Version: SMASH-2.2
smash::Action Class Referenceabstract

#include <action.h>

Action is the base class for a generic process that takes a number of incoming particles and transforms them into any number of outgoing particles.

Currently such an action can be either a decay, a two-body collision, a wallcrossing or a thermalization. (see derived classes).

Definition at line 35 of file action.h.

Inheritance diagram for smash::Action:
[legend]
Collaboration diagram for smash::Action:
[legend]

Classes

class  InvalidResonanceFormation
 Thrown for example when ScatterAction is called to perform with a wrong number of final-state particles or when the energy is too low to produce the resonance. More...
 

Public Member Functions

 Action (const ParticleList &in_part, double time)
 Construct an action object with incoming particles and relative time. More...
 
 Action (const ParticleData &in_part, const ParticleData &out_part, double time, ProcessType type)
 Construct an action object with the incoming particles, relative time, and the already known outgoing particles and type of the process. More...
 
 Action (const ParticleList &in_part, const ParticleList &out_part, double absolute_execution_time, ProcessType type)
 Construct an action object with the incoming particles, absolute time, and the already known outgoing particles and type of the process. More...
 
 Action (const Action &)=delete
 Copying is disabled. Use pointers or create a new Action. More...
 
virtual ~Action ()
 Virtual Destructor. More...
 
bool operator< (const Action &rhs) const
 Determine whether one action takes place before another in time. More...
 
virtual double get_total_weight () const =0
 Return the total weight value, which is mainly used for the weight output entry. More...
 
virtual double get_partial_weight () const =0
 Return the specific weight for the chosen outgoing channel, which is mainly used for the partial weight output entry. More...
 
virtual ProcessType get_type () const
 Get the process type. More...
 
template<typename Branch >
void add_process (ProcessBranchPtr< Branch > &p, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add a new subprocess. More...
 
template<typename Branch >
void add_processes (ProcessBranchList< Branch > pv, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add several new subprocesses at once. More...
 
virtual void generate_final_state ()=0
 Generate the final state for this action. More...
 
virtual void perform (Particles *particles, uint32_t id_process)
 Actually perform the action, e.g. More...
 
bool is_valid (const Particles &particles) const
 Check whether the action still applies. More...
 
bool is_pauli_blocked (const std::vector< Particles > &ensembles, const PauliBlocker &p_bl) const
 Check if the action is Pauli-blocked. More...
 
const ParticleList & incoming_particles () const
 Get the list of particles that go into the action. More...
 
void update_incoming (const Particles &particles)
 Update the incoming particles that are stored in this action to the state they have in the global particle list. More...
 
const ParticleList & outgoing_particles () const
 Get the list of particles that resulted from the action. More...
 
double time_of_execution () const
 Get the time at which the action is supposed to be performed. More...
 
virtual void check_conservation (const uint32_t id_process) const
 Check various conservation laws. More...
 
double sqrt_s () const
 Determine the total energy in the center-of-mass frame [GeV]. More...
 
FourVector total_momentum_of_outgoing_particles () const
 Calculate the total kinetic momentum of the outgoing particles. More...
 
FourVector get_interaction_point () const
 Get the interaction point. More...
 
std::pair< FourVector, FourVectorget_potential_at_interaction_point () const
 Get the skyrme and asymmetry potential at the interaction point. More...
 
void set_stochastic_pos_idx ()
 Setter function that stores a random incoming particle index latter used to determine the interaction point. More...
 

Static Public Member Functions

static double lambda_tilde (double a, double b, double c)
 Little helper function that calculates the lambda function (sometimes written with a tilde to better distinguish it) that appears e.g. More...
 
static void sample_manybody_phasespace_impl (double sqrts, const std::vector< double > &m, std::vector< FourVector > &sampled_momenta)
 Implementation of the full n-body phase-space sampling (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 

Protected Member Functions

FourVector total_momentum () const
 Sum of 4-momenta of incoming particles. More...
 
template<typename Branch >
const Branch * choose_channel (const ProcessBranchList< Branch > &subprocesses, double total_weight)
 Decide for a particular final-state channel via Monte-Carlo and return it as a ProcessBranch. More...
 
virtual std::pair< double, double > sample_masses (double kinetic_energy_cm) const
 Sample final-state masses in general X->2 processes (thus also fixing the absolute c.o.m. More...
 
virtual void sample_angles (std::pair< double, double > masses, double kinetic_energy_cm)
 Sample final-state momenta in general X->2 processes (here: using an isotropical angular distribution). More...
 
void sample_2body_phasespace ()
 Sample the full 2-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
virtual void sample_manybody_phasespace ()
 Sample the full n-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
void assign_formation_time_to_outgoing_particles ()
 Assign the formation time to the outgoing particles. More...
 
virtual void format_debug_output (std::ostream &out) const =0
 Writes information about this action to the out stream. More...
 

Protected Attributes

ParticleList incoming_particles_
 List with data of incoming particles. More...
 
ParticleList outgoing_particles_
 Initially this stores only the PDG codes of final-state particles. More...
 
const double time_of_execution_
 Time at which the action is supposed to be performed (absolute time in the lab frame in fm/c). More...
 
ProcessType process_type_
 type of process More...
 
double box_length_ = -1.0
 Box length: needed to determine coordinates of collision correctly in case of collision through the wall. More...
 
int stochastic_position_idx_ = -1
 This stores a randomly-chosen index to an incoming particle. More...
 

Private Member Functions

const ParticleTypetype_of_pout (const ParticleData &p_out) const
 Get the type of a given particle. More...
 
const ParticleTypetype_of_pout (const ParticleTypePtr &p_out) const
 Get the particle type for given pointer to a particle type. More...
 

Friends

std::ostream & operator<< (std::ostream &out, const Action &action)
 Dispatches formatting to the virtual Action::format_debug_output function. More...
 

Constructor & Destructor Documentation

◆ Action() [1/4]

smash::Action::Action ( const ParticleList &  in_part,
double  time 
)
inline

Construct an action object with incoming particles and relative time.

Parameters
[in]in_partlist of incoming particles
[in]timetime at which the action is supposed to take place (relative to the current time of the incoming particles)

Definition at line 44 of file action.h.

45  : incoming_particles_(in_part),
46  time_of_execution_(time + in_part[0].position().x0()) {}
const double time_of_execution_
Time at which the action is supposed to be performed (absolute time in the lab frame in fm/c).
Definition: action.h:354
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:340

◆ Action() [2/4]

smash::Action::Action ( const ParticleData in_part,
const ParticleData out_part,
double  time,
ProcessType  type 
)
inline

Construct an action object with the incoming particles, relative time, and the already known outgoing particles and type of the process.

Parameters
[in]in_partlist of incoming particles
[in]out_partlist of outgoing particles
[in]timetime at which the action is supposed to take place (relative to the current time of the incoming particles)
[in]typetype of the interaction

Definition at line 58 of file action.h.

60  : incoming_particles_({in_part}),
61  outgoing_particles_({out_part}),
62  time_of_execution_(time + in_part.position().x0()),
63  process_type_(type) {}
ParticleList outgoing_particles_
Initially this stores only the PDG codes of final-state particles.
Definition: action.h:348
ProcessType process_type_
type of process
Definition: action.h:357

◆ Action() [3/4]

smash::Action::Action ( const ParticleList &  in_part,
const ParticleList &  out_part,
double  absolute_execution_time,
ProcessType  type 
)
inline

Construct an action object with the incoming particles, absolute time, and the already known outgoing particles and type of the process.

Parameters
[in]in_partlist of incoming particles
[in]out_partlist of outgoing particles
[in]absolute_execution_timeabsolute time at which the action is supposed to take place
[in]typetype of the interaction

Definition at line 75 of file action.h.

77  : incoming_particles_(std::move(in_part)),
78  outgoing_particles_(std::move(out_part)),
79  time_of_execution_(absolute_execution_time),
80  process_type_(type) {}

◆ Action() [4/4]

smash::Action::Action ( const Action )
delete

Copying is disabled. Use pointers or create a new Action.

◆ ~Action()

smash::Action::~Action ( )
virtualdefault

Virtual Destructor.

Destructor.

The declaration of the destructor is necessary to make it virtual.

Member Function Documentation

◆ operator<()

bool smash::Action::operator< ( const Action rhs) const
inline

Determine whether one action takes place before another in time.

Returns
if the first argument action takes place before the other

Definition at line 96 of file action.h.

96  {
97  return time_of_execution_ < rhs.time_of_execution_;
98  }

◆ get_total_weight()

virtual double smash::Action::get_total_weight ( ) const
pure virtual

Return the total weight value, which is mainly used for the weight output entry.

It has different meanings depending of the type of action. It is the total cross section in case of a ScatterAction, the total decay width in case of a DecayAction and the shining weight in case of a DecayActionDilepton.

Prefer to use a more specific function. If there is no weight for the action type, 0 should be returned.

Returns
total cross section, decay width or shining weight

Implemented in smash::ThermalizationAction, smash::BremsstrahlungAction, smash::DecayAction, smash::DecayActionDilepton, smash::HypersurfacecrossingAction, smash::ScatterAction, smash::ScatterActionMulti, smash::ScatterActionPhoton, and smash::WallcrossingAction.

Here is the caller graph for this function:

◆ get_partial_weight()

virtual double smash::Action::get_partial_weight ( ) const
pure virtual

Return the specific weight for the chosen outgoing channel, which is mainly used for the partial weight output entry.

For scatterings it will be the partial cross section, for decays (including dilepton decays) the partial decay width.

If there is no weight for the action type, 0 should be returned.

Returns
specific weight for the chosen output channel.

Implemented in smash::ThermalizationAction, smash::DecayAction, smash::HypersurfacecrossingAction, smash::ScatterAction, smash::ScatterActionMulti, and smash::WallcrossingAction.

Here is the caller graph for this function:

◆ get_type()

virtual ProcessType smash::Action::get_type ( ) const
inlinevirtual

Get the process type.

Returns
type of the process

Definition at line 131 of file action.h.

131 { return process_type_; }
Here is the caller graph for this function:

◆ add_process()

template<typename Branch >
void smash::Action::add_process ( ProcessBranchPtr< Branch > &  p,
ProcessBranchList< Branch > &  subprocesses,
double &  total_weight 
)
inline

Add a new subprocess.

Parameters
[in]pprocess to be added
[out]subprocessesprocesses, where p is added to
[out]total_weightsummed weights of all the subprocesses

Definition at line 141 of file action.h.

143  {
144  if (p->weight() > 0) {
145  total_weight += p->weight();
146  subprocesses.emplace_back(std::move(p));
147  }
148  }
constexpr int p
Proton.

◆ add_processes()

template<typename Branch >
void smash::Action::add_processes ( ProcessBranchList< Branch >  pv,
ProcessBranchList< Branch > &  subprocesses,
double &  total_weight 
)
inline

Add several new subprocesses at once.

Parameters
[in]pvprocesses list to be added
[out]subprocessesprocesses, where pv are added to
[out]total_weightsummed weights of all the subprocesses

Definition at line 158 of file action.h.

160  {
161  subprocesses.reserve(subprocesses.size() + pv.size());
162  for (auto &proc : pv) {
163  if (proc->weight() > 0) {
164  total_weight += proc->weight();
165  subprocesses.emplace_back(std::move(proc));
166  }
167  }
168  }

◆ generate_final_state()

virtual void smash::Action::generate_final_state ( )
pure virtual

Generate the final state for this action.

This function selects a subprocess by Monte-Carlo decision and sets up the final-state particles in phase space.

Implemented in smash::ThermalizationAction, smash::BremsstrahlungAction, smash::DecayAction, smash::HypersurfacecrossingAction, smash::ScatterAction, smash::ScatterActionMulti, smash::ScatterActionPhoton, and smash::WallcrossingAction.

◆ perform()

void smash::Action::perform ( Particles particles,
uint32_t  id_process 
)
virtual

Actually perform the action, e.g.

carry out a decay or scattering by updating the particle list.

This function removes the initial-state particles from the particle list and then inserts the final-state particles. It does not do any sanity checks, but assumes that is_valid has been called to determine if the action is still valid.

Parameters
[in]id_processunique id of the performed process
[out]particlesparticle list that is updated

Note that you are required to increase id_process before the next call, such that you get unique numbers.

Definition at line 127 of file action.cc.

127  {
128  assert(id_process != 0);
129 
130  for (ParticleData &p : outgoing_particles_) {
131  // store the history info
133  p.set_history(p.get_history().collisions_per_particle + 1, id_process,
135  }
136  }
137 
138  /* For elastic collisions and box wall crossings it is not necessary to remove
139  * particles from the list and insert new ones, it is enough to update their
140  * properties. */
141  particles->update(incoming_particles_, outgoing_particles_,
144 
145  logg[LAction].debug("Particle map now has ", particles->size(), " elements.");
146 
147  /* Check the conservation laws if the modifications of the total kinetic
148  * energy of the outgoing particles by the mean field potentials are not
149  * taken into account. */
150  if (UB_lat_pointer == nullptr && UI3_lat_pointer == nullptr) {
151  check_conservation(id_process);
152  }
153 }
virtual void check_conservation(const uint32_t id_process) const
Check various conservation laws.
Definition: action.cc:472
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
static constexpr int LAction
Definition: action.h:25
@ Wall
box wall crossing
@ Elastic
elastic scattering: particles remain the same, only momenta change
RectangularLattice< FourVector > * UB_lat_pointer
Pointer to the skyrme potential on the lattice.
RectangularLattice< FourVector > * UI3_lat_pointer
Pointer to the symmmetry potential on the lattice.
Here is the call graph for this function:

◆ is_valid()

bool smash::Action::is_valid ( const Particles particles) const

Check whether the action still applies.

It can happen that a different action removed the incoming_particles from the set of existing particles in the experiment, or that the particle has scattered elastically in the meantime. In this case the Action doesn't apply anymore and should be discarded.

Parameters
[in]particlescurrent particle list
Returns
true, if action still applies; false otherwise

Definition at line 28 of file action.cc.

28  {
29  return std::all_of(
31  [&particles](const ParticleData &p) { return particles.is_valid(p); });
32 }
bool all_of(Container &&c, UnaryPredicate &&p)
Convenience wrapper for std::all_of that operates on a complete container.
Definition: algorithms.h:80
Here is the call graph for this function:

◆ is_pauli_blocked()

bool smash::Action::is_pauli_blocked ( const std::vector< Particles > &  ensembles,
const PauliBlocker p_bl 
) const

Check if the action is Pauli-blocked.

If there are baryons in the final state then blocking probability is \( 1 - \Pi (1-f_i) \), where the product is taken by all fermions in the final state and \( f_i \) denotes the phase-space density at the position of i-th final-state fermion.

Parameters
[in]ensemblescurrent particle list, all ensembles
[in]p_blPauliBlocker that stores the configurations concerning Pauli-blocking.
Returns
true, if the action is Pauli-blocked, false otherwise

Definition at line 34 of file action.cc.

35  {
36  // Wall-crossing actions should never be blocked: currently
37  // if the action is blocked, a particle continues to propagate in a straight
38  // line. This would simply bring it out of the box.
40  return false;
41  }
42  for (const auto &p : outgoing_particles_) {
43  if (p.is_baryon()) {
44  const auto f =
45  p_bl.phasespace_dens(p.position().threevec(), p.momentum().threevec(),
46  ensembles, p.pdgcode(), incoming_particles_);
47  if (f > random::uniform(0., 1.)) {
48  logg[LPauliBlocking].debug("Action ", *this,
49  " is pauli-blocked with f = ", f);
50  return true;
51  }
52  }
53  }
54  return false;
55 }
T uniform(T min, T max)
Definition: random.h:88
static constexpr int LPauliBlocking
Definition: action.cc:26
Here is the call graph for this function:

◆ incoming_particles()

const ParticleList & smash::Action::incoming_particles ( ) const

Get the list of particles that go into the action.

Returns
a list of incoming particles

Definition at line 57 of file action.cc.

57  {
58  return incoming_particles_;
59 }
Here is the caller graph for this function:

◆ update_incoming()

void smash::Action::update_incoming ( const Particles particles)

Update the incoming particles that are stored in this action to the state they have in the global particle list.

Parameters
[in]particlescurrent particle list

Definition at line 61 of file action.cc.

61  {
62  for (auto &p : incoming_particles_) {
63  p = particles.lookup(p);
64  }
65 }
Here is the call graph for this function:

◆ outgoing_particles()

const ParticleList& smash::Action::outgoing_particles ( ) const
inline

Get the list of particles that resulted from the action.

Returns
list of outgoing particles

Definition at line 245 of file action.h.

245 { return outgoing_particles_; }
Here is the caller graph for this function:

◆ time_of_execution()

double smash::Action::time_of_execution ( ) const
inline

Get the time at which the action is supposed to be performed.

Returns
absolute time in the calculation frame in fm/c

Definition at line 252 of file action.h.

252 { return time_of_execution_; }

◆ check_conservation()

void smash::Action::check_conservation ( const uint32_t  id_process) const
virtual

Check various conservation laws.

Parameters
[in]id_processprocess id only used for debugging output

Reimplemented in smash::HypersurfacecrossingAction.

Definition at line 472 of file action.cc.

472  {
473  QuantumNumbers before(incoming_particles_);
474  QuantumNumbers after(outgoing_particles_);
475  if (before != after) {
476  std::stringstream particle_names;
477  for (const auto &p : incoming_particles_) {
478  particle_names << p.type().name();
479  }
480  particle_names << " vs. ";
481  for (const auto &p : outgoing_particles_) {
482  particle_names << p.type().name();
483  }
484  particle_names << "\n";
485  std::string err_msg = before.report_deviations(after);
486  /* Pythia does not conserve energy and momentum at high energy, so we just
487  * print the warning and continue. */
490  logg[LAction].warn() << "Conservation law violations due to Pyhtia\n"
491  << particle_names.str() << err_msg;
492  return;
493  }
494  /* We allow decay of particles stable under the strong interaction to decay
495  * at the end, so just warn about such a "weak" process violating
496  * conservation laws */
498  incoming_particles_[0].type().is_stable()) {
499  logg[LAction].warn()
500  << "Conservation law violations of strong interaction in weak or "
501  "e.m. decay\n"
502  << particle_names.str() << err_msg;
503  return;
504  }
505  logg[LAction].error() << "Conservation law violations detected\n"
506  << particle_names.str() << err_msg;
507  if (id_process == ID_PROCESS_PHOTON) {
508  throw std::runtime_error("Conservation laws violated in photon process");
509  } else {
510  throw std::runtime_error("Conservation laws violated in process " +
511  std::to_string(id_process));
512  }
513  }
514 }
constexpr std::uint32_t ID_PROCESS_PHOTON
Process ID for any photon process.
Definition: constants.h:124
@ Decay
resonance decay
@ StringHard
hard string process involving 2->2 QCD process by PYTHIA.
bool is_string_soft_process(ProcessType p)
Check if a given process type is a soft string excitation.
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sqrt_s()

double smash::Action::sqrt_s ( ) const
inline

Determine the total energy in the center-of-mass frame [GeV].

Returns
\( \sqrt{s}\) of incoming particles

Definition at line 266 of file action.h.

266 { return total_momentum().abs(); }
FourVector total_momentum() const
Sum of 4-momenta of incoming particles.
Definition: action.h:374
double abs() const
calculate the lorentz invariant absolute value
Definition: fourvector.h:459
Here is the call graph for this function:
Here is the caller graph for this function:

◆ total_momentum_of_outgoing_particles()

FourVector smash::Action::total_momentum_of_outgoing_particles ( ) const

Calculate the total kinetic momentum of the outgoing particles.

Use this to determine the momemtum and boost of the outgoing particles by calcluating the total momentum of the incoming particles and correcting it for the effect of potentials. This function is used when the species of the outgoing particles are already determined.

Returns
total kinetic momentum of the outgoing particles [GeV]

Definition at line 155 of file action.cc.

155  {
156  const auto potentials = get_potential_at_interaction_point();
157  /* scale_B returns the difference of the total force scales of the skyrme
158  * potential between the initial and final states. */
159  double scale_B = 0.0;
160  /* scale_I3 returns the difference of the total force scales of the symmetry
161  * potential between the initial and final states. */
162  double scale_I3 = 0.0;
163  for (const auto &p_in : incoming_particles_) {
164  // Get the force scale of the incoming particle.
165  const auto scale =
166  ((pot_pointer != nullptr) ? pot_pointer->force_scale(p_in.type())
167  : std::make_pair(0.0, 0));
168  scale_B += scale.first;
169  scale_I3 += scale.second * p_in.type().isospin3_rel();
170  }
171  for (const auto &p_out : outgoing_particles_) {
172  // Get the force scale of the outgoing particle.
173  const auto scale = ((pot_pointer != nullptr)
175  : std::make_pair(0.0, 0));
176  scale_B -= scale.first;
177  scale_I3 -= scale.second * type_of_pout(p_out).isospin3_rel();
178  }
179  /* Rescale to get the potential difference between the
180  * initial and final state, and thus get the total momentum
181  * of the outgoing particles*/
182  return total_momentum() + potentials.first * scale_B +
183  potentials.second * scale_I3;
184 }
std::pair< FourVector, FourVector > get_potential_at_interaction_point() const
Get the skyrme and asymmetry potential at the interaction point.
Definition: action.cc:111
const ParticleType & type_of_pout(const ParticleData &p_out) const
Get the type of a given particle.
Definition: action.h:494
double isospin3_rel() const
Definition: particletype.h:179
static std::pair< double, int > force_scale(const ParticleType &data)
Evaluates the scaling factor of the forces acting on the particles.
Definition: potentials.cc:318
Potentials * pot_pointer
Pointer to a Potential class.
Here is the call graph for this function:
Here is the caller graph for this function:

◆ get_interaction_point()

FourVector smash::Action::get_interaction_point ( ) const

Get the interaction point.

Returns
four vector of interaction point

Definition at line 67 of file action.cc.

67  {
68  // Estimate for the interaction point in the calculational frame
69  ThreeVector interaction_point = ThreeVector(0., 0., 0.);
70  std::vector<ThreeVector> propagated_positions;
71  for (const auto &part : incoming_particles_) {
72  ThreeVector propagated_position =
73  part.position().threevec() +
74  part.velocity() * (time_of_execution_ - part.position().x0());
75  propagated_positions.push_back(propagated_position);
76  interaction_point += propagated_position;
77  }
78  interaction_point /= incoming_particles_.size();
79  /*
80  * In case of periodic boundaries interaction point is not necessarily
81  * (x1 + x2)/2. Consider only one dimension, e.g. x, the rest are analogous.
82  * Instead of x, there can be x + k * L, where k is any integer and L
83  * is period.Interaction point is either. Therefore, interaction point is
84  * (x1 + k * L + x2 + m * L) / 2 = (x1 + x2) / 2 + n * L / 2. We need
85  * this interaction point to be with [0, L], so n can be {-1, 0, 1}.
86  * Which n to choose? Our guiding principle is that n should be such that
87  * interaction point is closest to interacting particles.
88  */
89  if (box_length_ > 0 && stochastic_position_idx_ < 0) {
90  assert(incoming_particles_.size() == 2);
91  const ThreeVector r = propagated_positions[0] - propagated_positions[1];
92  for (int i = 0; i < 3; i++) {
93  const double d = std::abs(r[i]);
94  if (d > 0.5 * box_length_) {
95  if (interaction_point[i] >= 0.5 * box_length_) {
96  interaction_point[i] -= 0.5 * box_length_;
97  } else {
98  interaction_point[i] += 0.5 * box_length_;
99  }
100  }
101  }
102  }
103  /* In case of scatterings via the stochastic criterion, use postion of random
104  * incoming particle to prevent density hotspots in grid cell centers. */
105  if (stochastic_position_idx_ >= 0) {
107  }
108  return FourVector(time_of_execution_, interaction_point);
109 }
int stochastic_position_idx_
This stores a randomly-chosen index to an incoming particle.
Definition: action.h:371
double box_length_
Box length: needed to determine coordinates of collision correctly in case of collision through the w...
Definition: action.h:364
const PdgCode d(PdgCode::from_decimal(1000010020))
Deuteron.
Here is the call graph for this function:
Here is the caller graph for this function:

◆ get_potential_at_interaction_point()

std::pair< FourVector, FourVector > smash::Action::get_potential_at_interaction_point ( ) const

Get the skyrme and asymmetry potential at the interaction point.

Returns
skyrme and asymmetry potential [GeV]

Definition at line 111 of file action.cc.

112  {
113  const ThreeVector r = get_interaction_point().threevec();
114  FourVector UB = FourVector();
115  FourVector UI3 = FourVector();
116  /* Check:
117  * Lattice is turned on. */
118  if (UB_lat_pointer != nullptr) {
119  UB_lat_pointer->value_at(r, UB);
120  }
121  if (UI3_lat_pointer != nullptr) {
122  UI3_lat_pointer->value_at(r, UI3);
123  }
124  return std::make_pair(UB, UI3);
125 }
FourVector get_interaction_point() const
Get the interaction point.
Definition: action.cc:67
ThreeVector threevec() const
Definition: fourvector.h:324
Here is the call graph for this function:
Here is the caller graph for this function:

◆ set_stochastic_pos_idx()

void smash::Action::set_stochastic_pos_idx ( )
inline

Setter function that stores a random incoming particle index latter used to determine the interaction point.

Definition at line 298 of file action.h.

298  {
299  const int max_inc_idx = incoming_particles_.size() - 1;
301  }
T uniform_int(T min, T max)
Definition: random.h:100
Here is the call graph for this function:

◆ lambda_tilde()

static double smash::Action::lambda_tilde ( double  a,
double  b,
double  c 
)
inlinestatic

Little helper function that calculates the lambda function (sometimes written with a tilde to better distinguish it) that appears e.g.

in the relative velocity or 3-to-2 probability calculation, where it is used with a=s, b=m1^2 and c=m2^2. Defintion found e.g. in Seifert:2017oyb [46], eq. (5).

Definition at line 310 of file action.h.

310  {
311  const double res = (a - b - c) * (a - b - c) - 4. * b * c;
312  if (res < 0.0) {
313  // floating point precision problem
314  return 0.0;
315  }
316  return res;
317  }
Here is the caller graph for this function:

◆ sample_manybody_phasespace_impl()

void smash::Action::sample_manybody_phasespace_impl ( double  sqrts,
const std::vector< double > &  m,
std::vector< FourVector > &  sampled_momenta 
)
static

Implementation of the full n-body phase-space sampling (masses, momenta, angles) in the center-of-mass frame for the final state particles.

Function is static for convenient testing.

Using the M-method from CERN-68-15 report, paragraph 9.6 1) Generate invariant masses M12, M123, M1234, etc from distribution dM12 x dM123 x dM1234 x ... This is not trivial because of the integration limits. Here the idea is to change variables to T12 = M12 - (m1 + m2), T123 = M123 - (m1 + m2 + m3), etc. Then we need to generate uniform T such that 0 <= T12 <= T123 <= T1234 <= ... <= sqrts - sum (m_i). For the latter there is a trick: generate values uniformly in [0, sqrts - sum (m_i)] and then sort the values. 2) accept or reject this combination of invariant masses with weight proportional to R2(sqrt, M_{n-1}, m_n) x R2(M_{n-1}, M_{n-2}, m_{n-1}) x ... x R2(M2, m1, m2) x (prod M_i). Maximum weight is estmated heuristically, here I'm using an idea by Scott Pratt that maximum is close to T12 = T123 = T1234 = ... = (sqrts - sum (m_i)) / (n - 1)

Definition at line 311 of file action.cc.

313  {
330  const size_t n = m.size();
331  assert(n > 1);
332  sampled_momenta.resize(n);
333 
334  // Arrange a convenient vector of m1, m1 + m2, m1 + m2 + m3, ...
335  std::vector<double> msum(n);
336  msum[0] = m[0];
337  for (size_t i = 1; i < n; i++) {
338  msum[i] = msum[i - 1] + m[i];
339  }
340  const double msum_all = msum[n - 1];
341  int rejection_counter = -1;
342  if (sqrts <= msum_all) {
343  logg[LAction].error() << "sample_manybody_phasespace_impl: "
344  << "Can't sample when sqrts = " << sqrts
345  << " < msum = " << msum_all;
346  }
347 
348  double w, r01;
349  std::vector<double> Minv(n);
350 
351  double weight_sqr_max = 1;
352  const double Ekin_share = (sqrts - msum_all) / (n - 1);
353  for (size_t i = 1; i < n; i++) {
354  // This maximum estimate idea is due Scott Pratt: maximum should be
355  // roughly at equal kinetic energies
356  weight_sqr_max *= pCM_sqr(i * Ekin_share + msum[i],
357  (i - 1) * Ekin_share + msum[i - 1], m[i]);
358  }
359  // Maximum estimate is rough and can be wrong. We multiply it by additional
360  // factor to be on the safer side.
361  const double safety_factor = 1.1 + (n - 2) * 0.2;
362  weight_sqr_max *= (safety_factor * safety_factor);
363  bool first_warning = true;
364 
365  do {
366  // Generate invariant masses of 1, 12, 123, 1243, etc.
367  // Minv = {m1, M12, M123, ..., M123n-1, sqrts}
368  Minv[0] = 0.0;
369  Minv[n - 1] = sqrts - msum_all;
370  for (size_t i = 1; i < n - 1; i++) {
371  Minv[i] = random::uniform(0.0, sqrts - msum_all);
372  }
373  std::sort(Minv.begin(), Minv.end());
374  for (size_t i = 0; i < n; i++) {
375  Minv[i] += msum[i];
376  }
377 
378  double weight_sqr = 1;
379  for (size_t i = 1; i < n; i++) {
380  weight_sqr *= pCM_sqr(Minv[i], Minv[i - 1], m[i]);
381  }
382 
383  rejection_counter++;
384  r01 = random::canonical();
385  w = weight_sqr / weight_sqr_max;
386  if (w > 1.0) {
387  logg[LAction].warn()
388  << "sample_manybody_phasespace_impl: alarm, weight > 1, w^2 = " << w
389  << ". Increase safety factor." << std::endl;
390  }
391  if (rejection_counter > 20 && first_warning) {
392  logg[LAction].warn() << "sample_manybody_phasespace_impl: "
393  << "likely hanging, way too many rejections,"
394  << " n = " << n << ", sqrts = " << sqrts
395  << ", msum = " << msum_all;
396  first_warning = false;
397  }
398  } while (w < r01 * r01);
399 
400  // Boost particles to the right frame
401  std::vector<ThreeVector> beta(n);
402  for (size_t i = n - 1; i > 0; i--) {
403  const double pcm = pCM(Minv[i], Minv[i - 1], m[i]);
404  Angles phitheta;
405  phitheta.distribute_isotropically();
406  const ThreeVector isotropic_unitvector = phitheta.threevec();
407  sampled_momenta[i] = FourVector(std::sqrt(m[i] * m[i] + pcm * pcm),
408  pcm * isotropic_unitvector);
409  if (i >= 2) {
410  beta[i - 2] = pcm * isotropic_unitvector /
411  std::sqrt(pcm * pcm + Minv[i - 1] * Minv[i - 1]);
412  }
413  if (i == 1) {
414  sampled_momenta[0] = FourVector(std::sqrt(m[0] * m[0] + pcm * pcm),
415  -pcm * isotropic_unitvector);
416  }
417  }
418 
419  for (size_t i = 0; i < n - 2; i++) {
420  // After each boost except the last one the sum of 3-momenta should be 0
421  FourVector ptot = FourVector(0.0, 0.0, 0.0, 0.0);
422  for (size_t j = 0; j <= i + 1; j++) {
423  ptot += sampled_momenta[j];
424  }
425  logg[LAction].debug() << "Total momentum of 0.." << i + 1 << " = "
426  << ptot.threevec() << " and should be (0, 0, 0). "
427  << std::endl;
428 
429  // Boost the first i+1 particles to the next CM frame
430  for (size_t j = 0; j <= i + 1; j++) {
431  sampled_momenta[j] = sampled_momenta[j].lorentz_boost(beta[i]);
432  }
433  }
434 
435  FourVector ptot_all = FourVector(0.0, 0.0, 0.0, 0.0);
436  for (size_t j = 0; j < n; j++) {
437  ptot_all += sampled_momenta[j];
438  }
439  logg[LAction].debug() << "Total 4-momentum = " << ptot_all << ", should be ("
440  << sqrts << ", 0, 0, 0)" << std::endl;
441 }
constexpr int n
Neutron.
T beta(T a, T b)
Draws a random number from a beta-distribution, where probability density of is .
Definition: random.h:329
T canonical()
Definition: random.h:113
T pCM(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:79
T pCM_sqr(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:91
Here is the call graph for this function:
Here is the caller graph for this function:

◆ total_momentum()

FourVector smash::Action::total_momentum ( ) const
inlineprotected

Sum of 4-momenta of incoming particles.

Definition at line 374 of file action.h.

374  {
375  FourVector mom(0.0, 0.0, 0.0, 0.0);
376  for (const auto &p : incoming_particles_) {
377  mom += p.momentum();
378  }
379  return mom;
380  }
Here is the caller graph for this function:

◆ choose_channel()

template<typename Branch >
const Branch* smash::Action::choose_channel ( const ProcessBranchList< Branch > &  subprocesses,
double  total_weight 
)
inlineprotected

Decide for a particular final-state channel via Monte-Carlo and return it as a ProcessBranch.

Template Parameters
BranchType of processbranch
Parameters
[in]subprocesseslist of possible processes
[in]total_weightsummed weight of all processes
Returns
ProcessBranch that is sampled

Definition at line 392 of file action.h.

393  {
394  double random_weight = random::uniform(0., total_weight);
395  double weight_sum = 0.;
396  /* Loop through all subprocesses and select one by Monte Carlo, based on
397  * their weights. */
398  for (const auto &proc : subprocesses) {
399  weight_sum += proc->weight();
400  if (random_weight <= weight_sum) {
401  /* Return the full process information. */
402  return proc.get();
403  }
404  }
405  /* Should never get here. */
407  "Problem in choose_channel: ", subprocesses.size(), " ",
408  weight_sum, " ", total_weight, " ",
409  // random_weight, "\n", *this);
410  random_weight, "\n");
411  std::abort();
412  }
#define SMASH_SOURCE_LOCATION
Hackery that is required to output the location in the source code where the log statement occurs.
Definition: logging.h:243
Here is the call graph for this function:

◆ sample_masses()

std::pair< double, double > smash::Action::sample_masses ( double  kinetic_energy_cm) const
protectedvirtual

Sample final-state masses in general X->2 processes (thus also fixing the absolute c.o.m.

momentum).

Parameters
[in]kinetic_energy_cmtotal kinetic energy of the outgoing particles in their center of mass frame [GeV]
Exceptions
InvalidResonanceFormation
Returns
masses of final state particles

Reimplemented in smash::DecayAction.

Definition at line 248 of file action.cc.

249  {
250  const ParticleType &t_a = outgoing_particles_[0].type();
251  const ParticleType &t_b = outgoing_particles_[1].type();
252  // start with pole masses
253  std::pair<double, double> masses = {t_a.mass(), t_b.mass()};
254 
255  if (kinetic_energy_cm < t_a.min_mass_kinematic() + t_b.min_mass_kinematic()) {
256  const std::string reaction = incoming_particles_[0].type().name() +
257  incoming_particles_[1].type().name() + "→" +
258  t_a.name() + t_b.name();
259  throw InvalidResonanceFormation(
260  reaction + ": not enough energy, " + std::to_string(kinetic_energy_cm) +
261  " < " + std::to_string(t_a.min_mass_kinematic()) + " + " +
262  std::to_string(t_b.min_mass_kinematic()));
263  }
264 
265  /* If one of the particles is a resonance, sample its mass. */
266  if (!t_a.is_stable() && t_b.is_stable()) {
267  masses.first = t_a.sample_resonance_mass(t_b.mass(), kinetic_energy_cm);
268  } else if (!t_b.is_stable() && t_a.is_stable()) {
269  masses.second = t_b.sample_resonance_mass(t_a.mass(), kinetic_energy_cm);
270  } else if (!t_a.is_stable() && !t_b.is_stable()) {
271  // two resonances in final state
272  masses = t_a.sample_resonance_masses(t_b, kinetic_energy_cm);
273  }
274  return masses;
275 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sample_angles()

void smash::Action::sample_angles ( std::pair< double, double >  masses,
double  kinetic_energy_cm 
)
protectedvirtual

Sample final-state momenta in general X->2 processes (here: using an isotropical angular distribution).

Parameters
[in]kinetic_energy_cmtotal kinetic energy of the outgoing particles in their center of mass frame [GeV]
[in]massesmasses of each of the final state particles

Reimplemented in smash::ScatterAction.

Definition at line 277 of file action.cc.

278  {
279  ParticleData *p_a = &outgoing_particles_[0];
280  ParticleData *p_b = &outgoing_particles_[1];
281 
282  const double pcm = pCM(kinetic_energy_cm, masses.first, masses.second);
283  if (!(pcm > 0.0)) {
284  logg[LAction].warn("Particle: ", p_a->pdgcode(), " radial momentum: ", pcm);
285  logg[LAction].warn("Ektot: ", kinetic_energy_cm, " m_a: ", masses.first,
286  " m_b: ", masses.second);
287  }
288  /* Here we assume an isotropic angular distribution. */
289  Angles phitheta;
290  phitheta.distribute_isotropically();
291 
292  p_a->set_4momentum(masses.first, phitheta.threevec() * pcm);
293  p_b->set_4momentum(masses.second, -phitheta.threevec() * pcm);
294  /* Debug message is printed before boost, so that p_a and p_b are
295  * the momenta in the center of mass frame and thus opposite to
296  * each other.*/
297  logg[LAction].debug("p_a: ", *p_a, "\np_b: ", *p_b);
298 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sample_2body_phasespace()

void smash::Action::sample_2body_phasespace ( )
protected

Sample the full 2-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles.

Definition at line 300 of file action.cc.

300  {
301  /* This function only operates on 2-particle final states. */
302  assert(outgoing_particles_.size() == 2);
303  const FourVector p_tot = total_momentum_of_outgoing_particles();
304  const double cm_kin_energy = p_tot.abs();
305  // first sample the masses
306  const std::pair<double, double> masses = sample_masses(cm_kin_energy);
307  // after the masses are fixed (and thus also pcm), sample the angles
308  sample_angles(masses, cm_kin_energy);
309 }
FourVector total_momentum_of_outgoing_particles() const
Calculate the total kinetic momentum of the outgoing particles.
Definition: action.cc:155
virtual void sample_angles(std::pair< double, double > masses, double kinetic_energy_cm)
Sample final-state momenta in general X->2 processes (here: using an isotropical angular distribution...
Definition: action.cc:277
virtual std::pair< double, double > sample_masses(double kinetic_energy_cm) const
Sample final-state masses in general X->2 processes (thus also fixing the absolute c....
Definition: action.cc:248
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sample_manybody_phasespace()

void smash::Action::sample_manybody_phasespace ( )
protectedvirtual

Sample the full n-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles.

Exceptions
std::invalid_argumentif one outgoing particle is a resonance

Reimplemented in smash::DecayActionDilepton.

Definition at line 443 of file action.cc.

443  {
444  const size_t n = outgoing_particles_.size();
445  if (n < 3) {
446  throw std::invalid_argument(
447  "sample_manybody_phasespace: number of outgoing particles should be 3 "
448  "or more");
449  }
450  bool all_stable = true;
451  for (size_t i = 0; i < n; i++) {
452  all_stable = all_stable && outgoing_particles_[i].type().is_stable();
453  }
454  if (!all_stable) {
455  throw std::invalid_argument(
456  "sample_manybody_phasespace: Found resonance in to be sampled outgoing "
457  "particles, but assumes stable particles.");
458  }
459 
460  std::vector<double> m(n);
461  for (size_t i = 0; i < n; i++) {
462  m[i] = outgoing_particles_[i].type().mass();
463  }
464  std::vector<FourVector> p(n);
465 
467  for (size_t i = 0; i < n; i++) {
468  outgoing_particles_[i].set_4momentum(p[i]);
469  }
470 }
double sqrt_s() const
Determine the total energy in the center-of-mass frame [GeV].
Definition: action.h:266
static void sample_manybody_phasespace_impl(double sqrts, const std::vector< double > &m, std::vector< FourVector > &sampled_momenta)
Implementation of the full n-body phase-space sampling (masses, momenta, angles) in the center-of-mas...
Definition: action.cc:311
Here is the call graph for this function:
Here is the caller graph for this function:

◆ assign_formation_time_to_outgoing_particles()

void smash::Action::assign_formation_time_to_outgoing_particles ( )
protected

Assign the formation time to the outgoing particles.

The formation time is set to the largest formation time of the incoming particles, if it is larger than the execution time. The newly produced particles are supposed to continue forming exactly like the latest forming ingoing particle. Therefore the details on the formation are adopted. The initial cross section scaling factor of the incoming particles is considered to also be the scaling factor of the newly produced outgoing particles. If the formation time is smaller than the exectution time, the execution time is taken to be the formation time.

Note: Make sure to assign the formation times before boosting the outgoing particles to the computational frame.

Definition at line 186 of file action.cc.

186  {
187  /* Find incoming particle with largest formation time i.e. the last formed
188  * incoming particle. If all particles form at the same time, take the one
189  * with the lowest cross section scaling factor */
190  ParticleList::iterator last_formed_in_part;
191  bool all_incoming_same_formation_time =
193  [&](const ParticleData &data_comp) {
194  return std::abs(incoming_particles_[0].formation_time() -
195  data_comp.formation_time()) < really_small;
196  });
197  if (all_incoming_same_formation_time) {
198  last_formed_in_part =
199  std::min_element(incoming_particles_.begin(), incoming_particles_.end(),
200  [](const ParticleData &a, const ParticleData &b) {
201  return a.initial_xsec_scaling_factor() <
202  b.initial_xsec_scaling_factor();
203  });
204  } else {
205  last_formed_in_part =
206  std::max_element(incoming_particles_.begin(), incoming_particles_.end(),
207  [](const ParticleData &a, const ParticleData &b) {
208  return a.formation_time() < b.formation_time();
209  });
210  }
211 
212  const double form_time_begin = last_formed_in_part->begin_formation_time();
213  const double sc = last_formed_in_part->initial_xsec_scaling_factor();
214 
215  if (last_formed_in_part->formation_time() > time_of_execution_) {
216  for (ParticleData &new_particle : outgoing_particles_) {
217  if (new_particle.initial_xsec_scaling_factor() < 1.0) {
218  /* The new cross section scaling factor will be the product of the
219  * cross section scaling factor of the ingoing particles and of the
220  * outgoing ones (since the outgoing ones are also string fragments
221  * and thus take time to form). */
222  double sc_out = new_particle.initial_xsec_scaling_factor();
223  new_particle.set_cross_section_scaling_factor(sc * sc_out);
224  if (last_formed_in_part->formation_time() >
225  new_particle.formation_time()) {
226  /* If the unformed incoming particles' formation time is larger than
227  * the current outgoing particle's formation time, then the latter
228  * is overwritten by the former*/
229  new_particle.set_slow_formation_times(
230  time_of_execution_, last_formed_in_part->formation_time());
231  }
232  } else {
233  // not a string product
234  new_particle.set_slow_formation_times(
235  form_time_begin, last_formed_in_part->formation_time());
236  new_particle.set_cross_section_scaling_factor(sc);
237  }
238  }
239  } else {
240  for (ParticleData &new_particle : outgoing_particles_) {
241  if (new_particle.initial_xsec_scaling_factor() == 1.0) {
242  new_particle.set_formation_time(time_of_execution_);
243  }
244  }
245  }
246 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ type_of_pout() [1/2]

const ParticleType& smash::Action::type_of_pout ( const ParticleData p_out) const
inlineprivate

Get the type of a given particle.

Parameters
[in]p_outparticle of which the type will be returned
Returns
type of given particle

Definition at line 494 of file action.h.

494  {
495  return p_out.type();
496  }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ type_of_pout() [2/2]

const ParticleType& smash::Action::type_of_pout ( const ParticleTypePtr p_out) const
inlineprivate

Get the particle type for given pointer to a particle type.

Helper function for total_momentum_of_outgoing_particles

Parameters
[in]p_outpointer to a particle type
Returns
particle type

Definition at line 505 of file action.h.

505  {
506  return *p_out;
507  }

Member Data Documentation

◆ incoming_particles_

ParticleList smash::Action::incoming_particles_
protected

List with data of incoming particles.

Definition at line 340 of file action.h.

◆ outgoing_particles_

ParticleList smash::Action::outgoing_particles_
protected

Initially this stores only the PDG codes of final-state particles.

After perform was called it contains the complete particle data of the outgoing particles.

Definition at line 348 of file action.h.

◆ time_of_execution_

const double smash::Action::time_of_execution_
protected

Time at which the action is supposed to be performed (absolute time in the lab frame in fm/c).

Definition at line 354 of file action.h.

◆ process_type_

ProcessType smash::Action::process_type_
protected

type of process

Definition at line 357 of file action.h.

◆ box_length_

double smash::Action::box_length_ = -1.0
protected

Box length: needed to determine coordinates of collision correctly in case of collision through the wall.

Ignored if negative.

Definition at line 364 of file action.h.

◆ stochastic_position_idx_

int smash::Action::stochastic_position_idx_ = -1
protected

This stores a randomly-chosen index to an incoming particle.

If non-negative, the the interaction point equals the postion of the chosen particle (index). This is done for the stochastic criterion.

Definition at line 371 of file action.h.


The documentation for this class was generated from the following files: