Version: SMASH-2.0.2
vtkoutput.cc
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2014-2020
4  * SMASH Team
5  *
6  * GNU General Public License (GPLv3 or later)
7  *
8  */
9 
10 #include <fstream>
11 #include <memory>
12 
13 #include "smash/clock.h"
14 #include "smash/config.h"
15 #include "smash/file.h"
17 #include "smash/particles.h"
18 #include "smash/vtkoutput.h"
19 
20 namespace smash {
21 
22 VtkOutput::VtkOutput(const bf::path &path, const std::string &name,
23  const OutputParameters &out_par)
24  : OutputInterface(name),
25  base_path_(std::move(path)),
26  is_thermodynamics_output_(name == "Thermodynamics") {
27  if (out_par.part_extended) {
28  logg[LOutput].warn()
29  << "Creating VTK output: There is no extended VTK format.";
30  }
31 }
32 
34 
59 void VtkOutput::at_eventstart(const Particles &particles,
60  const int event_number, const EventInfo &) {
67 
68  current_event_ = event_number;
70  write(particles);
72  }
73 }
74 
75 void VtkOutput::at_eventend(const Particles & /*particles*/,
76  const int /*event_number*/, const EventInfo &) {}
77 
79  const std::unique_ptr<Clock> &,
80  const DensityParameters &,
81  const EventInfo &) {
83  write(particles);
85  }
86 }
87 
88 void VtkOutput::write(const Particles &particles) {
89  char filename[32];
90  snprintf(filename, sizeof(filename), "pos_ev%05i_tstep%05i.vtk",
92  FilePtr file_{std::fopen((base_path_ / filename).native().c_str(), "w")};
93 
94  /* Legacy VTK file format */
95  std::fprintf(file_.get(), "# vtk DataFile Version 2.0\n");
96  std::fprintf(file_.get(), "Generated from molecular-offset data %s\n",
97  VERSION_MAJOR);
98  std::fprintf(file_.get(), "ASCII\n");
99 
100  /* Unstructured data sets are composed of points, lines, polygons, .. */
101  std::fprintf(file_.get(), "DATASET UNSTRUCTURED_GRID\n");
102  std::fprintf(file_.get(), "POINTS %zu double\n", particles.size());
103  for (const auto &p : particles) {
104  std::fprintf(file_.get(), "%g %g %g\n", p.position().x1(),
105  p.position().x2(), p.position().x3());
106  }
107  std::fprintf(file_.get(), "CELLS %zu %zu\n", particles.size(),
108  particles.size() * 2);
109  for (size_t point_index = 0; point_index < particles.size(); point_index++) {
110  std::fprintf(file_.get(), "1 %zu\n", point_index);
111  }
112  std::fprintf(file_.get(), "CELL_TYPES %zu\n", particles.size());
113  for (size_t point_index = 0; point_index < particles.size(); point_index++) {
114  std::fprintf(file_.get(), "1\n");
115  }
116  std::fprintf(file_.get(), "POINT_DATA %zu\n", particles.size());
117  std::fprintf(file_.get(), "SCALARS pdg_codes int 1\n");
118  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
119  for (const auto &p : particles) {
120  std::fprintf(file_.get(), "%s\n", p.pdgcode().string().c_str());
121  }
122  std::fprintf(file_.get(), "SCALARS is_formed int 1\n");
123  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
124  double current_time = particles.time();
125  for (const auto &p : particles) {
126  std::fprintf(file_.get(), "%s\n",
127  (p.formation_time() > current_time) ? "0" : "1");
128  }
129  std::fprintf(file_.get(), "SCALARS cross_section_scaling_factor double 1\n");
130  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
131  for (const auto &p : particles) {
132  std::fprintf(file_.get(), "%g\n", p.xsec_scaling_factor());
133  }
134  std::fprintf(file_.get(), "SCALARS mass double 1\n");
135  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
136  for (const auto &p : particles) {
137  std::fprintf(file_.get(), "%g\n", p.effective_mass());
138  }
139  std::fprintf(file_.get(), "SCALARS N_coll int 1\n");
140  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
141  for (const auto &p : particles) {
142  std::fprintf(file_.get(), "%i\n", p.get_history().collisions_per_particle);
143  }
144  std::fprintf(file_.get(), "SCALARS particle_ID int 1\n");
145  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
146  for (const auto &p : particles) {
147  std::fprintf(file_.get(), "%i\n", p.id());
148  }
149  std::fprintf(file_.get(), "SCALARS baryon_number int 1\n");
150  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
151  for (const auto &p : particles) {
152  std::fprintf(file_.get(), "%i\n", p.pdgcode().baryon_number());
153  }
154  std::fprintf(file_.get(), "SCALARS strangeness int 1\n");
155  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
156  for (const auto &p : particles) {
157  std::fprintf(file_.get(), "%i\n", p.pdgcode().strangeness());
158  }
159  std::fprintf(file_.get(), "VECTORS momentum double\n");
160  for (const auto &p : particles) {
161  std::fprintf(file_.get(), "%g %g %g\n", p.momentum().x1(),
162  p.momentum().x2(), p.momentum().x3());
163  }
164 }
165 
175 template <typename T>
176 void VtkOutput::write_vtk_header(std::ofstream &file,
177  RectangularLattice<T> &lattice,
178  const std::string &description) {
179  const auto dim = lattice.dimensions();
180  const auto cs = lattice.cell_sizes();
181  const auto orig = lattice.origin();
182  file << "# vtk DataFile Version 2.0\n"
183  << description << "\n"
184  << "ASCII\n"
185  << "DATASET STRUCTURED_POINTS\n"
186  << "DIMENSIONS " << dim[0] << " " << dim[1] << " " << dim[2] << "\n"
187  << "SPACING " << cs[0] << " " << cs[1] << " " << cs[2] << "\n"
188  << "ORIGIN " << orig[0] << " " << orig[1] << " " << orig[2] << "\n"
189  << "POINT_DATA " << lattice.size() << "\n";
190 }
191 
192 template <typename T, typename F>
193 void VtkOutput::write_vtk_scalar(std::ofstream &file,
194  RectangularLattice<T> &lattice,
195  const std::string &varname, F &&get_quantity) {
196  file << "SCALARS " << varname << " double 1\n"
197  << "LOOKUP_TABLE default\n";
198  file << std::setprecision(3);
199  file << std::fixed;
200  const auto dim = lattice.dimensions();
201  lattice.iterate_sublattice({0, 0, 0}, dim, [&](T &node, int ix, int, int) {
202  const double f_from_node = get_quantity(node);
203  file << f_from_node << " ";
204  if (ix == dim[0] - 1) {
205  file << "\n";
206  }
207  });
208 }
209 
210 template <typename T, typename F>
211 void VtkOutput::write_vtk_vector(std::ofstream &file,
212  RectangularLattice<T> &lattice,
213  const std::string &varname, F &&get_quantity) {
214  file << "VECTORS " << varname << " double\n";
215  file << std::setprecision(3);
216  file << std::fixed;
217  const auto dim = lattice.dimensions();
218  lattice.iterate_sublattice({0, 0, 0}, dim, [&](T &node, int, int, int) {
219  const ThreeVector v = get_quantity(node);
220  file << v.x1() << " " << v.x2() << " " << v.x3() << "\n";
221  });
222 }
223 
224 std::string VtkOutput::make_filename(const std::string &descr, int counter) {
225  char suffix[22];
226  snprintf(suffix, sizeof(suffix), "_%05i_tstep%05i.vtk", current_event_,
227  counter);
228  return base_path_.string() + std::string("/") + descr + std::string(suffix);
229 }
230 
232  const DensityType dens_type) {
233  return std::string(to_string(dens_type)) + std::string("_") +
234  std::string(to_string(tq));
235 }
236 
238  const ThermodynamicQuantity tq, const DensityType dens_type,
241  return;
242  }
243  std::ofstream file;
244  const std::string varname = make_varname(tq, dens_type);
245  file.open(make_filename(varname, vtk_density_output_counter_), std::ios::out);
246  write_vtk_header(file, lattice, varname);
247  write_vtk_scalar(file, lattice, varname,
248  [&](DensityOnLattice &node) { return node.density(); });
250 }
251 
269  const ThermodynamicQuantity tq, const DensityType dens_type,
272  return;
273  }
274  std::ofstream file;
275  const std::string varname = make_varname(tq, dens_type);
276 
277  if (tq == ThermodynamicQuantity::Tmn) {
278  file.open(make_filename(varname, vtk_tmn_output_counter_++), std::ios::out);
279  write_vtk_header(file, Tmn_lattice, varname);
280  for (int i = 0; i < 4; i++) {
281  for (int j = i; j < 4; j++) {
282  write_vtk_scalar(file, Tmn_lattice,
283  varname + std::to_string(i) + std::to_string(j),
284  [&](EnergyMomentumTensor &node) {
285  return node[EnergyMomentumTensor::tmn_index(i, j)];
286  });
287  }
288  }
289  } else if (tq == ThermodynamicQuantity::TmnLandau) {
290  file.open(make_filename(varname, vtk_tmn_landau_output_counter_++),
291  std::ios::out);
292  write_vtk_header(file, Tmn_lattice, varname);
293  for (int i = 0; i < 4; i++) {
294  for (int j = i; j < 4; j++) {
295  write_vtk_scalar(file, Tmn_lattice,
296  varname + std::to_string(i) + std::to_string(j),
297  [&](EnergyMomentumTensor &node) {
298  const FourVector u = node.landau_frame_4velocity();
299  const EnergyMomentumTensor Tmn_L = node.boosted(u);
300  return Tmn_L[EnergyMomentumTensor::tmn_index(i, j)];
301  });
302  }
303  }
304  } else {
305  file.open(make_filename(varname, vtk_v_landau_output_counter_++),
306  std::ios::out);
307  write_vtk_header(file, Tmn_lattice, varname);
308  write_vtk_vector(file, Tmn_lattice, varname,
309  [&](EnergyMomentumTensor &node) {
310  const FourVector u = node.landau_frame_4velocity();
311  return -u.velocity();
312  });
313  }
314 }
315 
318  return;
319  }
320  std::ofstream file;
321  file.open(make_filename("fluidization_td", vtk_fluidization_counter_++),
322  std::ios::out);
323  write_vtk_header(file, gct.lattice(), "fluidization_td");
324  write_vtk_scalar(file, gct.lattice(), "e",
325  [&](ThermLatticeNode &node) { return node.e(); });
326  write_vtk_scalar(file, gct.lattice(), "p",
327  [&](ThermLatticeNode &node) { return node.p(); });
328  write_vtk_vector(file, gct.lattice(), "v",
329  [&](ThermLatticeNode &node) { return node.v(); });
330  write_vtk_scalar(file, gct.lattice(), "T",
331  [&](ThermLatticeNode &node) { return node.T(); });
332  write_vtk_scalar(file, gct.lattice(), "mub",
333  [&](ThermLatticeNode &node) { return node.mub(); });
334  write_vtk_scalar(file, gct.lattice(), "mus",
335  [&](ThermLatticeNode &node) { return node.mus(); });
336 }
337 
338 } // namespace smash
smash
Definition: action.h:24
smash::FilePtr
std::unique_ptr< std::FILE, FileDeleter > FilePtr
A RAII type to replace std::FILE *.
Definition: file.h:63
ThermodynamicQuantity::TmnLandau
@ TmnLandau
smash::VtkOutput::vtk_v_landau_output_counter_
int vtk_v_landau_output_counter_
Number of Landau rest frame velocity vtk output in current event.
Definition: vtkoutput.h:185
smash::VtkOutput::thermodynamics_output
void thermodynamics_output(const ThermodynamicQuantity tq, const DensityType dt, RectangularLattice< DensityOnLattice > &lattice) override
Prints the density lattice in VTK format on a grid.
Definition: vtkoutput.cc:237
smash::LOutput
static constexpr int LOutput
Definition: outputinterface.h:24
smash::DensityParameters
A class to pre-calculate and store parameters relevant for density calculation.
Definition: density.h:108
smash::fopen
FilePtr fopen(const bf::path &filename, const std::string &mode)
Open a file with given mode.
Definition: file.cc:14
smash::Particles::size
size_t size() const
Definition: particles.h:87
smash::VtkOutput::make_varname
std::string make_varname(const ThermodynamicQuantity tq, const DensityType dens_type)
Make a variable name given quantity and density type.
Definition: vtkoutput.cc:231
smash::OutputInterface::to_string
const char * to_string(const ThermodynamicQuantity tq)
Convert thermodynamic quantities to strings.
Definition: outputinterface.h:185
smash::ThreeVector::x3
double x3() const
Definition: threevector.h:173
smash::VtkOutput::write_vtk_vector
void write_vtk_vector(std::ofstream &file, RectangularLattice< T > &lat, const std::string &varname, F &&function)
Write a VTK vector.
Definition: vtkoutput.cc:211
smash::EnergyMomentumTensor::tmn_index
static std::int8_t tmn_index(std::int8_t mu, std::int8_t nu)
Access the index of component .
Definition: energymomentumtensor.h:54
smash::EnergyMomentumTensor::boosted
EnergyMomentumTensor boosted(const FourVector &u) const
Boost to a given 4-velocity.
Definition: energymomentumtensor.cc:98
smash::VtkOutput::at_eventstart
void at_eventstart(const Particles &particles, const int event_number, const EventInfo &event) override
Writes the initial particle information list of an event to the VTK output.
Definition: vtkoutput.cc:59
smash::VtkOutput::at_eventend
void at_eventend(const Particles &particles, const int event_number, const EventInfo &event) override
Writes the final particle information list of an event to the VTK output.
Definition: vtkoutput.cc:75
smash::VtkOutput::write_vtk_scalar
void write_vtk_scalar(std::ofstream &file, RectangularLattice< T > &lat, const std::string &varname, F &&function)
Write a VTK scalar.
Definition: vtkoutput.cc:193
smash::VtkOutput::base_path_
const bf::path base_path_
filesystem path for output
Definition: vtkoutput.h:171
smash::EventInfo
Structure to contain custom data for output.
Definition: outputinterface.h:36
smash::logg
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
smash::DensityOnLattice
A class for time-efficient (time-memory trade-off) calculation of density on the lattice.
Definition: density.h:258
clock.h
smash::VtkOutput::vtk_density_output_counter_
int vtk_density_output_counter_
Number of density lattice vtk output in current event.
Definition: vtkoutput.h:179
smash::VtkOutput::is_thermodynamics_output_
bool is_thermodynamics_output_
Is the VTK output a thermodynamics output.
Definition: vtkoutput.h:189
smash::VtkOutput::vtk_tmn_output_counter_
int vtk_tmn_output_counter_
Number of energy-momentum tensor lattice vtk output in current event.
Definition: vtkoutput.h:181
smash::ThermLatticeNode
The ThermLatticeNode class is intended to compute thermodynamical quantities in a cell given a set of...
Definition: grandcan_thermalizer.h:48
smash::VtkOutput::VtkOutput
VtkOutput(const bf::path &path, const std::string &name, const OutputParameters &out_par)
Create a new VTK output.
Definition: vtkoutput.cc:22
smash::VtkOutput::write_vtk_header
void write_vtk_header(std::ofstream &file, RectangularLattice< T > &lat, const std::string &description)
Write the VTK header.
Definition: vtkoutput.cc:176
forwarddeclarations.h
smash::ThreeVector
Definition: threevector.h:31
smash::OutputParameters::part_extended
bool part_extended
Extended format for particles output.
Definition: outputparameters.h:147
smash::OutputParameters
Helper structure for Experiment to hold output options and parameters.
Definition: outputparameters.h:25
smash::VtkOutput::~VtkOutput
~VtkOutput()
Definition: vtkoutput.cc:33
smash::RectangularLattice
A container class to hold all the arrays on the lattice and access them.
Definition: lattice.h:47
smash::VtkOutput::vtk_fluidization_counter_
int vtk_fluidization_counter_
Number of fluidization output.
Definition: vtkoutput.h:187
ThermodynamicQuantity::Tmn
@ Tmn
smash::OutputInterface
Abstraction of generic output.
Definition: outputinterface.h:66
smash::ThreeVector::x1
double x1() const
Definition: threevector.h:165
smash::VtkOutput::vtk_tmn_landau_output_counter_
int vtk_tmn_landau_output_counter_
Number of Landau frame energy-momentum tensor vtk output in current event.
Definition: vtkoutput.h:183
smash::FourVector::velocity
ThreeVector velocity() const
Get the velocity (3-vector divided by zero component).
Definition: fourvector.h:323
vtkoutput.h
smash::VtkOutput::vtk_output_counter_
int vtk_output_counter_
Number of vtk output in current event.
Definition: vtkoutput.h:176
smash::VtkOutput::write
void write(const Particles &particles)
Write the given particles to the output.
Definition: vtkoutput.cc:88
particles.h
smash::EnergyMomentumTensor
Definition: energymomentumtensor.h:29
smash::DensityOnLattice::density
double density(const double norm_factor=1.0)
Compute the net Eckart density on the local lattice.
Definition: density.h:326
smash::Particles
Definition: particles.h:33
smash::DensityType
DensityType
Allows to choose which kind of density to calculate.
Definition: density.h:36
smash::RectangularLattice::cell_sizes
const std::array< double, 3 > & cell_sizes() const
Definition: lattice.h:158
smash::VtkOutput::make_filename
std::string make_filename(const std::string &description, int counter)
Make a file name given a description and a counter.
Definition: vtkoutput.cc:224
smash::RectangularLattice::dimensions
const std::array< int, 3 > & dimensions() const
Definition: lattice.h:155
smash::VtkOutput::current_event_
int current_event_
Event number.
Definition: vtkoutput.h:174
smash::EnergyMomentumTensor::landau_frame_4velocity
FourVector landau_frame_4velocity() const
Find the Landau frame 4-velocity from energy-momentum tensor.
Definition: energymomentumtensor.cc:23
ThermodynamicQuantity
ThermodynamicQuantity
Represents thermodynamic quantities that can be printed out.
Definition: forwarddeclarations.h:186
smash::FourVector
Definition: fourvector.h:33
smash::RectangularLattice::size
std::size_t size() const
Definition: lattice.h:186
smash::GrandCanThermalizer::lattice
RectangularLattice< ThermLatticeNode > & lattice() const
Getter function for the lattice.
Definition: grandcan_thermalizer.h:442
smash::pdg::p
constexpr int p
Proton.
Definition: pdgcode_constants.h:28
file.h
smash::GrandCanThermalizer
The GrandCanThermalizer class implements the following functionality:
Definition: grandcan_thermalizer.h:227
smash::RectangularLattice::origin
const std::array< double, 3 > & origin() const
Definition: lattice.h:161
smash::VtkOutput::at_intermediate_time
void at_intermediate_time(const Particles &particles, const std::unique_ptr< Clock > &clock, const DensityParameters &dens_param, const EventInfo &event) override
Writes out all current particles.
Definition: vtkoutput.cc:78
smash::RectangularLattice::iterate_sublattice
void iterate_sublattice(const std::array< int, 3 > &lower_bounds, const std::array< int, 3 > &upper_bounds, F &&func)
A sub-lattice iterator, which iterates in a 3D-structured manner and calls a function on every cell.
Definition: lattice.h:243
smash::ThreeVector::x2
double x2() const
Definition: threevector.h:169