Version: SMASH-1.8
smash::Nucleus Class Reference

#include <nucleus.h>

A nucleus is a collection of particles that are initialized, before the beginning of the simulation and all have the same velocity.

Definition at line 27 of file nucleus.h.

Inheritance diagram for smash::Nucleus:
[legend]
Collaboration diagram for smash::Nucleus:
[legend]

Classes

struct  TestparticleConfusion
 

Public Member Functions

 Nucleus ()=default
 default constructor More...
 
 Nucleus (Configuration &config, int nTest)
 Constructor for Nucleus, that needs the configuration parameters from the inputfile and the number of testparticles. More...
 
 Nucleus (const std::map< PdgCode, int > &particle_list, int nTest)
 Constructor which directly initializes the Nucleus with particles and respective counts. More...
 
virtual ~Nucleus ()=default
 
double mass () const
 
virtual ThreeVector distribute_nucleon ()
 The distribution of return values from this function is according to a spherically symmetric Woods-Saxon distribution suitable for this nucleus. More...
 
double woods_saxon (double x)
 Woods-Saxon distribution. More...
 
virtual void arrange_nucleons ()
 Sets the positions of the nucleons inside a nucleus. More...
 
virtual void set_parameters_automatic ()
 Sets the deformation parameters of the Woods-Saxon distribution according to the current mass number. More...
 
virtual void set_parameters_from_config (Configuration &config)
 Sets the parameters of the Woods-Saxon according to manually added values in the configuration file. More...
 
virtual void generate_fermi_momenta ()
 Generates momenta according to Fermi motion for the nucleons. More...
 
void boost (double beta_scalar)
 Boosts the nuclei into the computational frame, such that the nucleons have the appropriate momentum and the nuclei are lorentz-contracted. More...
 
void fill_from_list (const std::map< PdgCode, int > &particle_list, int testparticles)
 Adds particles from a map PDG code => Number_of_particles_with_that_PDG_code to the nucleus. More...
 
void shift (double z_offset, double x_offset, double simulation_time)
 Shifts the nucleus to correct impact parameter and z displacement. More...
 
virtual void rotate ()
 Rotates the nucleus. More...
 
void copy_particles (Particles *particles)
 Copies the particles from this nucleus into the particle list. More...
 
size_t size () const
 Number of numerical (=test-)particles in the nucleus: More...
 
size_t number_of_particles () const
 Number of physical particles in the nucleus: More...
 
size_t number_of_protons () const
 Number of physical protons in the nucleus: More...
 
FourVector center () const
 Calculate geometrical center of the nucleus. More...
 
void align_center ()
 Shifts the nucleus so that its center is at (0,0,0) More...
 
virtual double nucleon_density (double r, double)
 Return the Woods-Saxon probability density for the given position. More...
 
std::vector< ParticleData >::iterator begin ()
 For iterators over the particle list: More...
 
std::vector< ParticleData >::iterator end ()
 For iterators over the particle list: More...
 
std::vector< ParticleData >::const_iterator cbegin () const
 For const iterators over the particle list: More...
 
std::vector< ParticleData >::const_iterator cend () const
 For const iterators over the particle list: More...
 
void set_diffusiveness (double diffuse)
 Sets the diffusiveness of the nucleus. More...
 
double get_diffusiveness () const
 
void set_saturation_density (double density)
 Sets the saturation density of the nucleus. More...
 
double get_saturation_density () const
 
double default_nuclear_radius ()
 Default nuclear radius calculated as: More...
 
void set_nuclear_radius (double rad)
 Sets the nuclear radius. More...
 
double get_nuclear_radius () const
 

Protected Member Functions

void random_euler_angles ()
 Randomly generate Euler angles. More...
 

Protected Attributes

std::vector< ParticleDataparticles_
 Particles associated with this nucleus. More...
 
double euler_phi_
 Euler angel phi. More...
 
double euler_theta_
 Euler angel theta. More...
 
double euler_psi_
 Euler angel psi. More...
 

Private Attributes

double diffusiveness_
 Diffusiveness of Woods-Saxon distribution of this nucleus in fm (for diffusiveness_ == 0, we obtain a hard sphere). More...
 
double saturation_density_ = nuclear_density
 Saturation density of this nucleus. More...
 
double nuclear_radius_
 Nuclear radius of this nucleus. More...
 
double proton_radius_ = 1.2
 Single proton radius in fm. More...
 
size_t testparticles_ = 1
 Number of testparticles per physical particle. More...
 

Friends

std::ostream & operator<< (std::ostream &, const Nucleus &)
 

Constructor & Destructor Documentation

◆ Nucleus() [1/3]

smash::Nucleus::Nucleus ( )
default

default constructor

◆ Nucleus() [2/3]

smash::Nucleus::Nucleus ( Configuration config,
int  nTest 
)

Constructor for Nucleus, that needs the configuration parameters from the inputfile and the number of testparticles.

Parameters
[in]configcontains the parameters from the inputfile on the numbers of particles with a certain PDG code
[in]nTestnumber of testparticles

Definition at line 34 of file nucleus.cc.

34  {
35  // Fill nuclei with particles.
36  std::map<PdgCode, int> part = config.take({"Particles"});
37  fill_from_list(part, nTest);
38  // Look for user-defined values or take the default parameters.
39  if (config.has_value({"Diffusiveness"}) && config.has_value({"Radius"}) &&
40  config.has_value({"Saturation_Density"})) {
42  } else if (!config.has_value({"Diffusiveness"}) &&
43  !config.has_value({"Radius"}) &&
44  !config.has_value({"Saturation_Density"})) {
46  } else {
47  throw std::invalid_argument(
48  "Diffussiveness, Radius and Saturation_Density "
49  "required to manually configure the Woods-Saxon"
50  " distribution. Only one/two were provided. \n"
51  "Providing none of the above mentioned "
52  "parameters automatically configures the "
53  "distribution based on the atomic number.");
54  }
55 }
Here is the call graph for this function:

◆ Nucleus() [3/3]

smash::Nucleus::Nucleus ( const std::map< PdgCode, int > &  particle_list,
int  nTest 
)

Constructor which directly initializes the Nucleus with particles and respective counts.

Only used for testing.

Parameters
[in]particle_liststd::map, which maps PdgCode and count of this particle.
[in]nTestNumber of test particles.

Definition at line 29 of file nucleus.cc.

29  {
30  fill_from_list(particle_list, nTest);
32 }
Here is the call graph for this function:

◆ ~Nucleus()

virtual smash::Nucleus::~Nucleus ( )
virtualdefault

Member Function Documentation

◆ mass()

double smash::Nucleus::mass ( ) const
Returns
Mass of the nucleus [GeV]. It needs to be double to allow for calculations at LHC energies.

Definition at line 57 of file nucleus.cc.

57  {
58  double total_mass = 0.;
59  for (auto i = cbegin(); i != cend(); i++) {
60  total_mass += i->momentum().abs();
61  }
62  return total_mass / (testparticles_ + 0.0);
63 }
Here is the call graph for this function:

◆ distribute_nucleon()

ThreeVector smash::Nucleus::distribute_nucleon ( )
virtual

The distribution of return values from this function is according to a spherically symmetric Woods-Saxon distribution suitable for this nucleus.

\(\frac{dN}{dr} = \frac{r^2}{\exp\left(\frac{r-r_0}{d}\right) + 1}\) where \(d\) is the diffusiveness_ parameter and \(r_0\) is nuclear_radius_.

Returns
Woods-Saxon distributed position.

Woods-Saxon-distribution

The distribution

Nucleons in nuclei are distributed according to a Woods-Saxon-distribution (see Woods:1954zz [47])

\[\frac{dN}{d^3r} = \frac{\rho_0}{\exp\left(\frac{r-r_0}{d}\right) +1},\]

where \(d\) is the diffusiveness of the nucleus. For \(d=0\), the nucleus is a hard sphere. \(\rho_0\) and \(r_0\) are, in this limit, the nuclear ground state density and nuclear radius, respectively. For small \(d\), this is still approximately true.

This distribution is obviously spherically symmetric, hence we can rewrite \(d^3r = 4\pi r^2 dr\) and obtain

\[\frac{dN}{4\pi\rho_0dr} = \frac{r^2}{\exp\left(\frac{r-r_0}{d}\right) + 1}.\]

Let us rewrite that in units of \(d\) (that's the diffusiveness) and drop any constraints on normalization (since in the end we only care about relative probabilities: we create as many nucleons as we need). Now, \(p(B)\) is the un-normalized probability to obtain a point at \(r = Bd\) (with \(R = r_0/d\)):

\[p(B) = \frac{B^2}{\exp(B-R) + 1}.\]

Splitting it up in two regimes

We shift the distribution so that \(B-R\) is 0 at \(t = 0\): \(t = B-R\):

\[p^{(1)}(t)= \frac{(t+R)^2}{\exp(t)+1}\]

and observe

\[\frac{1}{\exp(x)+1} = \frac{e^{-x}}{e^{-x}e^{x}+e^{-x}} = \frac{e^{-x}}{e^{-x}+1}.\]

The distribution function can now be split into two cases. For negative t (first case), \(-|t| = t\), and for positive t (second case), \(-|t| = -t\):

\[p^{(1)}(t) = \frac{1}{e^{-|t|}+1} \cdot (t+R)^2 \cdot \begin{cases} 1 & -R \le t < 0 \\ e^{-t} & t \ge 0 \end{cases}.\]

Apart from the first term, all that remains here can easily and exactly be generated from unrejected uniform random numbers (see below). The first term itself - \((1+e^{-|t|})^{-1}\) - is a number between 1/2 and 1.

If we now have a variable \(t\) distributed according to the remainder, \(p^{(2)}(t)\), and reject \(t\) with a probability \(p^{(rej)}(t) = 1 - p^{(survive)}(t) = 1 - (1+e^{-|t|})^{-1}\), the resulting distribution is \(p^{(combined)}(t) = p^{(2)}(t) \cdot p^{(survive)}(t)\). Hence, we need to generate \(p^{(2)}(t)\), which we can normalize to

\[\tilde{p}^{(2)}(t) = \frac{1}{1+3/R+6/R^2+6/R^3} \cdot \begin{cases} \frac{3}{R^3} (t+R)^2 & -R \le t < 0 \\ e^{-t} \left( \frac{3}{R}+\frac{6}{R^2}t+\frac{6}{R^3}\frac{1}{2}t^2 \right) & t \ge 0 \end{cases}.\]

(the tilde \(\tilde{p}\) means that this is normalized).

Four parts inside the rejection

Let \(c_1 = 1+3/R+6/R^2+6/R^3\). The above means:

\[\mbox{Choose: } \begin{cases} \tilde p^{({\rm I})} = \frac{3}{R^3}(t+R)^2 \Theta(-t) \Theta(t+R) \\ \tilde p^{({\rm II})}= e^{-t}\Theta(t) \\ \tilde p^{({\rm III})}=e^{-t}\Theta(t) t \\ \tilde p^{({\rm IV})} =e^{-t}\Theta(t) \frac{1}{2} t^2 \end{cases} \mbox{ with a probability of }\begin{cases} \frac{1}{c_1} \cdot 1 \\ \frac{1}{c_1} \cdot \frac{3}{R} \\ \frac{1}{c_1} \cdot \frac{6}{R^2} \\ \frac{1}{c_1} \cdot \frac{6}{R^3} \end{cases}.\]

Let us see how those are generated. \(\chi_i\) are uniformly distributed numbers between 0 and 1.

\[p(\chi_i) = \Theta(\chi_i)\Theta(1-\chi_i)\]

For simple distributions (only one \(\chi\) involved), we invert \(t(\chi)\), derive it w.r.t. \(t\) and normalize.

Case I: \f$p^{({\rm I})}\f$

Simply from one random number:

\[t = R\left( \sqrt[ 3 ]{\chi} - 1 \right)\]

\[\tilde p^{({\rm I})} = \frac{3}{R^3}(t+R)^2 \mbox{ for } -R \le t \le 0\]

Case II: \f$p^{({\rm II})}\f$

Again, from one only:

\[t = -\log(\chi)\]

\[p(t) = \frac{d\chi}{dt}\]

\[p^{({\rm II})} = e^{-t} \mbox{ for } t > 0\]

Case III: \f$p^{({\rm III})}\f$

Here, we need two variables:

\[t = -\log{\chi_1} -\log{\chi_2}\]

\(p^{({\rm III})}\) is now the folding of \(p^{({\rm II})}\) with itself[1]:

\[p^{({\rm III})} = \int_{-\infty}^{\infty} d\tau e^{-\tau} e^{-(t-\tau)} \Theta(\tau) \Theta(t-\tau) = t e^{-t} \mbox{ for } t > 0\]

Case IV: \f$p^{({\rm IV})}\f$

Three variables needed:

\[t = -\log{\chi_1} -\log{\chi_2} -\log{\chi_3}\]

\(p^{({\rm IV})}\) is now the folding of \(p^{({\rm II})}\) with \(p^{({\rm III})}\):

\[p^{({\rm IV})} = \int_{ - \infty}^{\infty} d\tau e^{- \tau} \left( t - \tau \right) e^{ - (t - \tau)} \Theta(\tau) \Theta(t - \tau) = \frac{1}{2} t^2 e^{ -t} \mbox{ for } t > 0\]

[1]: This is [the probability to find a \(\tau\)] times [the probability to find the value \(\tau_2 = t-\tau\) that added to \(\tau\) yields \(t\)], integrated over all possible combinations that have that property.

From the beginning

So, the algorithm needs to do all this from the end:

  • Decide which branch \(\tilde p^{({\rm I - IV})}\) to go into
  • Generate \(t\) from the distribution in the respective branches
  • Reject that number with a probability \(1-(1+\exp(-|t|))^{-1}\) (the efficiency of this should be \(\gg \frac{1}{2}\))
  • Shift and rescale \(t\) to \(r = d\cdot t + r_0\)

Reimplemented in smash::CustomNucleus, and smash::DeformedNucleus.

Definition at line 217 of file nucleus.cc.

217  {
218  // Get the solid angle of the nucleon.
219  Angles dir;
220  dir.distribute_isotropically();
221  // diffusiveness_ zero or negative? Use hard sphere.
222  if (almost_equal(diffusiveness_, 0.)) {
223  return dir.threevec() * nuclear_radius_ * std::cbrt(random::canonical());
224  }
225  if (almost_equal(nuclear_radius_, 0.)) {
226  return smash::ThreeVector();
227  }
228  double radius_scaled = nuclear_radius_ / diffusiveness_;
229  double prob_range1 = 1.0;
230  double prob_range2 = 3. / radius_scaled;
231  double prob_range3 = 2. * prob_range2 / radius_scaled;
232  double prob_range4 = 1. * prob_range3 / radius_scaled;
233  double ranges234 = prob_range2 + prob_range3 + prob_range4;
234  double t;
236  do {
237  double which_range = random::uniform(-prob_range1, ranges234);
238  if (which_range < 0.0) {
239  t = radius_scaled * (std::cbrt(random::canonical()) - 1.);
240  } else {
241  t = -std::log(random::canonical());
242  if (which_range >= prob_range2) {
243  t -= std::log(random::canonical());
244  if (which_range >= prob_range2 + prob_range3) {
245  t -= std::log(random::canonical());
246  }
247  }
248  }
256  } while (random::canonical() > 1. / (1. + std::exp(-std::abs(t))));
258  double position_scaled = t + radius_scaled;
259  double position = position_scaled * diffusiveness_;
260  return dir.threevec() * position;
261 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ woods_saxon()

double smash::Nucleus::woods_saxon ( double  x)

Woods-Saxon distribution.

Parameters
[in]xthe position at which to evaluate the function
Returns
un-normalized Woods-saxon probability

Definition at line 263 of file nucleus.cc.

263  {
264  return r * r / (std::exp((r - nuclear_radius_) / diffusiveness_) + 1);
265 }

◆ arrange_nucleons()

void smash::Nucleus::arrange_nucleons ( )
virtual

Sets the positions of the nucleons inside a nucleus.

Reimplemented in smash::CustomNucleus.

Definition at line 267 of file nucleus.cc.

267  {
268  for (auto i = begin(); i != end(); i++) {
269  // Initialize momentum
270  i->set_4momentum(i->pole_mass(), 0.0, 0.0, 0.0);
271  /* Sampling the Woods-Saxon, get the radial
272  * position and solid angle for the nucleon. */
273  ThreeVector pos = distribute_nucleon();
274 
275  // Set the position of the nucleon.
276  i->set_4position(FourVector(0.0, pos));
277  }
278 
279  // Recenter and rotate
280  align_center();
281  rotate();
282 }
Here is the call graph for this function:

◆ set_parameters_automatic()

void smash::Nucleus::set_parameters_automatic ( )
virtual

Sets the deformation parameters of the Woods-Saxon distribution according to the current mass number.

The values are taken from DeJager:1987qc [15]. They are in agreement with MC-Glauber models such as GLISSANDO (see Rybczynski:2013yba [36]) and TGlauber MC (see Loizides:2017ack [28])

Definition at line 284 of file nucleus.cc.

284  {
286  int Z = Nucleus::number_of_protons();
287  switch (A) {
288  case 1: // single particle
289  /* In case of testparticles, an infinite reaction loop will be
290  * avoided by a small finite spread according to a single particles
291  * 'nucleus'. The proper solution will be to introduce parallel
292  * ensembles. */
294  ? 0.
295  : 1. - std::exp(-(testparticles_ - 1.) * 0.1));
296  set_diffusiveness(testparticles_ == 1 ? -1. : 0.02);
297  break;
298  case 238: // Uranium
299  // Default values.
300  if (Z == 92) {
301  set_diffusiveness(0.556);
302  set_nuclear_radius(6.86);
303  set_saturation_density(0.166);
304  }
305  break;
306  case 208: // Lead
307  // Default values.
308  if (Z == 82) {
309  set_diffusiveness(0.54);
310  set_nuclear_radius(6.67);
311  set_saturation_density(0.161);
312  }
313  break;
314  case 197: // Gold
315  // Default values.
316  if (Z == 79) {
317  set_diffusiveness(0.535);
318  set_nuclear_radius(6.38);
319  set_saturation_density(0.1695);
320  }
321  break;
322  case 63: // Copper
323  // Default values.
324  if (Z == 29) {
325  set_diffusiveness(0.5977);
326  set_nuclear_radius(4.20641);
327  set_saturation_density(0.1686);
328  }
329  break;
330  case 96:
331  if (Z == 40) { // Zirconium
332  // Default values.
333  set_diffusiveness(0.46);
334  set_nuclear_radius(5.02);
335  set_saturation_density(0.1673);
336  } else if (Z == 44) { // Ruthenium
337  // Default values.
338  set_diffusiveness(0.46);
339  set_nuclear_radius(5.085);
340  set_saturation_density(0.1604);
341  } else {
342  // radius and diffusiveness taken from \iref{Rybczynski:2013yba}
343  set_diffusiveness(0.54);
344  set_nuclear_radius(1.12 * std::pow(A, 1.0 / 3.0) -
345  0.86 * std::pow(A, -1.0 / 3.0));
346  }
347  break;
348 
349  default:
350  // saturation density already has reasonable default
352  if (A <= 16) {
353  set_diffusiveness(0.545);
354  } else {
355  // diffusiveness taken from \iref{Rybczynski:2013yba}
356  set_diffusiveness(0.54);
357  }
358  }
359 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ set_parameters_from_config()

void smash::Nucleus::set_parameters_from_config ( Configuration config)
virtual

Sets the parameters of the Woods-Saxon according to manually added values in the configuration file.

Parameters
configThe configuration for this nucleus (projectile or target).

Definition at line 361 of file nucleus.cc.

361  {
362  set_diffusiveness(static_cast<double>(config.take({"Diffusiveness"})));
363  set_nuclear_radius(static_cast<double>(config.take({"Radius"})));
364  // Saturation density (normalization for accept/reject sampling)
366  static_cast<double>(config.take({"Saturation_Density"})));
367 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ generate_fermi_momenta()

void smash::Nucleus::generate_fermi_momenta ( )
virtual

Generates momenta according to Fermi motion for the nucleons.

For neutrons and protons Fermi momenta are calculated as \( p_{F} = (3 \pi^2 \rho)^{1/3}\), where \( rho \) is neutron density for neutrons and proton density for protons. The actual momenta \(p_x\), \(p_y\), \(p_z\) are uniformly distributed in the sphere with radius \(p_F\).

Reimplemented in smash::CustomNucleus.

Definition at line 369 of file nucleus.cc.

369  {
370  const int N_n = std::count_if(begin(), end(), [](const ParticleData i) {
371  return i.pdgcode() == pdg::n;
372  });
373  const int N_p = std::count_if(begin(), end(), [](const ParticleData i) {
374  return i.pdgcode() == pdg::p;
375  });
376  const FourVector nucleus_center = center();
377  const int A = N_n + N_p;
378  constexpr double pi2_3 = 3.0 * M_PI * M_PI;
379 
380  logg[LNucleus].debug() << N_n << " neutrons, " << N_p << " protons.";
381 
382  ThreeVector ptot = ThreeVector(0.0, 0.0, 0.0);
383  for (auto i = begin(); i != end(); i++) {
384  // Only protons and neutrons get Fermi momenta
385  if (i->pdgcode() != pdg::p && i->pdgcode() != pdg::n) {
386  if (i->is_baryon()) {
387  logg[LNucleus].warn() << "No rule to calculate Fermi momentum "
388  << "for particle " << i->pdgcode();
389  }
390  continue;
391  }
392  const double r = (i->position() - nucleus_center).abs3();
393  const double theta = (i->position().threevec().get_theta());
394  double rho = nucleon_density(r, cos(theta));
395 
396  if (i->pdgcode() == pdg::p) {
397  rho = rho * N_p / A;
398  }
399  if (i->pdgcode() == pdg::n) {
400  rho = rho * N_n / A;
401  }
402  const double p =
403  hbarc * std::pow(pi2_3 * rho * random::uniform(0.0, 1.0), 1.0 / 3.0);
404  Angles phitheta;
405  phitheta.distribute_isotropically();
406  const ThreeVector ith_3momentum = phitheta.threevec() * p;
407  ptot += ith_3momentum;
408  i->set_3momentum(ith_3momentum);
409  logg[LNucleus].debug() << "Particle: " << *i << ", pF[GeV]: "
410  << hbarc * std::pow(pi2_3 * rho, 1.0 / 3.0)
411  << " r[fm]: " << r
412  << " Nuclear radius[fm]: " << nuclear_radius_;
413  }
414  if (A == 0) {
415  // No Fermi momenta should be assigned
416  assert(ptot.x1() == 0.0 && ptot.x2() == 0.0 && ptot.x3() == 0.0);
417  } else {
418  /* Ensure zero total momentum of nucleus - redistribute ptot equally
419  * among protons and neutrons */
420  const ThreeVector centralizer = ptot / A;
421  for (auto i = begin(); i != end(); i++) {
422  if (i->pdgcode() == pdg::p || i->pdgcode() == pdg::n) {
423  i->set_4momentum(i->pole_mass(),
424  i->momentum().threevec() - centralizer);
425  }
426  }
427  }
428 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ boost()

void smash::Nucleus::boost ( double  beta_scalar)

Boosts the nuclei into the computational frame, such that the nucleons have the appropriate momentum and the nuclei are lorentz-contracted.

Note that the usual boost cannot be applied for nuclei, since the particles would end up with different times and the binding energy needs to be taken into account.

Parameters
[in]beta_scalarvelocity in z-direction used for boost.

Definition at line 430 of file nucleus.cc.

430  {
431  double beta_squared = beta_scalar * beta_scalar;
432  double one_over_gamma = std::sqrt(1.0 - beta_squared);
433  double gamma = 1.0 / one_over_gamma;
434  /* We are talking about a /passive/ lorentz transformation here, as
435  * far as I can see, so we need to boost in the direction opposite to
436  * where we want to go
437  * ( The vector we transform - p - stays unchanged, but we go into
438  * a system that moves with -beta. Now in this frame, it seems
439  * like p has been accelerated with +beta.
440  * ) */
441  for (auto i = begin(); i != end(); i++) {
442  /* a real Lorentz Transformation would leave the particles at
443  * different times here, which we would then have to propagate back
444  * to equal times. Since we know the result, we can simply multiply
445  * the z-value with 1/gamma. */
446  FourVector this_position = i->position();
447  this_position.set_x3(this_position.x3() * one_over_gamma);
448  i->set_4position(this_position);
449  /* The simple Lorentz transformation of momenta does not take into account
450  * that nucleus has binding energy. Here we apply the method used
451  * in the JAM code \iref{Nara:1999dz}: p' = p_beam + gamma*p_F.
452  * This formula is derived under assumption that all nucleons have
453  * the same binding energy. */
454  FourVector mom_i = i->momentum();
455  i->set_4momentum(i->pole_mass(), mom_i.x1(), mom_i.x2(),
456  gamma * (beta_scalar * mom_i.x0() + mom_i.x3()));
457  }
458 }
Here is the call graph for this function:

◆ fill_from_list()

void smash::Nucleus::fill_from_list ( const std::map< PdgCode, int > &  particle_list,
int  testparticles 
)

Adds particles from a map PDG code => Number_of_particles_with_that_PDG_code to the nucleus.

E.g., the map [2212: 6, 2112: 7] initializes C-13 (6 protons and 7 neutrons). The particles are only created, no position or momenta are yet assigned. It is also possible to use any other PDG code, in addition to nucleons.

Parameters
[out]particle_listThe particle slots that are created.
[in]testparticlesNumber of test particles to use.

Definition at line 460 of file nucleus.cc.

461  {
462  testparticles_ = testparticles;
463  for (auto n = particle_list.cbegin(); n != particle_list.cend(); ++n) {
464  const ParticleType &current_type = ParticleType::find(n->first);
465  double current_mass = current_type.mass();
466  for (unsigned int i = 0; i < n->second * testparticles_; i++) {
467  // append particle to list and set its PDG code.
468  particles_.emplace_back(current_type);
469  particles_.back().set_4momentum(current_mass, 0.0, 0.0, 0.0);
470  }
471  }
472 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ shift()

void smash::Nucleus::shift ( double  z_offset,
double  x_offset,
double  simulation_time 
)

Shifts the nucleus to correct impact parameter and z displacement.

Parameters
[in]z_offsetis the shift in z-direction
[in]x_offsetis the shift in x-direction
[in]simulation_timeset the time and formation_time of each particle to this value.

Definition at line 474 of file nucleus.cc.

474  {
475  // Move the nucleus in z and x directions, and set the time.
476  for (auto i = begin(); i != end(); i++) {
477  FourVector this_position = i->position();
478  this_position.set_x3(this_position.x3() + z_offset);
479  this_position.set_x1(this_position.x1() + x_offset);
480  this_position.set_x0(simulation_time);
481  i->set_4position(this_position);
482  i->set_formation_time(simulation_time);
483  }
484 }
Here is the call graph for this function:

◆ rotate()

virtual void smash::Nucleus::rotate ( )
inlinevirtual

Rotates the nucleus.

(Due to spherical symmetry of nondeformed nuclei, there is nothing to do.)

Reimplemented in smash::DeformedNucleus.

Definition at line 146 of file nucleus.h.

146 {}
Here is the caller graph for this function:

◆ copy_particles()

void smash::Nucleus::copy_particles ( Particles particles)

Copies the particles from this nucleus into the particle list.

Parameters
[out]particlesParticle list with all constituents of a nucleus

Definition at line 486 of file nucleus.cc.

486  {
487  for (auto p = begin(); p != end(); p++) {
488  external_particles->insert(*p);
489  }
490 }
Here is the call graph for this function:

◆ size()

size_t smash::Nucleus::size ( ) const
inline

Number of numerical (=test-)particles in the nucleus:

Definition at line 156 of file nucleus.h.

156 { return particles_.size(); }
Here is the caller graph for this function:

◆ number_of_particles()

size_t smash::Nucleus::number_of_particles ( ) const
inline

Number of physical particles in the nucleus:

Exceptions
TestparticleConfusionif the number of the nucleons is not a multiple of testparticles_.

Definition at line 164 of file nucleus.h.

164  {
165  size_t nop = particles_.size() / testparticles_;
166  /* If size() is not a multiple of testparticles_, this will throw an
167  * error. */
168  if (nop * testparticles_ != particles_.size()) {
169  throw TestparticleConfusion(
170  "Number of test particles and test particles"
171  "per particle are incompatible.");
172  }
173  return nop;
174  }
Here is the caller graph for this function:

◆ number_of_protons()

size_t smash::Nucleus::number_of_protons ( ) const
inline

Number of physical protons in the nucleus:

Returns
number of protons
Exceptions
Testparticleconfusionif the number of the protons is not a multiple of testparticles_.

Definition at line 183 of file nucleus.h.

183  {
184  size_t proton_counter = 0;
185  /* If n_protons is not a multiple of testparticles_, this will throw an
186  * error. */
187  for (auto &particle : particles_) {
188  if (particle.type().pdgcode() == pdg::p) {
189  proton_counter++;
190  }
191  }
192 
193  size_t n_protons = proton_counter / testparticles_;
194 
195  if (n_protons * testparticles_ != proton_counter) {
196  throw TestparticleConfusion(
197  "Number of test protons and test particles"
198  "per proton are incompatible.");
199  }
200 
201  return n_protons;
202  }
Here is the caller graph for this function:

◆ center()

FourVector smash::Nucleus::center ( ) const

Calculate geometrical center of the nucleus.

Returns
\(\vec r_s = \frac{1}{N} \sum_{i=1}^N \vec r_i\) (for a nucleus with N particles that are at the positions \(\vec r_i\)).

Definition at line 492 of file nucleus.cc.

492  {
493  FourVector centerpoint(0.0, 0.0, 0.0, 0.0);
494  for (auto p = cbegin(); p != cend(); p++) {
495  centerpoint += p->position();
496  }
497  centerpoint /= size();
498  return centerpoint;
499 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ align_center()

void smash::Nucleus::align_center ( )
inline

Shifts the nucleus so that its center is at (0,0,0)

See also
center()

Definition at line 215 of file nucleus.h.

215  {
216  FourVector centerpoint = center();
217  for (auto p = particles_.begin(); p != particles_.end(); ++p) {
218  p->set_4position(p->position() - centerpoint);
219  }
220  }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ nucleon_density()

double smash::Nucleus::nucleon_density ( double  r,
double   
)
virtual

Return the Woods-Saxon probability density for the given position.

This corresponds to the nuclear density at the very same position.

Parameters
[in]rThe radius at which to sample
Returns
The Woods-Saxon density

Reimplemented in smash::DeformedNucleus.

Definition at line 508 of file nucleus.cc.

508  {
509  return nuclear_density /
510  (std::exp((r - nuclear_radius_) / diffusiveness_) + 1.);
511 }
Here is the caller graph for this function:

◆ random_euler_angles()

void smash::Nucleus::random_euler_angles ( )
protected

Randomly generate Euler angles.

Necessary for rotation of deformed and custom nuclei, whenever a new nucleus of this kind is initialized.

Definition at line 501 of file nucleus.cc.

501  {
502  // Sample euler_theta_ such that cos(theta) is uniform
503  euler_phi_ = twopi * random::uniform(0., 1.);
504  euler_theta_ = std::acos(2 * random::uniform(0., 1.) - 1);
505  euler_psi_ = twopi * random::uniform(0., 1.);
506 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ begin()

std::vector<ParticleData>::iterator smash::Nucleus::begin ( )
inline

For iterators over the particle list:

Definition at line 273 of file nucleus.h.

273  {
274  return particles_.begin();
275  }
Here is the caller graph for this function:

◆ end()

std::vector<ParticleData>::iterator smash::Nucleus::end ( )
inline

For iterators over the particle list:

Definition at line 277 of file nucleus.h.

277 { return particles_.end(); }
Here is the caller graph for this function:

◆ cbegin()

std::vector<ParticleData>::const_iterator smash::Nucleus::cbegin ( ) const
inline

For const iterators over the particle list:

Definition at line 279 of file nucleus.h.

279  {
280  return particles_.cbegin();
281  }
Here is the caller graph for this function:

◆ cend()

std::vector<ParticleData>::const_iterator smash::Nucleus::cend ( ) const
inline

For const iterators over the particle list:

Definition at line 283 of file nucleus.h.

283  {
284  return particles_.cend();
285  }
Here is the caller graph for this function:

◆ set_diffusiveness()

void smash::Nucleus::set_diffusiveness ( double  diffuse)
inline

Sets the diffusiveness of the nucleus.

See also
diffusiveness_

Definition at line 290 of file nucleus.h.

290 { diffusiveness_ = diffuse; }
Here is the caller graph for this function:

◆ get_diffusiveness()

double smash::Nucleus::get_diffusiveness ( ) const
inline
Returns
the diffusiveness of the nucleus
See also
diffusiveness_

Definition at line 295 of file nucleus.h.

295 { return diffusiveness_; }
Here is the caller graph for this function:

◆ set_saturation_density()

void smash::Nucleus::set_saturation_density ( double  density)
inline

Sets the saturation density of the nucleus.

See also
saturation_density_

Definition at line 300 of file nucleus.h.

300  {
301  saturation_density_ = density;
302  }
Here is the caller graph for this function:

◆ get_saturation_density()

double smash::Nucleus::get_saturation_density ( ) const
inline
Returns
the saturation density of the nucleus
See also
saturation_density_

Definition at line 307 of file nucleus.h.

307 { return saturation_density_; }
Here is the caller graph for this function:

◆ default_nuclear_radius()

double smash::Nucleus::default_nuclear_radius ( )
inline

Default nuclear radius calculated as:

  • \( r = r_\mathrm{proton} \ A^{1/3} \qquad \qquad \qquad \ \) for A <= 16
  • \( r = 1.12 \ A^{1/3} - 0.86 \ A^{-1/3} \qquad \) for A > 16
Returns
default radius for the nucleus in fm

Definition at line 315 of file nucleus.h.

315  {
316  int A = number_of_particles();
317 
318  if (A <= 16) {
319  // radius: rough guess for all nuclei not listed explicitly with A <= 16
320  return (proton_radius_ * std::cbrt(A));
321  } else {
322  // radius taken from \iref{Rybczynski:2013yba}
323  return (1.12 * std::pow(A, 1.0 / 3.0) - 0.86 * std::pow(A, -1.0 / 3.0));
324  }
325  }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ set_nuclear_radius()

void smash::Nucleus::set_nuclear_radius ( double  rad)
inline

Sets the nuclear radius.

See also
nuclear_radius

Definition at line 330 of file nucleus.h.

330 { nuclear_radius_ = rad; }
Here is the caller graph for this function:

◆ get_nuclear_radius()

double smash::Nucleus::get_nuclear_radius ( ) const
inline
Returns
the nuclear radius
See also
nuclear_radius

Definition at line 335 of file nucleus.h.

335 { return nuclear_radius_; }
Here is the caller graph for this function:

Member Data Documentation

◆ diffusiveness_

double smash::Nucleus::diffusiveness_
private

Diffusiveness of Woods-Saxon distribution of this nucleus in fm (for diffusiveness_ == 0, we obtain a hard sphere).

Definition at line 241 of file nucleus.h.

◆ saturation_density_

double smash::Nucleus::saturation_density_ = nuclear_density
private

Saturation density of this nucleus.

Definition at line 243 of file nucleus.h.

◆ nuclear_radius_

double smash::Nucleus::nuclear_radius_
private

Nuclear radius of this nucleus.

Definition at line 245 of file nucleus.h.

◆ proton_radius_

double smash::Nucleus::proton_radius_ = 1.2
private

Single proton radius in fm.

See also
default_nuclear_radius

Definition at line 250 of file nucleus.h.

◆ testparticles_

size_t smash::Nucleus::testparticles_ = 1
private

Number of testparticles per physical particle.

Definition at line 252 of file nucleus.h.

◆ particles_

std::vector<ParticleData> smash::Nucleus::particles_
protected

Particles associated with this nucleus.

Definition at line 256 of file nucleus.h.

◆ euler_phi_

double smash::Nucleus::euler_phi_
protected

Euler angel phi.

Definition at line 265 of file nucleus.h.

◆ euler_theta_

double smash::Nucleus::euler_theta_
protected

Euler angel theta.

Definition at line 267 of file nucleus.h.

◆ euler_psi_

double smash::Nucleus::euler_psi_
protected

Euler angel psi.

Definition at line 269 of file nucleus.h.


The documentation for this class was generated from the following files:
smash::Nucleus::diffusiveness_
double diffusiveness_
Diffusiveness of Woods-Saxon distribution of this nucleus in fm (for diffusiveness_ == 0,...
Definition: nucleus.h:241
smash::Nucleus::fill_from_list
void fill_from_list(const std::map< PdgCode, int > &particle_list, int testparticles)
Adds particles from a map PDG code => Number_of_particles_with_that_PDG_code to the nucleus.
Definition: nucleus.cc:460
smash::Nucleus::cbegin
std::vector< ParticleData >::const_iterator cbegin() const
For const iterators over the particle list:
Definition: nucleus.h:279
smash::Nucleus::number_of_protons
size_t number_of_protons() const
Number of physical protons in the nucleus:
Definition: nucleus.h:183
smash::Nucleus::default_nuclear_radius
double default_nuclear_radius()
Default nuclear radius calculated as:
Definition: nucleus.h:315
smash::Nucleus::begin
std::vector< ParticleData >::iterator begin()
For iterators over the particle list:
Definition: nucleus.h:273
smash::Nucleus::nuclear_radius_
double nuclear_radius_
Nuclear radius of this nucleus.
Definition: nucleus.h:245
smash::nuclear_density
constexpr double nuclear_density
Ground state density of symmetric nuclear matter [fm^-3].
Definition: constants.h:45
smash::Nucleus::euler_theta_
double euler_theta_
Euler angel theta.
Definition: nucleus.h:267
smash::Nucleus::align_center
void align_center()
Shifts the nucleus so that its center is at (0,0,0)
Definition: nucleus.h:215
smash::LNucleus
static constexpr int LNucleus
Definition: nucleus.cc:27
smash::hbarc
constexpr double hbarc
GeV <-> fm conversion factor.
Definition: constants.h:25
smash::Nucleus::number_of_particles
size_t number_of_particles() const
Number of physical particles in the nucleus:
Definition: nucleus.h:164
smash::logg
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
smash::Nucleus::set_parameters_automatic
virtual void set_parameters_automatic()
Sets the deformation parameters of the Woods-Saxon distribution according to the current mass number.
Definition: nucleus.cc:284
smash::Nucleus::particles_
std::vector< ParticleData > particles_
Particles associated with this nucleus.
Definition: nucleus.h:256
smash::ParticleType::find
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
Definition: particletype.cc:105
smash::ThreeVector
Definition: threevector.h:31
smash::Nucleus::testparticles_
size_t testparticles_
Number of testparticles per physical particle.
Definition: nucleus.h:252
smash::Nucleus::euler_psi_
double euler_psi_
Euler angel psi.
Definition: nucleus.h:269
smash::twopi
constexpr double twopi
.
Definition: constants.h:42
smash::Nucleus::set_nuclear_radius
void set_nuclear_radius(double rad)
Sets the nuclear radius.
Definition: nucleus.h:330
smash::Nucleus::distribute_nucleon
virtual ThreeVector distribute_nucleon()
The distribution of return values from this function is according to a spherically symmetric Woods-Sa...
Definition: nucleus.cc:217
smash::Nucleus::end
std::vector< ParticleData >::iterator end()
For iterators over the particle list:
Definition: nucleus.h:277
smash::Nucleus::center
FourVector center() const
Calculate geometrical center of the nucleus.
Definition: nucleus.cc:492
smash::almost_equal
bool almost_equal(const N x, const N y)
Checks two numbers for relative approximate equality.
Definition: numerics.h:42
smash::Nucleus::rotate
virtual void rotate()
Rotates the nucleus.
Definition: nucleus.h:146
smash::Nucleus::set_parameters_from_config
virtual void set_parameters_from_config(Configuration &config)
Sets the parameters of the Woods-Saxon according to manually added values in the configuration file.
Definition: nucleus.cc:361
smash::Nucleus::proton_radius_
double proton_radius_
Single proton radius in fm.
Definition: nucleus.h:250
smash::Nucleus::set_diffusiveness
void set_diffusiveness(double diffuse)
Sets the diffusiveness of the nucleus.
Definition: nucleus.h:290
smash::Nucleus::size
size_t size() const
Number of numerical (=test-)particles in the nucleus:
Definition: nucleus.h:156
smash::Nucleus::saturation_density_
double saturation_density_
Saturation density of this nucleus.
Definition: nucleus.h:243
smash::Nucleus::euler_phi_
double euler_phi_
Euler angel phi.
Definition: nucleus.h:265
smash::pdg::p
constexpr int p
Proton.
Definition: pdgcode_constants.h:28
smash::random::uniform
T uniform(T min, T max)
Definition: random.h:88
smash::pdg::n
constexpr int n
Neutron.
Definition: pdgcode_constants.h:30
smash::Nucleus::nucleon_density
virtual double nucleon_density(double r, double)
Return the Woods-Saxon probability density for the given position.
Definition: nucleus.cc:508
smash::Nucleus::cend
std::vector< ParticleData >::const_iterator cend() const
For const iterators over the particle list:
Definition: nucleus.h:283
smash::random::canonical
T canonical()
Definition: random.h:113
smash::Nucleus::set_saturation_density
void set_saturation_density(double density)
Sets the saturation density of the nucleus.
Definition: nucleus.h:300