according to the multinomial distribution with sum N: \( p(n_1, n_2, \dots) = \prod a_i^{n_i} \times \frac{N!}{n_1!n_2! \dots} \) if \( \sum n_i = N \) and \( p = 0 \) otherwise.

Parameters
[in]particle_classA certain group of hadron species
See also
HadronClass
Parameters
[out]NNumber of particles to be sampled
Todo:
(oliiny) what to do with this output?

Definition at line 220 of file grandcan_thermalizer.cc.

221  {
222  /* The array mult_sort_ contains real numbers \f$ a_i \f$. The numbers \f$
223  * n_i \f$ are saved in the mult_int_ array. Only particles of class
224  * particle_class are sampled, where particle_class is defined by the
225  * get_class function. */
226  double sum = mult_class(particle_class);
227  for (size_t i_type = 0; (i_type < N_sorts_) && (N_to_sample > 0); i_type++) {
228  if (get_class(i_type) != particle_class) {
229  continue;
230  }
231  const double p = mult_sort_[i_type] / sum;
232  mult_int_[i_type] = random::binomial(N_to_sample, p);
234  /*std::cout << eos_typelist_[i_type]->name() <<
235  ": mult_sort = " << mult_sort_[i_type] <<
236  ", sum = " << sum <<
237  ", p = " << p <<
238  ", N to sample = " << N_to_sample <<
239  ", mult_int_ = " << mult_int_[i_type] << std::endl;*/
240  sum -= mult_sort_[i_type];
241  N_to_sample -= mult_int_[i_type];
242  }
243 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sample_in_random_cell_BF_algo()

void smash::GrandCanThermalizer::sample_in_random_cell_BF_algo ( ParticleList &  plist,
const double  time,
size_t  type_index 
)

The total number of particles of species type_index is defined by mult_int_ array that is returned by.

See also
sample_multinomial. This function samples mult_int_[type_index] particles. It chooses randomly the cell to sample and picks up momentum and coordinate from the corresponding distributions.
Parameters
[out]plist
See also
ParticleList of newly produced particles
Parameters
[in]timeCurrent time in the simulation to become zero component of sampled particles
[in]type_indexSpecies that should be sampled

Definition at line 245 of file grandcan_thermalizer.cc.

247  {
248  N_in_cells_.clear();
249  N_total_in_cells_ = 0.0;
250  for (auto cell_index : cells_to_sample_) {
251  const ThermLatticeNode cell = (*lat_)[cell_index];
252  const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
253  const double N_this_cell =
254  cell_volume_ * gamma *
255  HadronGasEos::partial_density(*eos_typelist_[type_index], cell.T(),
256  cell.mub(), cell.mus());
257  N_in_cells_.push_back(N_this_cell);
258  N_total_in_cells_ += N_this_cell;
259  }
260 
261  for (int i = 0; i < mult_int_[type_index]; i++) {
262  // Choose random cell, probability = N_in_cell/N_total
263  double r = random::uniform(0.0, N_total_in_cells_);
264  double partial_sum = 0.0;
265  int index_only_thermalized = -1;
266  while (partial_sum < r) {
267  index_only_thermalized++;
268  partial_sum += N_in_cells_[index_only_thermalized];
269  }
270  const int cell_index = cells_to_sample_[index_only_thermalized];
271  const ThermLatticeNode cell = (*lat_)[cell_index];
272  const ThreeVector cell_center = lat_->cell_center(cell_index);
273 
274  ParticleData particle(*eos_typelist_[type_index]);
275  // Note: it's pole mass for resonances!
276  const double m = eos_typelist_[type_index]->mass();
277  // Position
278  particle.set_4position(FourVector(time, cell_center + uniform_in_cell()));
279  // Momentum
280  double momentum_radial = sample_momenta_from_thermal(cell.T(), m);
281  Angles phitheta;
282  phitheta.distribute_isotropically();
283  particle.set_4momentum(m, phitheta.threevec() * momentum_radial);
284  particle.boost_momentum(-cell.v());
285  particle.set_formation_time(time);
286 
287  plist.push_back(particle);
288  }
289 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ thermalize_BF_algo()

void smash::GrandCanThermalizer::thermalize_BF_algo ( QuantumNumbers conserved_initial,
double  time,
int  ntest 
)

Samples particles according to the BF algorithm by making use of the.

See also
sample_in_random_cell_BF_algo. Quantum numbers of the sampled particles are required to be equal to the original particles in this region.
Parameters
[in]conserved_initialThe quantum numbers of the total ensemble of of particles in the region to be thermalized
[in]timeCurrent time of the simulation
[in]ntestNumber of testparticles
Returns
Particle list with newly sampled particles according to Becattini-Feroni algorithm

Definition at line 291 of file grandcan_thermalizer.cc.

292  {
293  std::fill(mult_sort_.begin(), mult_sort_.end(), 0.0);
294  for (auto cell_index : cells_to_sample_) {
295  const ThermLatticeNode cell = (*lat_)[cell_index];
296  const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
297  for (size_t i = 0; i < N_sorts_; i++) {
298  // N_i = n u^mu dsigma_mu = (isochronous hypersurface) n * V * gamma
299  mult_sort_[i] += cell_volume_ * gamma * ntest *
301  *eos_typelist_[i], cell.T(), cell.mub(), cell.mus());
302  }
303  }
304 
305  std::fill(mult_classes_.begin(), mult_classes_.end(), 0.0);
306  for (size_t i = 0; i < N_sorts_; i++) {
307  mult_classes_[static_cast<size_t>(get_class(i))] += mult_sort_[i];
308  }
309 
310  random::BesselSampler bessel_sampler_B(mult_class(HadronClass::Baryon),
312  conserved_initial.baryon_number());
313 
314  while (true) {
315  sampled_list_.clear();
316  std::fill(mult_int_.begin(), mult_int_.end(), 0);
317  const auto Nbar_antibar = bessel_sampler_B.sample();
318 
319  sample_multinomial(HadronClass::Baryon, Nbar_antibar.first);
320  sample_multinomial(HadronClass::Antibaryon, Nbar_antibar.second);
321 
322  // Count strangeness of the sampled particles
323  int S_sampled = 0;
324  for (size_t i = 0; i < N_sorts_; i++) {
325  S_sampled += eos_typelist_[i]->strangeness() * mult_int_[i];
326  }
327 
328  std::pair<int, int> NS_antiS;
330  random::BesselSampler bessel_sampler_S(
333  conserved_initial.strangeness() - S_sampled);
334  NS_antiS = bessel_sampler_S.sample();
336  NS_antiS = std::make_pair(
339  if (NS_antiS.first - NS_antiS.second !=
340  conserved_initial.strangeness() - S_sampled) {
341  continue;
342  }
343  }
344 
347  // Count charge of the sampled particles
348  int ch_sampled = 0;
349  for (size_t i = 0; i < N_sorts_; i++) {
350  ch_sampled += eos_typelist_[i]->charge() * mult_int_[i];
351  }
352 
353  std::pair<int, int> NC_antiC;
355  random::BesselSampler bessel_sampler_C(
358  conserved_initial.charge() - ch_sampled);
359  NC_antiC = bessel_sampler_C.sample();
361  NC_antiC = std::make_pair(
364  if (NC_antiC.first - NC_antiC.second !=
365  conserved_initial.charge() - ch_sampled) {
366  continue;
367  }
368  }
369 
375 
376  for (size_t itype = 0; itype < N_sorts_; itype++) {
378  }
380  double e_tot;
381  const double e_init = conserved_initial.momentum().x0();
382  e_tot = 0.0;
383  for (auto &particle : sampled_list_) {
384  e_tot += particle.momentum().x0();
385  }
386  if (std::abs(e_tot - e_init) > 0.01 * e_init) {
387  logg[LGrandcanThermalizer].info("Rejecting: energy ", e_tot,
388  " too far from ", e_init);
389  continue;
390  }
391  }
392  break;
393  }
394 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ compute_N_in_cells_mode_algo()

template<typename F >
void smash::GrandCanThermalizer::compute_N_in_cells_mode_algo ( F &&  condition)
inline

Computes average number of particles in each cell for the mode algorithm.

Parameters
[in]conditionSpecifies the current mode (1 to 7)

Definition at line 329 of file grandcan_thermalizer.h.

329  {
330  N_in_cells_.clear();
331  N_total_in_cells_ = 0.0;
332  for (auto cell_index : cells_to_sample_) {
333  const ThermLatticeNode cell = (*lat_)[cell_index];
334  const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
335  double N_tot = 0.0;
336  for (ParticleTypePtr i : eos_typelist_) {
337  if (condition(i->strangeness(), i->baryon_number(), i->charge())) {
338  // N_i = n u^mu dsigma_mu = (isochronous hypersurface) n * V * gamma
339  N_tot += cell_volume_ * gamma *
340  HadronGasEos::partial_density(*i, cell.T(), cell.mub(),
341  cell.mus());
342  }
343  }
344  N_in_cells_.push_back(N_tot);
345  N_total_in_cells_ += N_tot;
346  }
347  }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sample_in_random_cell_mode_algo()

template<typename F >
ParticleData smash::GrandCanThermalizer::sample_in_random_cell_mode_algo ( const double  time,
F &&  condition 
)
inline

Samples one particle and the species, cell, momentum and coordinate are chosen from the corresponding distributions.

The condition function limits the choice of possible species.

Condition is a function of the signature of quantum number S, B and Q. bool condition(int strangeness, int baryon_number, int charge);

Parameters
[in]timeCurrent time in simulation
[in]conditionSpecifies the actual mode (1 to 7)

Definition at line 360 of file grandcan_thermalizer.h.

361  {
362  // Choose random cell, probability = N_in_cell/N_total
363  double r = random::uniform(0.0, N_total_in_cells_);
364  double partial_sum = 0.0;
365  int index_only_thermalized = -1;
366  while (partial_sum < r) {
367  index_only_thermalized++;
368  partial_sum += N_in_cells_[index_only_thermalized];
369  }
370  const int cell_index = cells_to_sample_[index_only_thermalized];
371  const ThermLatticeNode cell = (*lat_)[cell_index];
372  const ThreeVector cell_center = lat_->cell_center(cell_index);
373  const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
374  const double N_in_cell = N_in_cells_[index_only_thermalized];
375  // Which sort to sample - probability N_i/N_tot
376  r = random::uniform(0.0, N_in_cell);
377  double N_sum = 0.0;
378  ParticleTypePtr type_to_sample;
379  for (ParticleTypePtr i : eos_typelist_) {
380  if (!condition(i->strangeness(), i->baryon_number(), i->charge())) {
381  continue;
382  }
383  N_sum +=
384  cell_volume_ * gamma *
385  HadronGasEos::partial_density(*i, cell.T(), cell.mub(), cell.mus());
386  if (N_sum >= r) {
387  type_to_sample = i;
388  break;
389  }
390  }
391  ParticleData particle(*type_to_sample);
392  // Note: it's pole mass for resonances!
393  const double m = type_to_sample->mass();
394  // Position
395  particle.set_4position(FourVector(time, cell_center + uniform_in_cell()));
396  // Momentum
397  double momentum_radial = sample_momenta_from_thermal(cell.T(), m);
398  Angles phitheta;
399  phitheta.distribute_isotropically();
400  particle.set_4momentum(m, phitheta.threevec() * momentum_radial);
401  particle.boost_momentum(-cell.v());
402  particle.set_formation_time(time);
403  return particle;
404  }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ thermalize_mode_algo()

void smash::GrandCanThermalizer::thermalize_mode_algo ( QuantumNumbers conserved_initial,
double  time 
)

Samples particles to the according to the mode algorithm.

Quantum numbers of the sampled particles are required to be as in conserved_initial.

Parameters
[in]conserved_initialQuantum numbers of the original particles in the region to be thermalized
[in]timeCurrent time of the simulation

Definition at line 396 of file grandcan_thermalizer.cc.

397  {
398  double energy = 0.0;
399  int S_plus = 0, S_minus = 0, B_plus = 0, B_minus = 0, E_plus = 0, E_minus = 0;
400  // Mode 1: sample until energy is conserved, take only strangeness < 0
401  auto condition1 = [](int, int, int) { return true; };
402  compute_N_in_cells_mode_algo(condition1);
403  while (conserved_initial.momentum().x0() > energy ||
404  S_plus < conserved_initial.strangeness()) {
405  ParticleData p = sample_in_random_cell_mode_algo(time, condition1);
406  energy += p.momentum().x0();
407  if (p.pdgcode().strangeness() > 0) {
408  sampled_list_.push_back(p);
409  S_plus += p.pdgcode().strangeness();
410  }
411  }
412 
413  // Mode 2: sample until strangeness is conserved
414  auto condition2 = [](int S, int, int) { return (S < 0); };
415  compute_N_in_cells_mode_algo(condition2);
416  while (S_plus + S_minus > conserved_initial.strangeness()) {
417  ParticleData p = sample_in_random_cell_mode_algo(time, condition2);
418  const int s_part = p.pdgcode().strangeness();
419  // Do not allow particles with S = -2 or -3 spoil the total sum
420  if (S_plus + S_minus + s_part >= conserved_initial.strangeness()) {
421  sampled_list_.push_back(p);
422  S_minus += s_part;
423  }
424  }
425 
426  // Mode 3: sample non-strange baryons
427  auto condition3 = [](int S, int, int) { return (S == 0); };
428  QuantumNumbers conserved_remaining =
429  conserved_initial - QuantumNumbers(sampled_list_);
430  energy = 0.0;
431  compute_N_in_cells_mode_algo(condition3);
432  while (conserved_remaining.momentum().x0() > energy ||
433  B_plus < conserved_remaining.baryon_number()) {
434  ParticleData p = sample_in_random_cell_mode_algo(time, condition3);
435  energy += p.momentum().x0();
436  if (p.pdgcode().baryon_number() > 0) {
437  sampled_list_.push_back(p);
438  B_plus += p.pdgcode().baryon_number();
439  }
440  }
441 
442  // Mode 4: sample non-strange anti-baryons
443  auto condition4 = [](int S, int B, int) { return (S == 0) && (B < 0); };
444  compute_N_in_cells_mode_algo(condition4);
445  while (B_plus + B_minus > conserved_remaining.baryon_number()) {
446  ParticleData p = sample_in_random_cell_mode_algo(time, condition4);
447  const int bar = p.pdgcode().baryon_number();
448  if (B_plus + B_minus + bar >= conserved_remaining.baryon_number()) {
449  sampled_list_.push_back(p);
450  B_minus += bar;
451  }
452  }
453 
454  // Mode 5: sample non_strange mesons, but take only with charge > 0
455  auto condition5 = [](int S, int B, int) { return (S == 0) && (B == 0); };
456  conserved_remaining = conserved_initial - QuantumNumbers(sampled_list_);
457  energy = 0.0;
458  compute_N_in_cells_mode_algo(condition5);
459  while (conserved_remaining.momentum().x0() > energy ||
460  E_plus < conserved_remaining.charge()) {
461  ParticleData p = sample_in_random_cell_mode_algo(time, condition5);
462  energy += p.momentum().x0();
463  if (p.pdgcode().charge() > 0) {
464  sampled_list_.push_back(p);
465  E_plus += p.pdgcode().charge();
466  }
467  }
468 
469  // Mode 6: sample non_strange mesons to conserve charge
470  auto condition6 = [](int S, int B, int C) {
471  return (S == 0) && (B == 0) && (C < 0);
472  };
473  compute_N_in_cells_mode_algo(condition6);
474  while (E_plus + E_minus > conserved_remaining.charge()) {
475  ParticleData p = sample_in_random_cell_mode_algo(time, condition6);
476  const int charge = p.pdgcode().charge();
477  if (E_plus + E_minus + charge >= conserved_remaining.charge()) {
478  sampled_list_.push_back(p);
479  E_minus += charge;
480  }
481  }
482 
483  // Mode 7: sample neutral non-strange mesons to conserve energy
484  auto condition7 = [](int S, int B, int C) {
485  return (S == 0) && (B == 0) && (C == 0);
486  };
487  conserved_remaining = conserved_initial - QuantumNumbers(sampled_list_);
488  energy = 0.0;
489  compute_N_in_cells_mode_algo(condition7);
490  while (conserved_remaining.momentum().x0() > energy) {
491  ParticleData p = sample_in_random_cell_mode_algo(time, condition7);
492  sampled_list_.push_back(p);
493  energy += p.momentum().x0();
494  }
495 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ thermalize()

void smash::GrandCanThermalizer::thermalize ( const Particles particles,
double  time,
int  ntest 
)

Main thermalize function, that chooses the algorithm to follow (BF or mode sampling).

Parameters
[out]particlesList of sampled particles in thermalized region
[in]timeCurrent time of the simulation
[in]ntestnumber of testparticles

Definition at line 497 of file grandcan_thermalizer.cc.

498  {
499  logg[LGrandcanThermalizer].info("Starting forced thermalization, time ", time,
500  " fm/c");
501  to_remove_.clear();
502  sampled_list_.clear();
503  /* Remove particles from the cells with e > e_crit_,
504  * sum up their conserved quantities */
505  QuantumNumbers conserved_initial = QuantumNumbers();
506  ThermLatticeNode node;
507  for (auto &particle : particles) {
508  const bool is_on_lattice =
509  lat_->value_at(particle.position().threevec(), node);
510  if (is_on_lattice && node.e() > e_crit_) {
511  to_remove_.push_back(particle);
512  }
513  }
514  /* Do not thermalize too small number of particles: for the number
515  * of particles < 30 the algorithm tends to hang or crash too often. */
516  if (to_remove_.size() > 30) {
517  for (auto &particle : to_remove_) {
518  conserved_initial.add_values(particle);
519  }
520  } else {
521  to_remove_.clear();
522  conserved_initial = QuantumNumbers();
523  }
524  logg[LGrandcanThermalizer].info("Removed ", to_remove_.size(), " particles.");
525 
526  // Exit if there is nothing to thermalize
527  if (conserved_initial == QuantumNumbers()) {
528  return;
529  }
530  // Save the indices of cells inside the volume with e > e_crit_
531  cells_to_sample_.clear();
532  const size_t lattice_total_cells = lat_->size();
533  for (size_t i = 0; i < lattice_total_cells; i++) {
534  if ((*lat_)[i].e() > e_crit_) {
535  cells_to_sample_.push_back(i);
536  }
537  }
539  "Number of cells in the thermalization region = ",
540  cells_to_sample_.size(),
541  ", its total volume [fm^3]: ", cells_to_sample_.size() * cell_volume_,
542  ", in % of lattice: ",
543  100.0 * cells_to_sample_.size() / lattice_total_cells);
544 
545  switch (algorithm_) {
548  thermalize_BF_algo(conserved_initial, time, ntest);
549  break;
551  thermalize_mode_algo(conserved_initial, time);
552  break;
553  default:
554  throw std::invalid_argument(
555  "This thermalization algorithm is"
556  " not yet implemented");
557  }
558  logg[LGrandcanThermalizer].info("Sampled ", sampled_list_.size(),
559  " particles.");
560 
561  // Adjust momenta
562  renormalize_momenta(sampled_list_, conserved_initial.momentum());
563 }
Here is the call graph for this function:

◆ print_statistics()

void smash::GrandCanThermalizer::print_statistics ( const Clock clock) const

Generates standard output with information about the thermodynamic properties of the lattice, the thermalized region and the volume to be thermalized above the critical energy density.

Parameters
[in]clockCurrent time of the simulation

Definition at line 565 of file grandcan_thermalizer.cc.

565  {
566  struct to_average {
567  double T;
568  double mub;
569  double mus;
570  double nb;
571  double ns;
572  };
573  struct to_average on_lattice = {0.0, 0.0, 0.0, 0.0, 0.0};
574  struct to_average in_therm_reg = {0.0, 0.0, 0.0, 0.0, 0.0};
575  double e_sum_on_lattice = 0.0, e_sum_in_therm_reg = 0.0;
576  int node_counter = 0;
577  for (const auto &node : *lat_) {
578  const double e = node.e();
579  on_lattice.T += node.T() * e;
580  on_lattice.mub += node.mub() * e;
581  on_lattice.mus += node.mus() * e;
582  on_lattice.nb += node.nb() * e;
583  on_lattice.ns += node.ns() * e;
584  e_sum_on_lattice += e;
585  if (e >= e_crit_) {
586  in_therm_reg.T += node.T() * e;
587  in_therm_reg.mub += node.mub() * e;
588  in_therm_reg.mus += node.mus() * e;
589  in_therm_reg.nb += node.nb() * e;
590  in_therm_reg.ns += node.ns() * e;
591  e_sum_in_therm_reg += e;
592  node_counter++;
593  }
594  }
595  if (e_sum_on_lattice > really_small) {
596  on_lattice.T /= e_sum_on_lattice;
597  on_lattice.mub /= e_sum_on_lattice;
598  on_lattice.mus /= e_sum_on_lattice;
599  on_lattice.nb /= e_sum_on_lattice;
600  on_lattice.ns /= e_sum_on_lattice;
601  }
602  if (e_sum_in_therm_reg > really_small) {
603  in_therm_reg.T /= e_sum_in_therm_reg;
604  in_therm_reg.mub /= e_sum_in_therm_reg;
605  in_therm_reg.mus /= e_sum_in_therm_reg;
606  in_therm_reg.nb /= e_sum_in_therm_reg;
607  in_therm_reg.ns /= e_sum_in_therm_reg;
608  }
609 
610  std::cout << "Current time [fm/c]: " << clock.current_time() << std::endl;
611  std::cout << "Averages on the lattice - T[GeV], mub[GeV], mus[GeV], "
612  << "nb[fm^-3], ns[fm^-3]: " << on_lattice.T << " " << on_lattice.mub
613  << " " << on_lattice.mus << " " << on_lattice.nb << " "
614  << on_lattice.ns << std::endl;
615  std::cout << "Averages in therm. region - T[GeV], mub[GeV], mus[GeV], "
616  << "nb[fm^-3], ns[fm^-3]: " << in_therm_reg.T << " "
617  << in_therm_reg.mub << " " << in_therm_reg.mus << " "
618  << in_therm_reg.nb << " " << in_therm_reg.ns << std::endl;
619  std::cout << "Volume with e > e_crit [fm^3]: " << cell_volume_ * node_counter
620  << std::endl;
621 }
Here is the call graph for this function:

◆ lattice()

RectangularLattice<ThermLatticeNode>& smash::GrandCanThermalizer::lattice ( ) const
inline

Getter function for the lattice.

Definition at line 432 of file grandcan_thermalizer.h.

432 { return *lat_; }
Here is the caller graph for this function:

◆ e_crit()

double smash::GrandCanThermalizer::e_crit ( ) const
inline

Get the critical energy density.

Definition at line 434 of file grandcan_thermalizer.h.

434 { return e_crit_; }

◆ particles_to_remove()

ParticleList smash::GrandCanThermalizer::particles_to_remove ( ) const
inline

List of particles to be removed from the simulation.

Definition at line 436 of file grandcan_thermalizer.h.

436 { return to_remove_; }

◆ particles_to_insert()

ParticleList smash::GrandCanThermalizer::particles_to_insert ( ) const
inline

List of newly created particles to be inserted in the simulation.

Definition at line 438 of file grandcan_thermalizer.h.

438 { return sampled_list_; }

◆ list_eos_particles()

ParticleTypePtrList smash::GrandCanThermalizer::list_eos_particles ( ) const
inlineprivate

Extracts the particles in the hadron gas equation of state from the complete list of particle types in SMASH.

Definition at line 445 of file grandcan_thermalizer.h.

445  {
446  ParticleTypePtrList res;
447  for (const ParticleType& ptype : ParticleType::list_all()) {
448  if (HadronGasEos::is_eos_particle(ptype)) {
449  res.push_back(&ptype);
450  }
451  }
452  return res;
453  }
Here is the call graph for this function:

◆ get_class()

HadronClass smash::GrandCanThermalizer::get_class ( size_t  typelist_index) const
inlineprivate

Defines the class of hadrons by quantum numbers.

Parameters
[in]typelist_indexIndex for a certain quantum number

Definition at line 458 of file grandcan_thermalizer.h.

458  {
459  const int B = eos_typelist_[typelist_index]->baryon_number();
460  const int S = eos_typelist_[typelist_index]->strangeness();
461  const int ch = eos_typelist_[typelist_index]->charge();
462  // clang-format off
463  return (B > 0) ? HadronClass::Baryon :
464  (B < 0) ? HadronClass::Antibaryon :
470  // clang-format on
471  }
Here is the caller graph for this function:

◆ mult_class()

double smash::GrandCanThermalizer::mult_class ( const HadronClass  cl) const
inlineprivate
Parameters
[out]clMultiplicity of the hadron class

Definition at line 473 of file grandcan_thermalizer.h.

473  {
474  return mult_classes_[static_cast<size_t>(cl)];
475  }
Here is the caller graph for this function:

Member Data Documentation

◆ N_in_cells_

std::vector<double> smash::GrandCanThermalizer::N_in_cells_
private

Number of particles to be sampled in one cell.

Definition at line 477 of file grandcan_thermalizer.h.

◆ cells_to_sample_

std::vector<size_t> smash::GrandCanThermalizer::cells_to_sample_
private

Cells above critical energy density.

Definition at line 479 of file grandcan_thermalizer.h.

◆ eos_

HadronGasEos smash::GrandCanThermalizer::eos_ = HadronGasEos(true, false)
private

Hadron gas equation of state.

Definition at line 481 of file grandcan_thermalizer.h.

◆ lat_

std::unique_ptr<RectangularLattice<ThermLatticeNode> > smash::GrandCanThermalizer::lat_
private

The lattice on which the thermodynamic quantities are calculated.

Definition at line 483 of file grandcan_thermalizer.h.

◆ to_remove_

ParticleList smash::GrandCanThermalizer::to_remove_
private

Particles to be removed after this thermalization step.

Definition at line 485 of file grandcan_thermalizer.h.

◆ sampled_list_

ParticleList smash::GrandCanThermalizer::sampled_list_
private

Newly generated particles by thermalizer.

Definition at line 487 of file grandcan_thermalizer.h.

◆ eos_typelist_

const ParticleTypePtrList smash::GrandCanThermalizer::eos_typelist_
private

List of particle types from which equation of state is computed.

Most particles are included, but not all of them. For example, photons and leptons are not included. Heavy hadrons, that can originate from Pythia, but do not interact in SMASH are not included. The latter are excluded to avoid violations of charm and bottomness conservation, when HadronGasEoS is used for forced thermalization.

Definition at line 496 of file grandcan_thermalizer.h.

◆ N_sorts_

const size_t smash::GrandCanThermalizer::N_sorts_
private

Number of different species to be sampled.

Definition at line 498 of file grandcan_thermalizer.h.

◆ mult_sort_

std::vector<double> smash::GrandCanThermalizer::mult_sort_
private

Real number multiplicity for each particle type.

Definition at line 500 of file grandcan_thermalizer.h.

◆ mult_int_

std::vector<int> smash::GrandCanThermalizer::mult_int_
private

Integer multiplicity for each particle type.

Definition at line 502 of file grandcan_thermalizer.h.

◆ mult_classes_

std::array<double, 7> smash::GrandCanThermalizer::mult_classes_
private

The different hadron species according to the enum defined in.

See also
HadronClass

Definition at line 507 of file grandcan_thermalizer.h.

◆ N_total_in_cells_

double smash::GrandCanThermalizer::N_total_in_cells_
private

Total number of particles over all cells in thermalization region.

Definition at line 509 of file grandcan_thermalizer.h.

◆ cell_volume_

double smash::GrandCanThermalizer::cell_volume_
private

Volume of a single cell, necessary to convert thermal densities to actual particle numbers.

Definition at line 514 of file grandcan_thermalizer.h.

◆ e_crit_

const double smash::GrandCanThermalizer::e_crit_
private

Critical energy density above which cells are thermalized.

Definition at line 516 of file grandcan_thermalizer.h.

◆ t_start_

const double smash::GrandCanThermalizer::t_start_
private

Starting time of the simulation.

Definition at line 518 of file grandcan_thermalizer.h.

◆ period_

const double smash::GrandCanThermalizer::period_
private

Defines periodicity of the lattice in fm.

Definition at line 520 of file grandcan_thermalizer.h.

◆ algorithm_

const ThermalizationAlgorithm smash::GrandCanThermalizer::algorithm_
private

Algorithm to choose for sampling of particles obeying conservation laws.

Definition at line 522 of file grandcan_thermalizer.h.

◆ BF_enforce_microcanonical_

const bool smash::GrandCanThermalizer::BF_enforce_microcanonical_
private

Enforce energy conservation as part of BF sampling algorithm or not.

Definition at line 524 of file grandcan_thermalizer.h.


The documentation for this class was generated from the following files:
smash::LatticeUpdate
LatticeUpdate
Enumerator option for lattice updates.
Definition: lattice.h:36
smash::GrandCanThermalizer::sample_multinomial
void sample_multinomial(HadronClass particle_class, int N)
The sample_multinomial function samples integer numbers n_i distributed according to the multinomial ...
Definition: grandcan_thermalizer.cc:220
smash::GrandCanThermalizer::GrandCanThermalizer
GrandCanThermalizer(const std::array< double, 3 > lat_sizes, const std::array< int, 3 > n_cells, const std::array< double, 3 > origin, bool periodicity, double e_critical, double t_start, double delta_t, ThermalizationAlgorithm algo, bool BF_microcanonical)
Default constructor for the GranCanThermalizer to allocate the lattice.
Definition: grandcan_thermalizer.cc:99
smash::GrandCanThermalizer::cell_volume_
double cell_volume_
Volume of a single cell, necessary to convert thermal densities to actual particle numbers.
Definition: grandcan_thermalizer.h:514
smash::HadronClass::NegativeSMeson
Mesons with strangeness S < 0.
smash::GrandCanThermalizer::t_start_
const double t_start_
Starting time of the simulation.
Definition: grandcan_thermalizer.h:518
smash::HadronGasEos::partial_density
static double partial_density(const ParticleType &ptype, double T, double mub, double mus, bool account_for_resonance_widths=false)
Compute partial density of one hadron sort.
Definition: hadgas_eos.cc:234
smash::GrandCanThermalizer::list_eos_particles
ParticleTypePtrList list_eos_particles() const
Extracts the particles in the hadron gas equation of state from the complete list of particle types i...
Definition: grandcan_thermalizer.h:445
smash::GrandCanThermalizer::N_sorts_
const size_t N_sorts_
Number of different species to be sampled.
Definition: grandcan_thermalizer.h:498
smash::HadronClass::NegativeQZeroSMeson
Non-strange mesons (S = 0) with electric cherge Q < 0.
smash::GrandCanThermalizer::algorithm_
const ThermalizationAlgorithm algorithm_
Algorithm to choose for sampling of particles obeying conservation laws.
Definition: grandcan_thermalizer.h:522
smash::GrandCanThermalizer::period_
const double period_
Defines periodicity of the lattice in fm.
Definition: grandcan_thermalizer.h:520
smash::GrandCanThermalizer::thermalize_BF_algo
void thermalize_BF_algo(QuantumNumbers &conserved_initial, double time, int ntest)
Samples particles according to the BF algorithm by making use of the.
Definition: grandcan_thermalizer.cc:291
smash::logg
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
smash::really_small
constexpr double really_small
Numerical error tolerance.
Definition: constants.h:37
ThermalizationAlgorithm::UnbiasedBF
smash::LatticeUpdate::EveryFixedInterval
smash::random::binomial
int binomial(const int N, const T &p)
Returns a binomially distributed random number.
Definition: random.h:238
smash::update_lattice
void update_lattice(RectangularLattice< T > *lat, const LatticeUpdate update, const DensityType dens_type, const DensityParameters &par, const Particles &particles, const bool compute_gradient=false)
Updates the contents on the lattice.
Definition: density.h:401
smash::GrandCanThermalizer::BF_enforce_microcanonical_
const bool BF_enforce_microcanonical_
Enforce energy conservation as part of BF sampling algorithm or not.
Definition: grandcan_thermalizer.h:524
smash::GrandCanThermalizer::N_total_in_cells_
double N_total_in_cells_
Total number of particles over all cells in thermalization region.
Definition: grandcan_thermalizer.h:509
smash::HadronClass::ZeroQZeroSMeson
Neutral non-strange mesons.
smash::GrandCanThermalizer::get_class
HadronClass get_class(size_t typelist_index) const
Defines the class of hadrons by quantum numbers.
Definition: grandcan_thermalizer.h:458
smash::GrandCanThermalizer::uniform_in_cell
ThreeVector uniform_in_cell() const
Definition: grandcan_thermalizer.cc:144
smash::HadronClass::PositiveSMeson
Mesons with strangeness S > 0.
smash::HadronClass::PositiveQZeroSMeson
Non-strange mesons (S = 0) with electric cherge Q > 0.
smash::random::poisson
int poisson(const T &lam)
Returns a Poisson distributed random number.
Definition: random.h:226
smash::GrandCanThermalizer::renormalize_momenta
void renormalize_momenta(ParticleList &plist, const FourVector required_total_momentum)
Changes energy and momenta of the particles in plist to match the required_total_momentum.
Definition: grandcan_thermalizer.cc:153
smash::GrandCanThermalizer::sample_in_random_cell_mode_algo
ParticleData sample_in_random_cell_mode_algo(const double time, F &&condition)
Samples one particle and the species, cell, momentum and coordinate are chosen from the corresponding...
Definition: grandcan_thermalizer.h:360
smash::GrandCanThermalizer::compute_N_in_cells_mode_algo
void compute_N_in_cells_mode_algo(F &&condition)
Computes average number of particles in each cell for the mode algorithm.
Definition: grandcan_thermalizer.h:329
ThermalizationAlgorithm::ModeSampling
smash::GrandCanThermalizer::sample_in_random_cell_BF_algo
void sample_in_random_cell_BF_algo(ParticleList &plist, const double time, size_t type_index)
The total number of particles of species type_index is defined by mult_int_ array that is returned by...
Definition: grandcan_thermalizer.cc:245
smash::GrandCanThermalizer::N_in_cells_
std::vector< double > N_in_cells_
Number of particles to be sampled in one cell.
Definition: grandcan_thermalizer.h:477
smash::GrandCanThermalizer::sampled_list_
ParticleList sampled_list_
Newly generated particles by thermalizer.
Definition: grandcan_thermalizer.h:487
smash::GrandCanThermalizer::cells_to_sample_
std::vector< size_t > cells_to_sample_
Cells above critical energy density.
Definition: grandcan_thermalizer.h:479
ThermalizationAlgorithm::BiasedBF
smash::GrandCanThermalizer::mult_classes_
std::array< double, 7 > mult_classes_
The different hadron species according to the enum defined in.
Definition: grandcan_thermalizer.h:507
smash::DensityType
DensityType
Allows to choose which kind of density to calculate.
Definition: density.h:35
smash::HadronGasEos::is_eos_particle
static bool is_eos_particle(const ParticleType &ptype)
Check if a particle belongs to the EoS.
Definition: hadgas_eos.h:308
smash::GrandCanThermalizer::eos_
HadronGasEos eos_
Hadron gas equation of state.
Definition: grandcan_thermalizer.h:481
smash::GrandCanThermalizer::mult_sort_
std::vector< double > mult_sort_
Real number multiplicity for each particle type.
Definition: grandcan_thermalizer.h:500
smash::GrandCanThermalizer::mult_int_
std::vector< int > mult_int_
Integer multiplicity for each particle type.
Definition: grandcan_thermalizer.h:502
smash::GrandCanThermalizer::eos_typelist_
const ParticleTypePtrList eos_typelist_
List of particle types from which equation of state is computed.
Definition: grandcan_thermalizer.h:496
smash::GrandCanThermalizer::mult_class
double mult_class(const HadronClass cl) const
Definition: grandcan_thermalizer.h:473
smash::GrandCanThermalizer::thermalize_mode_algo
void thermalize_mode_algo(QuantumNumbers &conserved_initial, double time)
Samples particles to the according to the mode algorithm.
Definition: grandcan_thermalizer.cc:396
S
#define S(x, n)
Definition: sha256.cc:54
smash::pdg::p
constexpr int p
Proton.
Definition: pdgcode_constants.h:28
smash::random::uniform
T uniform(T min, T max)
Definition: random.h:88
smash::pdg::n
constexpr int n
Neutron.
Definition: pdgcode_constants.h:30
smash::DensityType::Hadron
smash::DensityType::Baryon
smash::sample_momenta_from_thermal
double sample_momenta_from_thermal(const double temperature, const double mass)
Samples a momentum from the Maxwell-Boltzmann (thermal) distribution in a faster way,...
Definition: distributions.cc:190
smash::GrandCanThermalizer::to_remove_
ParticleList to_remove_
Particles to be removed after this thermalization step.
Definition: grandcan_thermalizer.h:485
smash::GrandCanThermalizer::e_crit_
const double e_crit_
Critical energy density above which cells are thermalized.
Definition: grandcan_thermalizer.h:516
smash::LGrandcanThermalizer
static constexpr int LGrandcanThermalizer
Definition: grandcan_thermalizer.cc:22
smash::GrandCanThermalizer::lat_
std::unique_ptr< RectangularLattice< ThermLatticeNode > > lat_
The lattice on which the thermodynamic quantities are calculated.
Definition: grandcan_thermalizer.h:483
smash::ParticleType::list_all
static const ParticleTypeList & list_all()
Definition: particletype.cc:57
smash::HadronClass::Antibaryon
All anti-baryons.