Version: SMASH-1.8
smash::ScatterActionPhoton Class Reference

#include <scatteractionphoton.h>

ScatterActionPhoton is a special action which takes two incoming particles and performs a perturbative electromagnetic scattering. The final state particles are not further propagated, only written to the output.

Definition at line 27 of file scatteractionphoton.h.

Inheritance diagram for smash::ScatterActionPhoton:
[legend]
Collaboration diagram for smash::ScatterActionPhoton:
[legend]

Public Types

enum  ReactionType {
  ReactionType::no_reaction, ReactionType::pi_z_pi_p_rho_p, ReactionType::pi_z_pi_m_rho_m, ReactionType::pi_p_rho_z_pi_p,
  ReactionType::pi_m_rho_z_pi_m, ReactionType::pi_m_rho_p_pi_z, ReactionType::pi_p_rho_m_pi_z, ReactionType::pi_z_rho_p_pi_p,
  ReactionType::pi_z_rho_m_pi_m, ReactionType::pi_p_pi_m_rho_z, ReactionType::pi_z_rho_z_pi_z
}
 Enum for encoding the photon process. More...
 

Public Member Functions

 ScatterActionPhoton (const ParticleList &in, const double time, const int n_frac_photons, const double hadronic_cross_section_input)
 Construct a ScatterActionPhoton object. More...
 
void perform_photons (const OutputsList &outputs)
 Create the photon final state and write to output. More...
 
void generate_final_state () override
 Generate the final-state for the photon scatter process. More...
 
double get_total_weight () const override
 Return the weight of the last created photon. More...
 
double hadronic_cross_section () const
 Return the total cross section of the underlying hadronic scattering. More...
 
double sample_out_hadron_mass (const ParticleTypePtr out_type)
 Sample the mass of the outgoing hadron. More...
 
void add_dummy_hadronic_process (double reaction_cross_section)
 Adds one hadronic process with a given cross-section. More...
 
void add_single_process ()
 Add the photonic process. More...
 
- Public Member Functions inherited from smash::ScatterAction
 ScatterAction (const ParticleData &in_part1, const ParticleData &in_part2, double time, bool isotropic=false, double string_formation_time=1.0)
 Construct a ScatterAction object. More...
 
void add_collision (CollisionBranchPtr p)
 Add a new collision channel. More...
 
void add_collisions (CollisionBranchList pv)
 Add several new collision channels at once. More...
 
double transverse_distance_sqr () const
 Calculate the transverse distance of the two incoming particles in their local rest frame. More...
 
double mandelstam_s () const
 Determine the Mandelstam s variable,. More...
 
double get_partial_weight () const override
 Get the partial cross section of the chosen channel. More...
 
void sample_angles (std::pair< double, double > masses, double kinetic_energy_cm) override
 Sample final-state angles in a 2->2 collision (possibly anisotropic). More...
 
void add_all_scatterings (double elastic_parameter, bool two_to_one, ReactionsBitSet included_2to2, double low_snn_cut, bool strings_switch, bool use_AQM, bool strings_with_probability, NNbarTreatment nnbar_treatment)
 Add all possible scattering subprocesses for this action object. More...
 
const CollisionBranchList & collision_channels ()
 Get list of possible collision channels. More...
 
void set_string_interface (StringProcess *str_proc)
 Set the StringProcess object to be used. More...
 
virtual double cross_section () const
 Get the total cross section of the scattering particles. More...
 
- Public Member Functions inherited from smash::Action
 Action (const ParticleList &in_part, double time)
 Construct an action object with incoming particles and relative time. More...
 
 Action (const ParticleData &in_part, const ParticleData &out_part, double time, ProcessType type)
 Construct an action object with the incoming particles, relative time, and the already known outgoing particles and type of the process. More...
 
 Action (const ParticleList &in_part, const ParticleList &out_part, double absolute_execution_time, ProcessType type)
 Construct an action object with the incoming particles, absolute time, and the already known outgoing particles and type of the process. More...
 
 Action (const Action &)=delete
 Copying is disabled. Use pointers or create a new Action. More...
 
virtual ~Action ()
 Virtual Destructor. More...
 
bool operator< (const Action &rhs) const
 Determine whether one action takes place before another in time. More...
 
virtual ProcessType get_type () const
 Get the process type. More...
 
template<typename Branch >
void add_process (ProcessBranchPtr< Branch > &p, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add a new subprocess. More...
 
template<typename Branch >
void add_processes (ProcessBranchList< Branch > pv, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add several new subprocesses at once. More...
 
virtual void perform (Particles *particles, uint32_t id_process)
 Actually perform the action, e.g. More...
 
bool is_valid (const Particles &particles) const
 Check whether the action still applies. More...
 
bool is_pauli_blocked (const Particles &particles, const PauliBlocker &p_bl) const
 Check if the action is Pauli-blocked. More...
 
const ParticleList & incoming_particles () const
 Get the list of particles that go into the action. More...
 
void update_incoming (const Particles &particles)
 Update the incoming particles that are stored in this action to the state they have in the global particle list. More...
 
const ParticleList & outgoing_particles () const
 Get the list of particles that resulted from the action. More...
 
double time_of_execution () const
 Get the time at which the action is supposed to be performed. More...
 
virtual void check_conservation (const uint32_t id_process) const
 Check various conservation laws. More...
 
double sqrt_s () const
 Determine the total energy in the center-of-mass frame [GeV]. More...
 
FourVector total_momentum_of_outgoing_particles () const
 Calculate the total kinetic momentum of the outgoing particles. More...
 
FourVector get_interaction_point () const
 Get the interaction point. More...
 
std::pair< FourVector, FourVectorget_potential_at_interaction_point () const
 Get the skyrme and asymmetry potential at the interaction point. More...
 

Static Public Member Functions

static ReactionType photon_reaction_type (const ParticleList &in)
 Determine photon process from incoming particles. More...
 
static bool is_photon_reaction (const ParticleList &in)
 Check if particles can undergo an implemented photon process. More...
 
static ParticleTypePtr outgoing_hadron_type (const ParticleList &in)
 Return ParticleTypePtr of hadron in the out channel, given the incoming particles. More...
 
static ParticleTypePtr outgoing_hadron_type (const ReactionType reaction)
 Return ParticleTypePtr of hadron in the out channel, given the ReactionType. More...
 
static bool is_kinematically_possible (const double s_sqrt, const ParticleList &in)
 Check if CM-energy is sufficient to produce hadron in final state. More...
 

Private Types

enum  MediatorType { MediatorType::SUM, MediatorType::PION, MediatorType::OMEGA }
 Compile-time switch for setting the handling of processes which can happen via different mediating particles. More...
 

Private Member Functions

double diff_cross_section (const double t, const double m_rho, MediatorType mediator=default_mediator_) const
 Calculate the differential cross section of photon process. More...
 
double rho_mass () const
 Find the mass of the participating rho-particle. More...
 
CollisionBranchList photon_cross_sections (MediatorType mediator=default_mediator_)
 Computes the total cross section of the photon process. More...
 
std::pair< double, double > diff_cross_section_single (const double t, const double m_rho)
 For processes which can happen via (pi, a1, rho) and omega exchange, return the differential cross section for the (pi, a1, rho) process in the first argument, for the omega process in the second. More...
 
std::pair< double, double > form_factor_single (const double E_photon)
 For processes which can happen via (pi, a1, rho) and omega exchange, return the form factor for the (pi, a1, rho) process in the first argument, for the omega process in the second. More...
 
double form_factor_pion (const double E_photon) const
 Compute the form factor for a process with a pion as the lightest exchange particle. More...
 
double form_factor_omega (const double E_photon) const
 Compute the form factor for a process with a omega as the lightest exchange particle. More...
 
double diff_cross_section_w_ff (const double t, const double m_rho, const double E_photon)
 Compute the differential cross section with form factors included. More...
 

Private Attributes

CollisionBranchList collision_processes_photons_
 Holds the photon branch. More...
 
const ReactionType reac_
 Photonic process as determined from incoming particles. More...
 
const int number_of_fractional_photons_
 Number of photons created for each hadronic scattering, needed for correct weighting. More...
 
const ParticleTypePtr hadron_out_t_
 ParticleTypePtr to the type of the outgoing hadron. More...
 
const double hadron_out_mass_
 Mass of outgoing hadron. More...
 
double weight_ = 0.0
 Weight of the produced photon. More...
 
double cross_section_photons_ = 0.0
 Total cross section of photonic process. More...
 
const double hadronic_cross_section_
 Total hadronic cross section. More...
 

Static Private Attributes

static constexpr MediatorType default_mediator_ = MediatorType::SUM
 Value used for default exchange particle. See MediatorType. More...
 

Additional Inherited Members

- Protected Member Functions inherited from smash::ScatterAction
double cm_momentum () const
 Get the momentum of the center of mass of the incoming particles in the calculation frame. More...
 
double cm_momentum_squared () const
 Get the squared momentum of the center of mass of the incoming particles in the calculation frame. More...
 
ThreeVector beta_cm () const
 Get the velocity of the center of mass of the scattering particles in the calculation frame. More...
 
double gamma_cm () const
 Get the gamma factor corresponding to a boost to the center of mass frame of the colliding particles. More...
 
void elastic_scattering ()
 Perform an elastic two-body scattering, i.e. just exchange momentum. More...
 
void inelastic_scattering ()
 Perform an inelastic two-body scattering, i.e. new particles are formed. More...
 
void string_excitation ()
 Todo(ryu): document better - it is not really UrQMD-based, isn't it? Perform the UrQMD-based string excitation and decay. More...
 
void format_debug_output (std::ostream &out) const override
 
- Protected Member Functions inherited from smash::Action
FourVector total_momentum () const
 Sum of 4-momenta of incoming particles. More...
 
template<typename Branch >
const Branch * choose_channel (const ProcessBranchList< Branch > &subprocesses, double total_weight)
 Decide for a particular final-state channel via Monte-Carlo and return it as a ProcessBranch. More...
 
virtual std::pair< double, double > sample_masses (double kinetic_energy_cm) const
 Sample final-state masses in general X->2 processes (thus also fixing the absolute c.o.m. More...
 
void sample_2body_phasespace ()
 Sample the full 2-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
virtual void sample_3body_phasespace ()
 Sample the full 3-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
- Protected Attributes inherited from smash::ScatterAction
CollisionBranchList collision_channels_
 List of possible collisions. More...
 
double total_cross_section_
 Total hadronic cross section. More...
 
double partial_cross_section_
 Partial cross-section to the chosen outgoing channel. More...
 
bool isotropic_ = false
 Do this collision isotropically? More...
 
double string_formation_time_ = 1.0
 Time fragments take to be fully formed in hard string excitation. More...
 
- Protected Attributes inherited from smash::Action
ParticleList incoming_particles_
 List with data of incoming particles. More...
 
ParticleList outgoing_particles_
 Initially this stores only the PDG codes of final-state particles. More...
 
const double time_of_execution_
 Time at which the action is supposed to be performed (absolute time in the lab frame in fm/c). More...
 
ProcessType process_type_
 type of process More...
 

Member Enumeration Documentation

◆ ReactionType

Enum for encoding the photon process.

It is uniquely determined by the incoming particles. The naming scheme is : Incoming_1__Incoming_2__Outgoing_hadron. The photon is omitted in the naming.

Enumerator
no_reaction 
pi_z_pi_p_rho_p 
pi_z_pi_m_rho_m 
pi_p_rho_z_pi_p 
pi_m_rho_z_pi_m 
pi_m_rho_p_pi_z 
pi_p_rho_m_pi_z 
pi_z_rho_p_pi_p 
pi_z_rho_m_pi_m 
pi_p_pi_m_rho_z 
pi_z_rho_z_pi_z 

Definition at line 112 of file scatteractionphoton.h.

112  {
113  no_reaction,
114  pi_z_pi_p_rho_p,
115  pi_z_pi_m_rho_m,
116  pi_p_rho_z_pi_p,
117  pi_m_rho_z_pi_m,
118  pi_m_rho_p_pi_z,
119  pi_p_rho_m_pi_z,
120  pi_z_rho_p_pi_p,
121  pi_z_rho_m_pi_m,
122  pi_p_pi_m_rho_z,
123  pi_z_rho_z_pi_z
124  };

◆ MediatorType

Compile-time switch for setting the handling of processes which can happen via different mediating particles.

Relevant only for the processes pi0 + rho => pi + y and pi + rho => pi0 + gamma, which both can happen via exchange of (rho, a1, pi) or omega. If MediatorType::SUM is set, the cross section for both processes is added. If MediatorType::PION/ OMEGA is set, only the respective processes are computed.

Enumerator
SUM 
PION 
OMEGA 

Definition at line 215 of file scatteractionphoton.h.

215 { SUM, PION, OMEGA };

Constructor & Destructor Documentation

◆ ScatterActionPhoton()

smash::ScatterActionPhoton::ScatterActionPhoton ( const ParticleList &  in,
const double  time,
const int  n_frac_photons,
const double  hadronic_cross_section_input 
)

Construct a ScatterActionPhoton object.

Parameters
[in]inParticleList of incoming particles.
[in]timeTime relative to underlying hadronic action.
[in]n_frac_photonsNumber of photons to produce for each hadronic scattering.
[in]hadronic_cross_section_inputCross-section of underlying hadronic cross-section.
Returns
The constructed object.

Definition at line 30 of file scatteractionphoton.cc.

33  : ScatterAction(in[0], in[1], time),
35  number_of_fractional_photons_(n_frac_photons),
38  hadronic_cross_section_(hadronic_cross_section_input) {}

Member Function Documentation

◆ perform_photons()

void smash::ScatterActionPhoton::perform_photons ( const OutputsList &  outputs)

Create the photon final state and write to output.

Parameters
[in]outputsList of all outputs. Does not have to be a specific photon output, the function will take care of this.

Definition at line 93 of file scatteractionphoton.cc.

93  {
94  for (int i = 0; i < number_of_fractional_photons_; i++) {
96  for (const auto &output : outputs) {
97  if (output->is_photon_output()) {
98  // we do not care about the local density
99  output->at_interaction(*this, 0.0);
100  }
101  }
102  }
103 }
Here is the call graph for this function:

◆ generate_final_state()

void smash::ScatterActionPhoton::generate_final_state ( )
overridevirtual

Generate the final-state for the photon scatter process.

Generates only one photon / hadron pair

Reimplemented from smash::ScatterAction.

Definition at line 194 of file scatteractionphoton.cc.

194  {
195  // we have only one reaction per incoming particle pair
196  if (collision_processes_photons_.size() != 1) {
197  logg[LScatterAction].fatal()
198  << "Problem in ScatterActionPhoton::generate_final_state().\n";
199  throw std::runtime_error("");
200  }
201  auto *proc = collision_processes_photons_[0].get();
202 
203  outgoing_particles_ = proc->particle_list();
204  process_type_ = proc->get_type();
205 
206  FourVector middle_point = get_interaction_point();
207 
208  // t is defined to be the momentum exchanged between the rho meson and the
209  // photon in pi + rho -> pi + photon channel. Therefore,
210  // get_t_range needs to be called with m2 being the rho mass instead of the
211  // pion mass. So, particles 1 and 2 are swapped if necessary.
212 
213  if (!incoming_particles_[0].pdgcode().is_pion()) {
214  std::swap(incoming_particles_[0], incoming_particles_[1]);
215  }
216 
217  // 2->2 inelastic scattering
218  // Sample the particle momenta in CM system
219  const double m1 = incoming_particles_[0].effective_mass();
220  const double m2 = incoming_particles_[1].effective_mass();
221 
222  const double &m_out = hadron_out_mass_;
223 
224  const double s = mandelstam_s();
225  const double sqrts = sqrt_s();
226  std::array<double, 2> mandelstam_t = get_t_range(sqrts, m1, m2, m_out, 0.0);
227  const double t1 = mandelstam_t[1];
228  const double t2 = mandelstam_t[0];
229  const double pcm_in = cm_momentum();
230  const double pcm_out = pCM(sqrts, m_out, 0.0);
231 
232  const double t = random::uniform(t1, t2);
233 
234  double costheta = (t - pow_int(m2, 2) +
235  0.5 * (s + pow_int(m2, 2) - pow_int(m1, 2)) *
236  (s - pow_int(m_out, 2)) / s) /
237  (pcm_in * (s - pow_int(m_out, 2)) / sqrts);
238 
239  // on very rare occasions near the kinematic threshold numerical issues give
240  // unphysical angles.
241  if (costheta > 1 || costheta < -1) {
242  logg[LScatterAction].warn()
243  << "Cos(theta)of photon scattering out of physical bounds in "
244  "the following scattering: "
245  << incoming_particles_ << "Clamping to [-1,1].";
246  if (costheta > 1.0)
247  costheta = 1.0;
248  if (costheta < -1.0)
249  costheta = -1.0;
250  }
251  Angles phitheta(random::uniform(0.0, twopi), costheta);
252  outgoing_particles_[0].set_4momentum(hadron_out_mass_,
253  phitheta.threevec() * pcm_out);
254  outgoing_particles_[1].set_4momentum(0.0, -phitheta.threevec() * pcm_out);
255 
256  // Set positions & boost to computational frame.
257  for (ParticleData &new_particle : outgoing_particles_) {
258  new_particle.set_4position(middle_point);
259  new_particle.boost_momentum(-beta_cm());
260  }
261 
262  const double E_Photon = outgoing_particles_[1].momentum()[0];
263 
264  // if rho in final state take already sampled mass (same as m_out). If rho is
265  // incoming take the mass of the incoming particle
266  const double m_rho = rho_mass();
267 
268  // compute the differential cross section with form factor included
269  const double diff_xs = diff_cross_section_w_ff(t, m_rho, E_Photon);
270 
271  // Weighing of the fractional photons
273  weight_ = diff_xs * (t2 - t1) /
275  } else {
276  weight_ = proc->weight() / hadronic_cross_section();
277  }
278  // Photons are not really part of the normal processes, so we have to set a
279  // constant arbitrary number.
280  const auto id_process = ID_PROCESS_PHOTON;
281  Action::check_conservation(id_process);
282 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ get_total_weight()

double smash::ScatterActionPhoton::get_total_weight ( ) const
inlineoverridevirtual

Return the weight of the last created photon.

Returns
The total weight.

Reimplemented from smash::ScatterAction.

Definition at line 64 of file scatteractionphoton.h.

64 { return weight_; }

◆ hadronic_cross_section()

double smash::ScatterActionPhoton::hadronic_cross_section ( ) const
inline

Return the total cross section of the underlying hadronic scattering.

Returns
total cross-section [mb]

Definition at line 71 of file scatteractionphoton.h.

71 { return hadronic_cross_section_; }
Here is the caller graph for this function:

◆ sample_out_hadron_mass()

double smash::ScatterActionPhoton::sample_out_hadron_mass ( const ParticleTypePtr  out_type)

Sample the mass of the outgoing hadron.

Returns the pole mass if particle is stable.

Parameters
[in]out_typeTypePtr of the outgoing hadron.
Returns
Mass of outgoing hadron [GeV]

Definition at line 292 of file scatteractionphoton.cc.

293  {
294  double mass = out_t->mass();
295  const double cms_energy = sqrt_s();
296  if (cms_energy <= out_t->min_mass_kinematic()) {
297  throw InvalidResonanceFormation(
298  "Problem in ScatterActionPhoton::sample_hadron_mass");
299  }
300 
301  if (!out_t->is_stable()) {
302  mass = out_t->sample_resonance_mass(0, cms_energy);
303  }
304 
305  return mass;
306 }
Here is the call graph for this function:

◆ add_dummy_hadronic_process()

void smash::ScatterActionPhoton::add_dummy_hadronic_process ( double  reaction_cross_section)

Adds one hadronic process with a given cross-section.

The intended use is to add the hadronic cross-section from the already performed hadronic action without recomputing it.

Parameters
[in]reaction_cross_sectionTotal cross-section of underlying hadronic process [mb]

Definition at line 284 of file scatteractionphoton.cc.

285  {
286  CollisionBranchPtr dummy_process = make_unique<CollisionBranch>(
287  incoming_particles_[0].type(), incoming_particles_[1].type(),
288  reaction_cross_section, ProcessType::TwoToTwo);
289  add_collision(std::move(dummy_process));
290 }
Here is the call graph for this function:

◆ add_single_process()

void smash::ScatterActionPhoton::add_single_process ( )
inline

Add the photonic process.

Also compute the total cross section as a side effect.

Definition at line 100 of file scatteractionphoton.h.

100  {
101  add_processes<CollisionBranch>(photon_cross_sections(),
104  }
Here is the call graph for this function:

◆ photon_reaction_type()

ScatterActionPhoton::ReactionType smash::ScatterActionPhoton::photon_reaction_type ( const ParticleList &  in)
static

Determine photon process from incoming particles.

If incoming particles are not part of any implemented photonic process, return no_reaction.

Parameters
[in]inParticleList of incoming particles.
Returns
ReactionType enum-member

Definition at line 40 of file scatteractionphoton.cc.

41  {
42  if (in.size() != 2) {
44  }
45 
46  PdgCode a = in[0].pdgcode();
47  PdgCode b = in[1].pdgcode();
48 
49  // swap so that pion is first and there are less cases to be listed
50  if (!a.is_pion()) {
51  std::swap(a, b);
52  }
53 
54  switch (pack(a.code(), b.code())) {
55  case (pack(pdg::pi_p, pdg::pi_z)):
56  case (pack(pdg::pi_z, pdg::pi_p)):
58 
59  case (pack(pdg::pi_m, pdg::pi_z)):
60  case (pack(pdg::pi_z, pdg::pi_m)):
62 
63  case (pack(pdg::pi_p, pdg::rho_z)):
65 
66  case (pack(pdg::pi_m, pdg::rho_z)):
68 
69  case (pack(pdg::pi_m, pdg::rho_p)):
71 
72  case (pack(pdg::pi_p, pdg::rho_m)):
74 
75  case (pack(pdg::pi_z, pdg::rho_p)):
77 
78  case (pack(pdg::pi_z, pdg::rho_m)):
80 
81  case (pack(pdg::pi_p, pdg::pi_m)):
82  case (pack(pdg::pi_m, pdg::pi_p)):
84 
85  case (pack(pdg::pi_z, pdg::rho_z)):
87 
88  default:
90  }
91 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ is_photon_reaction()

static bool smash::ScatterActionPhoton::is_photon_reaction ( const ParticleList &  in)
inlinestatic

Check if particles can undergo an implemented photon process.

This function does not check the involved kinematics.

Parameters
[in]inParticleList of incoming particles.
Returns
bool if photon reaction implemented.

Definition at line 145 of file scatteractionphoton.h.

145  {
147  }
Here is the call graph for this function:

◆ outgoing_hadron_type() [1/2]

ParticleTypePtr smash::ScatterActionPhoton::outgoing_hadron_type ( const ParticleList &  in)
static

Return ParticleTypePtr of hadron in the out channel, given the incoming particles.

This function is overloaded since we need the hadron type in different places.

Parameters
[in]inParticleList of incoming particles.
Returns
ParticeTypePtr to hadron in outgoing channel.

Definition at line 151 of file scatteractionphoton.cc.

152  {
153  auto reac = photon_reaction_type(in);
154  return outgoing_hadron_type(reac);
155 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ outgoing_hadron_type() [2/2]

ParticleTypePtr smash::ScatterActionPhoton::outgoing_hadron_type ( const ReactionType  reaction)
static

Return ParticleTypePtr of hadron in the out channel, given the ReactionType.

This function is overloaded since we need the hadron type in different places.

Parameters
[in]reactionReactionType, determined from incoming particles.
Returns
ParticeTypePtr to hadron in outgoing channel.

Definition at line 105 of file scatteractionphoton.cc.

106  {
107  static const ParticleTypePtr rho_z_particle_ptr =
109  static const ParticleTypePtr rho_p_particle_ptr =
111  static const ParticleTypePtr rho_m_particle_ptr =
113  static const ParticleTypePtr pi_z_particle_ptr =
115  static const ParticleTypePtr pi_p_particle_ptr =
117  static const ParticleTypePtr pi_m_particle_ptr =
119 
120  switch (reaction) {
122  return rho_p_particle_ptr;
123  break;
125  return rho_m_particle_ptr;
126  break;
128  return rho_z_particle_ptr;
129  break;
130 
133  return pi_p_particle_ptr;
134 
137  return pi_m_particle_ptr;
138 
142  return pi_z_particle_ptr;
143  break;
144  default:
145  // default constructor constructs p with invalid index
146  ParticleTypePtr p{};
147  return p;
148  }
149 }
Here is the call graph for this function:

◆ is_kinematically_possible()

bool smash::ScatterActionPhoton::is_kinematically_possible ( const double  s_sqrt,
const ParticleList &  in 
)
static

Check if CM-energy is sufficient to produce hadron in final state.

Parameters
[in]s_sqrtCM-energy [GeV]
[in]inParticleList of incoming hadrons
Returns
true if particles can be produced.

Definition at line 157 of file scatteractionphoton.cc.

158  {
159  auto reac = photon_reaction_type(in);
160  auto hadron = outgoing_hadron_type(in);
161 
162  if (reac == ReactionType::no_reaction)
163  return false;
164 
167  return false;
168  }
169 
170  // C15 has only s-channel. Make sure that CM-energy is high
171  // enough to produce mediating omega meson
172  if ((reac == ReactionType::pi_m_rho_p_pi_z ||
175  if (s_sqrt < omega_mass) {
176  return false;
177  }
178  }
179 
180  // for all other processes: if cm-energy is not high enough to produce final
181  // state particle reject the collision.
182  if (hadron->is_stable() && s_sqrt < hadron->mass()) {
183  return false;
184  // Make sure energy is high enough to not only create final state particle,
185  // but to also assign momentum.
186  } else if (!hadron->is_stable() &&
187  s_sqrt < (hadron->min_mass_spectral() + really_small)) {
188  return false;
189  } else {
190  return true;
191  }
192 }
Here is the call graph for this function:

◆ diff_cross_section()

double smash::ScatterActionPhoton::diff_cross_section ( const double  t,
const double  m_rho,
MediatorType  mediator = default_mediator_ 
) const
private

Calculate the differential cross section of photon process.

Formfactors are not included

Parameters
[in]tMandelstam-t [GeV^2].
[in]m_rhoMass of the incoming or outgoing rho-particle [GeV]
[in]mediatorSwitch for determing which mediating particle to use
Returns
Differential cross section. [mb/ \(GeV^2\)]

Definition at line 417 of file scatteractionphoton.cc.

419  {
420  const double s = mandelstam_s();
421  double diff_xsection = 0.0;
422 
423  CrosssectionsPhoton<ComputationMethod::Analytic> xs_object;
424 
425  switch (reac_) {
427  diff_xsection = xs_object.xs_diff_pi_pi_rho0(s, t, m_rho);
428  break;
429 
432  diff_xsection = xs_object.xs_diff_pi_pi0_rho(s, t, m_rho);
433  break;
434 
437  diff_xsection = xs_object.xs_diff_pi_rho0_pi(s, t, m_rho);
438  break;
439 
442  if (mediator == MediatorType::SUM) {
443  diff_xsection =
444  xs_object.xs_diff_pi_rho_pi0_rho_mediated(s, t, m_rho) +
445  xs_object.xs_diff_pi_rho_pi0_omega_mediated(s, t, m_rho);
446  } else if (mediator == MediatorType::OMEGA) {
447  diff_xsection =
448  xs_object.xs_diff_pi_rho_pi0_omega_mediated(s, t, m_rho);
449  } else if (mediator == MediatorType::PION) {
450  diff_xsection = xs_object.xs_diff_pi_rho_pi0_rho_mediated(s, t, m_rho);
451  }
452  break;
453 
456  if (mediator == MediatorType::SUM) {
457  diff_xsection =
458  xs_object.xs_diff_pi0_rho_pi_rho_mediated(s, t, m_rho) +
459  xs_object.xs_diff_pi0_rho_pi_omega_mediated(s, t, m_rho);
460  } else if (mediator == MediatorType::OMEGA) {
461  diff_xsection =
462  xs_object.xs_diff_pi0_rho_pi_omega_mediated(s, t, m_rho);
463  } else if (mediator == MediatorType::PION) {
464  diff_xsection = xs_object.xs_diff_pi0_rho_pi_rho_mediated(s, t, m_rho);
465  }
466  break;
467 
469  diff_xsection = xs_object.xs_diff_pi0_rho0_pi0(s, t, m_rho);
470  break;
472  // never reached
473  break;
474  }
475  return diff_xsection;
476 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ rho_mass()

double smash::ScatterActionPhoton::rho_mass ( ) const
private

Find the mass of the participating rho-particle.

In case of a rho in the incoming channel it is the mass of the incoming rho, in case of an rho in the outgoing channel it is the mass sampled in the constructor. When an rho acts in addition as a mediator, its mass is the same as the incoming / outgoing rho. This function returns the alrady sampled mass or the mass of the incoming rho, depending on the process.

Returns
mass of participating rho [GeV]

Definition at line 308 of file scatteractionphoton.cc.

308  {
309  assert(reac_ != ReactionType::no_reaction);
310  switch (reac_) {
311  // rho in final state. use already sampled mass
315  return hadron_out_mass_;
316  // rho in initial state, use its mass
324  return (incoming_particles_[0].is_rho())
325  ? incoming_particles_[0].effective_mass()
326  : incoming_particles_[1].effective_mass();
328  default:
329  throw std::runtime_error(
330  "Invalid ReactionType in ScatterActionPhoton::rho_mass()");
331  }
332 }
Here is the caller graph for this function:

◆ photon_cross_sections()

CollisionBranchList smash::ScatterActionPhoton::photon_cross_sections ( MediatorType  mediator = default_mediator_)
private

Computes the total cross section of the photon process.

Parameters
[in]mediatorSwitch for determing which mediating particle to use.
Returns
List of photon reaction branches.

Definition at line 334 of file scatteractionphoton.cc.

335  {
336  CollisionBranchList process_list;
337  CrosssectionsPhoton<ComputationMethod::Analytic> xs_object;
338 
339  static ParticleTypePtr photon_particle = &ParticleType::find(pdg::photon);
340 
341  const double s = mandelstam_s();
342  // the mass of the mediating particle depends on the channel. For an incoming
343  // rho it is the mass of the incoming particle, for an outgoing rho it is the
344  // sampled mass
345  const double m_rho = rho_mass();
346  double xsection = 0.0;
347 
348  switch (reac_) {
350  xsection = xs_object.xs_pi_pi_rho0(s, m_rho);
351  break;
352 
355  xsection = xs_object.xs_pi_pi0_rho(s, m_rho);
356  break;
357 
360  xsection = xs_object.xs_pi_rho0_pi(s, m_rho);
361  break;
362 
365  if (mediator == MediatorType::SUM) {
366  xsection = xs_object.xs_pi_rho_pi0(s, m_rho);
367  break;
368  } else if (mediator == MediatorType::PION) {
369  xsection = xs_object.xs_pi_rho_pi0_rho_mediated(s, m_rho);
370  break;
371  } else if (mediator == MediatorType::OMEGA) {
372  xsection = xs_object.xs_pi_rho_pi0_omega_mediated(s, m_rho);
373  break;
374  } else {
375  throw std::runtime_error("");
376  }
379  if (mediator == MediatorType::SUM) {
380  xsection = xs_object.xs_pi0_rho_pi(s, m_rho);
381  break;
382  } else if (mediator == MediatorType::PION) {
383  xsection = xs_object.xs_pi0_rho_pi_rho_mediated(s, m_rho);
384  break;
385  } else if (mediator == MediatorType::OMEGA) {
386  xsection = xs_object.xs_pi0_rho_pi_omega_mediated(s, m_rho);
387  break;
388  } else {
389  throw std::runtime_error("");
390  }
391 
393  xsection = xs_object.xs_pi0_rho0_pi0(s, m_rho);
394  break;
395 
397  // never reached
398  break;
399  }
400 
401  // Due to numerical reasons it can happen that the calculated cross sections
402  // are negative (approximately -1e-15) if sqrt(s) is close to the threshold
403  // energy. In those cases the cross section is manually set to 0.1 mb, which
404  // is a reasonable value for the processes we are looking at (C14,C15,C16).
405 
406  if (xsection <= 0) {
407  xsection = 0.1;
408  logg[LScatterAction].warn(
409  "Calculated negative cross section.\nParticles ", incoming_particles_,
410  " mass rho particle: ", m_rho, ", sqrt_s: ", std::sqrt(s));
411  }
412  process_list.push_back(make_unique<CollisionBranch>(
413  *hadron_out_t_, *photon_particle, xsection, ProcessType::TwoToTwo));
414  return process_list;
415 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ diff_cross_section_single()

std::pair< double, double > smash::ScatterActionPhoton::diff_cross_section_single ( const double  t,
const double  m_rho 
)
private

For processes which can happen via (pi, a1, rho) and omega exchange, return the differential cross section for the (pi, a1, rho) process in the first argument, for the omega process in the second.

If only one process exists, both values are the same.

Parameters
[in]tMandelstam-t [GeV^2]
[in]m_rhoMass of the incoming or outgoing rho-particle [GeV]
Returns
diff. cross section for (pi,a1,rho) in the first argument, for omega in the second.

Definition at line 574 of file scatteractionphoton.cc.

575  {
576  const double diff_xs_rho = diff_cross_section(t, m_rho, MediatorType::PION);
577  const double diff_xs_omega =
579 
580  return std::pair<double, double>(diff_xs_rho, diff_xs_omega);
581 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ form_factor_single()

std::pair< double, double > smash::ScatterActionPhoton::form_factor_single ( const double  E_photon)
private

For processes which can happen via (pi, a1, rho) and omega exchange, return the form factor for the (pi, a1, rho) process in the first argument, for the omega process in the second.

If only one process exists, both values are the same.

Parameters
[in]E_photonEnergy of the photon [GeV]
Returns
Form factor for (pi,a1,rho) in the first argument, for omega in the second.

Definition at line 568 of file scatteractionphoton.cc.

569  {
570  return std::pair<double, double>(form_factor_pion(E_photon),
571  form_factor_omega(E_photon));
572 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ form_factor_pion()

double smash::ScatterActionPhoton::form_factor_pion ( const double  E_photon) const
private

Compute the form factor for a process with a pion as the lightest exchange particle.

See wiki for details how form factors are handled.

Parameters
[in]E_photonEnergy of photon [GeV]
Returns
form factor

Definition at line 543 of file scatteractionphoton.cc.

543  {
544  const double Lambda = 1.0;
545  const double Lambda2 = Lambda * Lambda;
546 
547  const double t_ff = 34.5096 * std::pow(E_photon, 0.737) -
548  67.557 * std::pow(E_photon, 0.7584) +
549  32.858 * std::pow(E_photon, 0.7806);
550  const double ff = 2 * Lambda2 / (2 * Lambda2 - t_ff);
551 
552  return ff * ff;
553 }
Here is the caller graph for this function:

◆ form_factor_omega()

double smash::ScatterActionPhoton::form_factor_omega ( const double  E_photon) const
private

Compute the form factor for a process with a omega as the lightest exchange particle.

See wiki for details how form factors are handled.

Parameters
[in]E_photonEnergy of photon [GeV]
Returns
form factor

Definition at line 555 of file scatteractionphoton.cc.

555  {
556  const double Lambda = 1.0;
557  const double Lambda2 = Lambda * Lambda;
558 
559  const double t_ff = -61.595 * std::pow(E_photon, 0.9979) +
560  28.592 * std::pow(E_photon, 1.1579) +
561  37.738 * std::pow(E_photon, 0.9317) -
562  5.282 * std::pow(E_photon, 1.3686);
563  const double ff = 2 * Lambda2 / (2 * Lambda2 - t_ff);
564 
565  return ff * ff;
566 }
Here is the caller graph for this function:

◆ diff_cross_section_w_ff()

double smash::ScatterActionPhoton::diff_cross_section_w_ff ( const double  t,
const double  m_rho,
const double  E_photon 
)
private

Compute the differential cross section with form factors included.

Takes care of correct handling of reactions with multiple processes by reading the default_mediator_ member variable.

Parameters
[in]tMandelstam-t [GeV^2]
[in]m_rhoMass of the incoming or outgoing rho-particle [GeV]
[in]E_photonof outgoing photon [GeV]
Returns
diff. cross section [mb / GeV \(^2\)]

The form factor is assumed to be a hadronic dipole form factor which takes the shape: FF = (2*Lambda^2/(2*Lambda^2 - t))^2 with Lambda = 1.0 GeV. t depends on the lightest possible exchange particle in the different channels. This could either be a pion or an omega meson. For the computation the parametrizations given in (Turbide:2006zz [45]) are used.

Definition at line 478 of file scatteractionphoton.cc.

480  {
490  /* C12, C13, C15, C16 need special treatment. These processes have identical
491  incoming and outgoing particles, but diffrent mediating particles and
492  hence different form factors. If both channels are added up
493  (MediatorType::SUM), each contribution is corrected by the corresponding
494  form factor.
495  */
496  switch (reac_) {
502  std::pair<double, double> FF = form_factor_single(E_photon);
503  std::pair<double, double> diff_xs = diff_cross_section_single(t, m_rho);
504  const double xs_ff = pow_int(FF.first, 4) * diff_xs.first +
505  pow_int(FF.second, 4) * diff_xs.second;
506  return xs_ff;
507  } else if (default_mediator_ == MediatorType::PION) {
508  const double FF = form_factor_pion(E_photon);
509  const double diff_xs = diff_cross_section(t, m_rho);
510  return pow_int(FF, 4) * diff_xs;
511  } else if (default_mediator_ == MediatorType::OMEGA) {
512  const double FF = form_factor_omega(E_photon);
513  const double diff_xs = diff_cross_section(t, m_rho);
514  return pow_int(FF, 4) * diff_xs;
515  }
516  break;
517  }
523  const double FF = form_factor_pion(E_photon);
524  const double xs = diff_cross_section(t, m_rho);
525  const double xs_ff = pow_int(FF, 4) * xs;
526  return xs_ff;
527  }
528 
530  const double FF = form_factor_omega(E_photon);
531  const double xs = diff_cross_section(t, m_rho);
532  const double xs_ff = pow_int(FF, 4) * xs;
533  return xs_ff;
534  }
535 
537  default:
538  throw std::runtime_error("");
539  return 0;
540  }
541 }
Here is the call graph for this function:
Here is the caller graph for this function:

Member Data Documentation

◆ collision_processes_photons_

CollisionBranchList smash::ScatterActionPhoton::collision_processes_photons_
private

Holds the photon branch.

As of now, this will always hold only one branch.

Definition at line 188 of file scatteractionphoton.h.

◆ reac_

const ReactionType smash::ScatterActionPhoton::reac_
private

Photonic process as determined from incoming particles.

Definition at line 191 of file scatteractionphoton.h.

◆ number_of_fractional_photons_

const int smash::ScatterActionPhoton::number_of_fractional_photons_
private

Number of photons created for each hadronic scattering, needed for correct weighting.

Note that in generate_final_state() only one photon + hadron is created.

Definition at line 198 of file scatteractionphoton.h.

◆ hadron_out_t_

const ParticleTypePtr smash::ScatterActionPhoton::hadron_out_t_
private

ParticleTypePtr to the type of the outgoing hadron.

Definition at line 201 of file scatteractionphoton.h.

◆ hadron_out_mass_

const double smash::ScatterActionPhoton::hadron_out_mass_
private

Mass of outgoing hadron.

Definition at line 204 of file scatteractionphoton.h.

◆ default_mediator_

constexpr MediatorType smash::ScatterActionPhoton::default_mediator_ = MediatorType::SUM
staticconstexprprivate

Value used for default exchange particle. See MediatorType.

Definition at line 217 of file scatteractionphoton.h.

◆ weight_

double smash::ScatterActionPhoton::weight_ = 0.0
private

Weight of the produced photon.

Definition at line 220 of file scatteractionphoton.h.

◆ cross_section_photons_

double smash::ScatterActionPhoton::cross_section_photons_ = 0.0
private

Total cross section of photonic process.

Definition at line 223 of file scatteractionphoton.h.

◆ hadronic_cross_section_

const double smash::ScatterActionPhoton::hadronic_cross_section_
private

Total hadronic cross section.

Definition at line 226 of file scatteractionphoton.h.


The documentation for this class was generated from the following files:
smash::Action::incoming_particles_
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:304
smash::ScatterActionPhoton::reac_
const ReactionType reac_
Photonic process as determined from incoming particles.
Definition: scatteractionphoton.h:191
smash::ScatterActionPhoton::number_of_fractional_photons_
const int number_of_fractional_photons_
Number of photons created for each hadronic scattering, needed for correct weighting.
Definition: scatteractionphoton.h:198
smash::pdg::Lambda
constexpr int Lambda
Λ.
Definition: pdgcode_constants.h:47
smash::ScatterActionPhoton::ReactionType::pi_p_rho_m_pi_z
smash::ScatterActionPhoton::hadron_out_mass_
const double hadron_out_mass_
Mass of outgoing hadron.
Definition: scatteractionphoton.h:204
smash::omega_mass
constexpr double omega_mass
omega mass in GeV.
Definition: constants.h:76
smash::ScatterActionPhoton::ReactionType::pi_p_pi_m_rho_z
smash::Action::check_conservation
virtual void check_conservation(const uint32_t id_process) const
Check various conservation laws.
Definition: action.cc:246
smash::ScatterAction::cm_momentum
double cm_momentum() const
Get the momentum of the center of mass of the incoming particles in the calculation frame.
Definition: scatteraction.cc:156
smash::ScatterActionPhoton::ReactionType::pi_m_rho_z_pi_m
smash::ScatterAction::ScatterAction
ScatterAction(const ParticleData &in_part1, const ParticleData &in_part2, double time, bool isotropic=false, double string_formation_time=1.0)
Construct a ScatterAction object.
Definition: scatteraction.cc:33
smash::pdg::rho_z
constexpr int rho_z
ρ⁰.
Definition: pdgcode_constants.h:85
smash::ScatterActionPhoton::photon_cross_sections
CollisionBranchList photon_cross_sections(MediatorType mediator=default_mediator_)
Computes the total cross section of the photon process.
Definition: scatteractionphoton.cc:334
smash::pdg::rho_p
constexpr int rho_p
ρ⁺.
Definition: pdgcode_constants.h:83
smash::ScatterActionPhoton::ReactionType::pi_z_pi_p_rho_p
smash::ProcessType::TwoToTwo
2->2 inelastic scattering
smash::ScatterActionPhoton::rho_mass
double rho_mass() const
Find the mass of the participating rho-particle.
Definition: scatteractionphoton.cc:308
smash::ScatterAction::beta_cm
ThreeVector beta_cm() const
Get the velocity of the center of mass of the scattering particles in the calculation frame.
Definition: scatteraction.cc:146
smash::pdg::pi_z
constexpr int pi_z
π⁰.
Definition: pdgcode_constants.h:64
smash::logg
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
smash::pdg::photon
constexpr int photon
Photon.
Definition: pdgcode_constants.h:25
smash::ScatterActionPhoton::MediatorType::OMEGA
smash::ScatterActionPhoton::ReactionType::pi_z_rho_m_pi_m
smash::pCM
T pCM(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:79
smash::really_small
constexpr double really_small
Numerical error tolerance.
Definition: constants.h:37
smash::ParticleType::find
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
Definition: particletype.cc:105
smash::ScatterActionPhoton::photon_reaction_type
static ReactionType photon_reaction_type(const ParticleList &in)
Determine photon process from incoming particles.
Definition: scatteractionphoton.cc:40
smash::get_t_range
std::array< T, 2 > get_t_range(const T sqrts, const T m1, const T m2, const T m3, const T m4)
Get the range of Mandelstam-t values allowed in a particular 2->2 process, see PDG 2014 booklet,...
Definition: kinematics.h:109
smash::ScatterActionPhoton::hadron_out_t_
const ParticleTypePtr hadron_out_t_
ParticleTypePtr to the type of the outgoing hadron.
Definition: scatteractionphoton.h:201
smash::twopi
constexpr double twopi
.
Definition: constants.h:42
smash::ScatterActionPhoton::form_factor_single
std::pair< double, double > form_factor_single(const double E_photon)
For processes which can happen via (pi, a1, rho) and omega exchange, return the form factor for the (...
Definition: scatteractionphoton.cc:568
smash::ScatterActionPhoton::diff_cross_section_w_ff
double diff_cross_section_w_ff(const double t, const double m_rho, const double E_photon)
Compute the differential cross section with form factors included.
Definition: scatteractionphoton.cc:478
smash::Action::process_type_
ProcessType process_type_
type of process
Definition: action.h:321
smash::ScatterActionPhoton::form_factor_pion
double form_factor_pion(const double E_photon) const
Compute the form factor for a process with a pion as the lightest exchange particle.
Definition: scatteractionphoton.cc:543
smash::ScatterActionPhoton::outgoing_hadron_type
static ParticleTypePtr outgoing_hadron_type(const ParticleList &in)
Return ParticleTypePtr of hadron in the out channel, given the incoming particles.
Definition: scatteractionphoton.cc:151
smash::ScatterActionPhoton::ReactionType::pi_m_rho_p_pi_z
smash::ScatterActionPhoton::generate_final_state
void generate_final_state() override
Generate the final-state for the photon scatter process.
Definition: scatteractionphoton.cc:194
smash::LScatterAction
static constexpr int LScatterAction
Definition: bremsstrahlungaction.cc:17
smash::ScatterActionPhoton::weight_
double weight_
Weight of the produced photon.
Definition: scatteractionphoton.h:220
smash::ScatterActionPhoton::hadronic_cross_section
double hadronic_cross_section() const
Return the total cross section of the underlying hadronic scattering.
Definition: scatteractionphoton.h:71
smash::ScatterActionPhoton::diff_cross_section
double diff_cross_section(const double t, const double m_rho, MediatorType mediator=default_mediator_) const
Calculate the differential cross section of photon process.
Definition: scatteractionphoton.cc:417
smash::Action::outgoing_particles_
ParticleList outgoing_particles_
Initially this stores only the PDG codes of final-state particles.
Definition: action.h:312
smash::Action::sqrt_s
double sqrt_s() const
Determine the total energy in the center-of-mass frame [GeV].
Definition: action.h:266
smash::ScatterActionPhoton::ReactionType::pi_z_rho_p_pi_p
smash::pow_int
constexpr T pow_int(const T base, unsigned const exponent)
Efficient template for calculating integer powers using squaring.
Definition: pow.h:23
smash::ScatterActionPhoton::ReactionType::pi_z_pi_m_rho_m
smash::ScatterAction::add_collision
void add_collision(CollisionBranchPtr p)
Add a new collision channel.
Definition: scatteraction.cc:41
smash::ScatterActionPhoton::hadronic_cross_section_
const double hadronic_cross_section_
Total hadronic cross section.
Definition: scatteractionphoton.h:226
smash::ScatterActionPhoton::ReactionType::pi_p_rho_z_pi_p
smash::ScatterActionPhoton::ReactionType::no_reaction
smash::Action::get_interaction_point
FourVector get_interaction_point() const
Get the interaction point.
Definition: action.cc:69
smash::pdg::p
constexpr int p
Proton.
Definition: pdgcode_constants.h:28
smash::ScatterActionPhoton::MediatorType::PION
smash::random::uniform
T uniform(T min, T max)
Definition: random.h:88
smash::ID_PROCESS_PHOTON
constexpr std::uint32_t ID_PROCESS_PHOTON
Process ID for any photon process.
Definition: constants.h:131
smash::ScatterActionPhoton::cross_section_photons_
double cross_section_photons_
Total cross section of photonic process.
Definition: scatteractionphoton.h:223
smash::ScatterActionPhoton::collision_processes_photons_
CollisionBranchList collision_processes_photons_
Holds the photon branch.
Definition: scatteractionphoton.h:188
smash::pdg::rho_m
constexpr int rho_m
ρ⁻.
Definition: pdgcode_constants.h:87
smash::pdg::pi_m
constexpr int pi_m
π⁻.
Definition: pdgcode_constants.h:66
smash::ScatterActionPhoton::form_factor_omega
double form_factor_omega(const double E_photon) const
Compute the form factor for a process with a omega as the lightest exchange particle.
Definition: scatteractionphoton.cc:555
smash::ScatterActionPhoton::MediatorType::SUM
smash::ScatterActionPhoton::sample_out_hadron_mass
double sample_out_hadron_mass(const ParticleTypePtr out_type)
Sample the mass of the outgoing hadron.
Definition: scatteractionphoton.cc:292
smash::ScatterActionPhoton::diff_cross_section_single
std::pair< double, double > diff_cross_section_single(const double t, const double m_rho)
For processes which can happen via (pi, a1, rho) and omega exchange, return the differential cross se...
Definition: scatteractionphoton.cc:574
smash::ScatterActionPhoton::ReactionType::pi_z_rho_z_pi_z
smash::pdg::pi_p
constexpr int pi_p
π⁺.
Definition: pdgcode_constants.h:62
smash::ScatterAction::mandelstam_s
double mandelstam_s() const
Determine the Mandelstam s variable,.
Definition: scatteraction.cc:154
smash::pack
constexpr uint64_t pack(int32_t x, int32_t y)
Pack two int32_t into an uint64_t.
Definition: pdgcode_constants.h:107
smash::ScatterActionPhoton::default_mediator_
static constexpr MediatorType default_mediator_
Value used for default exchange particle. See MediatorType.
Definition: scatteractionphoton.h:217