32 double spin_factor = (c.
spin() + 1) * (
d.
spin() + 1);
33 spin_factor /= (a.
spin() + 1) * (b.
spin() + 1);
34 double symmetry_factor = (1 + (a == b));
35 symmetry_factor /= (1 + (c ==
d));
38 return spin_factor * symmetry_factor * momentum_factor;
54 double spin_factor = (c.
spin() + 1) * (
d.
spin() + 1);
55 spin_factor /= (a.
spin() + 1) * (b.
spin() + 1);
56 double symmetry_factor = (1 + (a == b));
57 symmetry_factor /= (1 + (c ==
d));
58 const double momentum_factor =
61 return spin_factor * symmetry_factor * momentum_factor;
77 double spin_factor = (c.
spin() + 1) * (
d.
spin() + 1);
78 spin_factor /= (a.
spin() + 1) * (b.
spin() + 1);
79 double symmetry_factor = (1 + (a == b));
80 symmetry_factor /= (1 + (c ==
d));
81 const double momentum_factor =
84 return spin_factor * symmetry_factor * momentum_factor;
92 CollisionBranchList in_list,
double weight = 1.) {
93 main_list.reserve(main_list.size() + in_list.size());
94 for (
auto& proc : in_list) {
95 proc->set_weight(proc->weight() * weight);
96 main_list.emplace_back(std::move(proc));
102 const std::pair<FourVector, FourVector> potentials)
103 : incoming_particles_(incoming_particles),
105 potentials_(potentials),
106 is_BBbar_pair_(incoming_particles_[0].type().is_baryon() &&
107 incoming_particles_[1].type().is_baryon() &&
108 incoming_particles_[0].type().antiparticle_sign() ==
109 -incoming_particles_[1].type().antiparticle_sign()),
111 incoming_particles_[0].type().is_nucleon() &&
112 incoming_particles_[1].pdgcode() ==
113 incoming_particles_[0].type().get_antiparticle()->pdgcode()) {}
116 double elastic_parameter,
bool two_to_one_switch,
118 double low_snn_cut,
bool strings_switch,
bool use_AQM,
121 double additional_el_xs)
const {
122 CollisionBranchList process_list;
126 double p_pythia = 0.;
127 if (strings_with_probability) {
135 const bool reject_by_nucleon_elastic_cutoff =
139 if (incl_elastic && !reject_by_nucleon_elastic_cutoff) {
140 process_list.emplace_back(
141 elastic(elastic_parameter, use_AQM, additional_el_xs, scale_xs));
147 const double sig_current =
sum_xs_of(process_list);
148 const double sig_string =
149 std::max(0., scale_xs *
high_energy() - sig_current);
156 if (two_to_one_switch) {
160 if (included_2to2.any()) {
163 (1. - p_pythia) * scale_xs);
186 process_list.emplace_back(
197 double scale_xs)
const {
198 double elastic_xs = 0.;
199 if (elast_par >= 0.) {
201 elastic_xs = elast_par;
209 return make_unique<CollisionBranch>(
215 CollisionBranchList process_list;
218 const auto& pdg_a = data_a.
pdgcode();
219 const auto& pdg_b = data_b.
pdgcode();
220 if ((pdg_a.is_nucleon() && pdg_b.is_pion()) ||
221 (pdg_b.is_nucleon() && pdg_a.is_pion())) {
230 double elastic_xs = 0.0;
238 elastic_xs =
nk_el();
242 elastic_xs =
nn_el();
250 const bool is_deuteron = pdg_nucleus.
is_deuteron();
251 if (is_deuteron && pdg_other.
is_pion()) {
254 }
else if (is_deuteron && pdg_other.
is_nucleon()) {
258 }
else if (use_AQM) {
263 elastic_xs =
nn_el();
308 std::stringstream ss;
311 ss <<
"problem in CrossSections::elastic: a=" << name_a <<
" b=" << name_b
312 <<
" j_a=" << pdg_a.
spin() <<
" j_b=" << pdg_b.
spin()
313 <<
" sigma=" << sig_el <<
" s=" << s;
314 throw std::runtime_error(ss.str());
324 assert(pion != nucleon);
329 switch (nucleon.
code()) {
331 switch (pion.
code()) {
344 switch (pion.
code()) {
357 switch (pion.
code()) {
370 switch (pion.
code()) {
383 throw std::runtime_error(
384 "only the elastic cross section for proton-pion "
391 std::stringstream ss;
394 ss <<
"problem in CrossSections::elastic: a=" << name_a <<
" b=" << name_b
395 <<
" j_a=" << pdg_a.
spin() <<
" j_b=" << pdg_b.
spin()
396 <<
" sigma=" << sig_el <<
" s=" << s;
397 throw std::runtime_error(ss.str());
407 const auto pdg_nucleon = type_nucleon.
pdgcode().
code();
416 CollisionBranchList process_list;
417 switch (pdg_nucleon) {
425 type_K_p, type_Sigma_p);
436 type_K_p, type_Sigma_m);
438 sqrt_s_, type_K_z, type_Sigma_z);
440 sqrt_s_, type_K_z, type_Lambda);
455 sqrt_s_, type_K_p, type_Sigma_z);
457 sqrt_s_, type_K_z, type_Sigma_p);
460 type_K_p, type_Lambda);
476 type_K_z, type_Sigma_p);
478 sqrt_s_, type_K_p, type_Sigma_z);
480 sqrt_s_, type_K_p, type_Lambda);
488 type_K_z, type_Sigma_m);
503 sqrt_s_, type_K_z, type_Sigma_z);
505 sqrt_s_, type_K_p, type_Sigma_m);
508 type_K_z, type_Lambda);
524 type_K_m, type_Sigma_m_bar);
526 sqrt_s_, type_Kbar_z, type_Sigma_z_bar);
528 sqrt_s_, type_Kbar_z, type_Lambda_bar);
536 type_K_m, type_Sigma_p_bar);
551 sqrt_s_, type_K_m, type_Sigma_z_bar);
553 sqrt_s_, type_Kbar_z, type_Sigma_p_bar);
556 type_K_m, type_Lambda_bar);
569 type_Kbar_z, type_Sigma_m_bar);
580 type_Kbar_z, type_Sigma_p_bar);
582 sqrt_s_, type_K_m, type_Sigma_z_bar);
584 sqrt_s_, type_K_m, type_Lambda_bar);
599 sqrt_s_, type_Kbar_z, type_Sigma_z_bar);
601 sqrt_s_, type_K_m, type_Sigma_m_bar);
604 type_Kbar_z, type_Lambda_bar);
621 assert(kaon != nucleon);
626 switch (nucleon.
code()) {
628 switch (kaon.
code()) {
644 switch (kaon.
code()) {
660 switch (kaon.
code()) {
676 switch (kaon.
code()) {
692 throw std::runtime_error(
693 "elastic cross section for antinucleon-kaon "
700 std::stringstream ss;
703 ss <<
"problem in CrossSections::elastic: a=" << name_a <<
" b=" << name_b
704 <<
" j_a=" << pdg_a.
spin() <<
" j_b=" << pdg_b.
spin()
705 <<
" sigma=" << sig_el <<
" s=" << s;
706 throw std::runtime_error(ss.str());
711 CollisionBranchList resonance_process_list;
722 if (type_resonance.is_stable()) {
727 type_resonance.pdgcode() == type_particle_a.
pdgcode()) ||
729 type_resonance.pdgcode() == type_particle_b.
pdgcode())) {
733 double resonance_xsection =
formation(type_resonance, p_cm_sqr);
737 resonance_process_list.push_back(make_unique<CollisionBranch>(
741 "->", type_resonance.name(),
742 " at sqrt(s)[GeV] = ",
sqrt_s_,
743 " with xs[mb] = ", resonance_xsection);
746 return resonance_process_list;
750 double cm_momentum_sqr)
const {
754 if (type_resonance.
charge() !=
768 if (partial_width <= 0.) {
773 const double spinfactor =
774 static_cast<double>(type_resonance.
spin() + 1) /
775 ((type_particle_a.
spin() + 1) * (type_particle_b.
spin() + 1));
776 const int sym_factor =
781 return spinfactor * sym_factor * 2. * M_PI * M_PI / cm_momentum_sqr *
788 CollisionBranchList process_list;
793 const auto& pdg_a = data_a.
pdgcode();
794 const auto& pdg_b = data_b.
pdgcode();
796 if (pdg_a.is_nucleon() && pdg_b.is_nucleon() &&
797 pdg_a.antiparticle_sign() == pdg_b.antiparticle_sign()) {
799 process_list =
nn_xx(included_2to2);
807 if ((pdg_a.is_nucleon() && pdg_b.is_kaon()) ||
808 (pdg_b.is_nucleon() && pdg_a.is_kaon())) {
810 process_list =
nk_xx(included_2to2);
811 }
else if ((pdg_a.is_hyperon() && pdg_b.is_pion()) ||
812 (pdg_b.is_hyperon() && pdg_a.is_pion())) {
814 process_list =
ypi_xx(included_2to2);
815 }
else if ((pdg_a.is_Delta() && pdg_b.is_kaon()) ||
816 (pdg_b.is_Delta() && pdg_a.is_kaon())) {
824 process_list =
dn_xx(included_2to2);
830 process_list =
dpi_xx(included_2to2);
837 CollisionBranchList process_list;
851 process_list.push_back(make_unique<CollisionBranch>(
859 process_list.push_back(make_unique<CollisionBranch>(
860 type_pi, type_anti_p, type_anti_n,
875 process_list.push_back(make_unique<CollisionBranch>(
883 process_list.push_back(make_unique<CollisionBranch>(
884 type_N, type_anti_p, type_anti_n,
892 CollisionBranchList process_list;
911 ParticleTypePtrList components;
912 components.reserve(3);
914 for (
int i = 0; i < nucleus_pdg.
nucleus_p(); i++) {
915 components.push_back(type_p);
917 for (
int i = 0; i < nucleus_pdg.
nucleus_n(); i++) {
918 components.push_back(type_n);
920 for (
int i = 0; i < nucleus_pdg.
nucleus_ap(); i++) {
921 components.push_back(type_anti_p);
923 for (
int i = 0; i < nucleus_pdg.
nucleus_an(); i++) {
924 components.push_back(type_anti_n);
926 for (
int i = 0; i < nucleus_pdg.
nucleus_La(); i++) {
927 components.push_back(type_la);
929 for (
int i = 0; i < nucleus_pdg.
nucleus_aLa(); i++) {
930 components.push_back(type_anti_la);
932 if (
sqrt_s_ > type_catalyzer->
mass() + components[0]->mass() +
933 components[1]->mass() + components[2]->mass()) {
934 process_list.push_back(make_unique<CollisionBranch>(
935 *type_catalyzer, *(components[0]), *(components[1]), *(components[2]),
944 const double x = pion_kinetic_energy;
945 return x * (4.3 + 10.0 * x) / ((x - 0.16) * (x - 0.16) + 0.007);
949 const double x = N_kinetic_energy;
950 return x * (1.0 + 50 * x) / (x * x + 0.01) +
951 4 * x / ((x - 0.008) * (x - 0.008) + 0.0004);
955 return 55.0 / (aN_kinetic_energy + 0.17);
964 type_nucleus = &type_b;
965 type_catalyzer = &type_a;
968 bool nonzero_xs = type_nucleus->
is_nucleus() &&
969 (type_catalyzer->is_pion() || type_catalyzer->is_nucleon());
974 const double md = type_nucleus->
mass(), mcat = type_catalyzer->mass();
975 const double Tkin = (sqrts * sqrts - (md + mcat) * (md + mcat)) / (2.0 * md);
982 if (type_catalyzer->is_pion()) {
984 }
else if (type_catalyzer->is_nucleon()) {
986 type_catalyzer->pdgcode().antiparticle_sign()) {
1002 type_nucleus = &type_b;
1003 type_catalyzer = &type_a;
1005 bool nonzero_xs = type_nucleus->
is_nucleus() &&
1006 (type_catalyzer->is_pion() || type_catalyzer->is_nucleon());
1011 const double mA = type_nucleus->
mass(), mcat = type_catalyzer->mass();
1012 const double Tkin = (sqrts * sqrts - (mA + mcat) * (mA + mcat)) / (2.0 * mA);
1015 if (A != 3 || Tkin <= 0.0) {
1019 if (type_catalyzer->is_pion()) {
1021 }
else if (type_catalyzer->is_nucleon()) {
1023 type_catalyzer->pdgcode().antiparticle_sign()) {
1036 CollisionBranchList process_list;
1042 if (!same_sign && !any_nucleus) {
1043 return process_list;
1058 return process_list;
1062 CollisionBranchList process_list, channel_list;
1068 bool both_antinucleons =
1071 const ParticleTypePtrList& nuc_or_anti_nuc =
1074 const ParticleTypePtrList& delta_or_anti_delta =
1084 process_list.reserve(process_list.size() + channel_list.size());
1085 std::move(channel_list.begin(), channel_list.end(),
1086 std::inserter(process_list, process_list.end()));
1087 channel_list.clear();
1099 process_list.reserve(process_list.size() + channel_list.size());
1100 std::move(channel_list.begin(), channel_list.end(),
1101 std::inserter(process_list, process_list.end()));
1102 channel_list.clear();
1112 if (deutron && antideutron && pim && pi0 && pip &&
1114 const ParticleTypePtrList deutron_list = {deutron};
1115 const ParticleTypePtrList antideutron_list = {antideutron};
1116 const ParticleTypePtrList pion_list = {pim, pi0, pip};
1118 (both_antinucleons ? antideutron_list : deutron_list), pion_list,
1121 return pCM(sqrts, type_res_1.
mass(), type_res_2.
mass());
1123 process_list.reserve(process_list.size() + channel_list.size());
1124 std::move(channel_list.begin(), channel_list.end(),
1125 std::inserter(process_list, process_list.end()));
1126 channel_list.clear();
1129 return process_list;
1138 const auto pdg_nucleon = type_nucleon.
pdgcode().
code();
1156 bool incl_KN_to_KDelta =
1158 sqrt_s_ < KN_to_KDelta_cutoff;
1159 bool incl_Strangeness_exchange =
1162 CollisionBranchList process_list;
1167 switch (pdg_nucleon) {
1169 if (incl_Strangeness_exchange) {
1179 sqrt_s_, type_pi_m, type_Sigma_p);
1182 sqrt_s_, type_pi_p, type_Sigma_m);
1185 type_pi_z, type_Sigma_z);
1188 type_pi_z, type_Lambda);
1190 if (incl_KN_to_KN) {
1194 sqrt_s_, type_Kbar_z, type_n);
1199 if (incl_Strangeness_exchange) {
1207 type_pi_m, type_Sigma_z);
1210 type_pi_z, type_Sigma_m);
1213 type_pi_m, type_Lambda);
1218 if (incl_KN_to_KDelta) {
1226 type_nucleon, type_kaon,
1230 sqrt_s_, type_Kbar_z, type_Delta_pp_bar);
1234 type_nucleon, type_kaon,
1235 type_K_m, type_Delta_p_bar);
1237 sqrt_s_, type_K_m, type_Delta_p_bar);
1242 if (incl_KN_to_KDelta) {
1250 type_nucleon, type_kaon,
1254 sqrt_s_, type_Kbar_z, type_Delta_p_bar);
1258 type_nucleon, type_kaon,
1259 type_K_m, type_Delta_z_bar);
1261 sqrt_s_, type_K_m, type_Delta_z_bar);
1263 if (incl_KN_to_KN) {
1267 type_Kbar_z, type_p_bar);
1277 switch (pdg_nucleon) {
1279 if (incl_KN_to_KDelta) {
1287 type_nucleon, type_kaon,
1288 type_K_z, type_Delta_pp);
1290 sqrt_s_, type_K_z, type_Delta_pp);
1294 type_nucleon, type_kaon,
1295 type_K_p, type_Delta_p);
1297 sqrt_s_, type_K_p, type_Delta_p);
1302 if (incl_KN_to_KDelta) {
1310 type_nucleon, type_kaon,
1311 type_K_z, type_Delta_p);
1313 sqrt_s_, type_K_z, type_Delta_p);
1317 type_nucleon, type_kaon,
1318 type_K_p, type_Delta_z);
1320 sqrt_s_, type_K_p, type_Delta_z);
1322 if (incl_KN_to_KN) {
1331 if (incl_Strangeness_exchange) {
1341 sqrt_s_, type_pi_p, type_Sigma_p_bar);
1344 sqrt_s_, type_pi_m, type_Sigma_m_bar);
1347 type_pi_z, type_Sigma_z_bar);
1350 type_pi_z, type_Lambda_bar);
1352 if (incl_KN_to_KN) {
1356 sqrt_s_, type_K_z, type_n_bar);
1361 if (incl_Strangeness_exchange) {
1369 type_pi_p, type_Sigma_z_bar);
1372 type_pi_z, type_Sigma_m_bar);
1375 type_pi_p, type_Lambda_bar);
1388 switch (pdg_nucleon) {
1390 if (incl_KN_to_KDelta) {
1398 type_nucleon, type_kaon,
1399 type_K_z, type_Delta_p);
1401 sqrt_s_, type_K_z, type_Delta_p);
1405 type_nucleon, type_kaon,
1406 type_K_p, type_Delta_z);
1408 sqrt_s_, type_K_p, type_Delta_z);
1410 if (incl_KN_to_KN) {
1424 if (incl_KN_to_KDelta) {
1432 type_nucleon, type_kaon,
1433 type_K_z, type_Delta_z);
1435 sqrt_s_, type_K_z, type_Delta_z);
1439 type_nucleon, type_kaon,
1440 type_K_p, type_Delta_m);
1442 sqrt_s_, type_K_p, type_Delta_m);
1447 if (incl_Strangeness_exchange) {
1455 type_pi_m, type_Sigma_z_bar);
1458 type_pi_z, type_Sigma_p_bar);
1461 type_pi_m, type_Lambda_bar);
1466 if (incl_Strangeness_exchange) {
1476 sqrt_s_, type_pi_m, type_Sigma_m_bar);
1479 sqrt_s_, type_pi_p, type_Sigma_p_bar);
1482 type_pi_z, type_Sigma_z_bar);
1485 type_pi_z, type_Lambda_bar);
1487 if (incl_KN_to_KN) {
1491 sqrt_s_, type_K_p, type_p_bar);
1499 switch (pdg_nucleon) {
1501 if (incl_Strangeness_exchange) {
1509 type_pi_z, type_Sigma_p);
1512 type_pi_p, type_Sigma_z);
1515 type_pi_p, type_Lambda);
1520 if (incl_Strangeness_exchange) {
1530 sqrt_s_, type_pi_p, type_Sigma_m);
1533 sqrt_s_, type_pi_m, type_Sigma_p);
1536 type_pi_z, type_Sigma_z);
1539 type_pi_z, type_Lambda);
1541 if (incl_KN_to_KN) {
1550 if (incl_KN_to_KDelta) {
1552 const auto& type_Kbar_z = type_kaon;
1558 type_nucleon, type_kaon,
1562 sqrt_s_, type_Kbar_z, type_Delta_bar_m);
1566 type_nucleon, type_kaon,
1567 type_K_m, type_Delta_bar_z);
1569 sqrt_s_, type_K_m, type_Delta_bar_z);
1571 if (incl_KN_to_KN) {
1580 sqrt_s_, type_K_m, type_n_bar);
1585 if (incl_KN_to_KDelta) {
1593 type_nucleon, type_kaon,
1597 sqrt_s_, type_Kbar_z, type_Delta_z_bar);
1601 type_nucleon, type_kaon,
1602 type_K_m, type_Delta_m_bar);
1604 sqrt_s_, type_K_m, type_Delta_m_bar);
1612 return process_list;
1617 CollisionBranchList process_list;
1619 return process_list;
1626 const auto pdg_delta = type_delta.
pdgcode().
code();
1634 switch (
pack(pdg_delta, pdg_kaon)) {
1645 type_p, type_K_p, type_kaon, type_delta) *
1658 type_kaon, type_p_bar,
1661 type_p_bar, type_K_m, type_kaon, type_delta) *
1664 sqrt_s_, type_p_bar, type_K_m);
1679 type_n, type_K_p, type_kaon, type_delta) *
1690 type_p, type_K_z, type_kaon, type_delta) *
1705 type_kaon, type_n_bar,
1708 type_n_bar, type_K_m, type_kaon, type_delta) *
1711 sqrt_s_, type_n_bar, type_K_m);
1716 type_kaon, type_p_bar,
1719 type_p_bar, type_Kbar_z, type_kaon, type_delta) *
1722 sqrt_s_, type_p_bar, type_Kbar_z);
1735 type_n, type_K_z, type_kaon, type_delta) *
1748 type_kaon, type_n_bar,
1751 type_n_bar, type_Kbar_z, type_kaon, type_delta) *
1754 sqrt_s_, type_n_bar, type_Kbar_z);
1761 return process_list;
1765 CollisionBranchList process_list;
1767 return process_list;
1774 const auto pdg_hyperon = type_hyperon.
pdgcode().
code();
1779 switch (
pack(pdg_hyperon, pdg_pion)) {
1786 s, type_hyperon, type_pion, type_n, type_K_m) *
1802 sqrt_s_, type_p, type_Kbar_z);
1811 type_pion, type_n_bar,
1815 sqrt_s_, type_n_bar, type_K_p);
1824 type_pion, type_p_bar,
1828 sqrt_s_, type_p_bar, type_K_z);
1837 s, type_hyperon, type_pion, type_n, type_K_m) *
1853 sqrt_s_, type_p, type_Kbar_z);
1862 type_pion, type_n_bar,
1866 sqrt_s_, type_n_bar, type_K_p);
1875 type_pion, type_p_bar,
1879 sqrt_s_, type_p_bar, type_K_z);
1888 s, type_hyperon, type_pion, type_n, type_K_m) *
1904 sqrt_s_, type_p, type_Kbar_z);
1913 type_pion, type_n_bar,
1917 sqrt_s_, type_n_bar, type_K_p);
1926 type_pion, type_p_bar,
1930 sqrt_s_, type_p_bar, type_K_z);
1941 s, type_hyperon, type_pion, type_p, type_K_m) *
1952 sqrt_s_, type_n, type_Kbar_z);
1963 type_pion, type_p_bar,
1967 sqrt_s_, type_p_bar, type_K_p);
1971 type_pion, type_n_bar,
1975 sqrt_s_, type_n_bar, type_K_z);
1986 s, type_hyperon, type_pion, type_p, type_K_m) *
1997 sqrt_s_, type_n, type_Kbar_z);
2008 type_pion, type_p_bar,
2012 sqrt_s_, type_p_bar, type_K_p);
2016 type_pion, type_n_bar,
2020 sqrt_s_, type_n_bar, type_K_z);
2031 s, type_hyperon, type_pion, type_p, type_K_m) *
2042 sqrt_s_, type_n, type_Kbar_z);
2053 type_pion, type_p_bar,
2057 sqrt_s_, type_p_bar, type_K_p);
2061 type_pion, type_n_bar,
2065 sqrt_s_, type_n_bar, type_K_z);
2076 s, type_hyperon, type_pion, type_p, type_K_m) *
2087 sqrt_s_, type_n, type_Kbar_z);
2098 type_pion, type_p_bar,
2102 sqrt_s_, type_p_bar, type_K_p);
2106 type_pion, type_n_bar,
2110 sqrt_s_, type_n_bar, type_K_z);
2117 return process_list;
2123 const double s = sqrts * sqrts;
2128 const double matrix_element =
2129 295.5 + 2.862 / (0.00283735 +
pow_int(sqrts - 2.181, 2)) +
2130 0.0672 /
pow_int(tmp, 2) - 6.61753 / tmp;
2132 const double spin_factor =
2133 (produced_nucleus->
spin() + 1) * (type_pi.
spin() + 1);
2138 double xsection = matrix_element * spin_factor / (s * cm_mom);
2142 const double resonance_integral =
2144 xsection *= resonance_integral;
2146 ", matrix element: ", matrix_element,
2147 ", cm_momentum: ", cm_mom);
2153 CollisionBranchList process_list;
2163 ParticleTypePtrList nuc = (baryon_number > 0)
2170 nuc_a->charge() + nuc_b->charge()) {
2174 for (
const int twoI :
I_tot_range(*nuc_a, *nuc_b)) {
2176 type_a, type_b, *nuc_a, *nuc_b, twoI);
2183 const double matrix_element =
2185 if (matrix_element <= 0.) {
2189 const double spin_factor = (nuc_a->spin() + 1) * (nuc_b->spin() + 1);
2190 const int sym_fac_in =
2192 const int sym_fac_out =
2193 (nuc_a->iso_multiplet() == nuc_b->iso_multiplet()) ? 2 : 1;
2194 double p_cm_final =
pCM_from_s(s, nuc_a->mass(), nuc_b->mass());
2195 const double xsection = isospin_factor * spin_factor * sym_fac_in /
2196 sym_fac_out * p_cm_final * matrix_element /
2200 process_list.push_back(make_unique<CollisionBranch>(
2203 nuc_a->name(), nuc_b->name(),
2204 " at sqrts [GeV] = ", sqrts,
2205 " with cs[mb] = ", xsection);
2217 if (is_pid_or_pidprime &&
2224 if (produced_nucleus == &type_nucleus ||
2226 produced_nucleus->baryon_number() != type_nucleus.
baryon_number()) {
2229 const double xsection =
2231 process_list.push_back(make_unique<CollisionBranch>(
2234 type_pi.
name(), produced_nucleus->name(),
2235 " at ", sqrts,
" GeV, xs[mb] = ", xsection);
2238 return process_list;
2245 const double s = sqrts * sqrts;
2246 double matrix_element = 0.0;
2254 matrix_element = 79.0474 / std::pow(tmp, 0.7897) + 654.596 * tmp;
2259 matrix_element = 342.572 / std::pow(tmp, 0.6);
2261 const double spin_factor =
2262 (produced_nucleus->
spin() + 1) * (type_N.
spin() + 1);
2266 double xsection = matrix_element * spin_factor / (s * cm_mom);
2272 const double resonance_integral =
2274 xsection *= resonance_integral;
2284 CollisionBranchList process_list;
2286 return process_list;
2292 if (produced_nucleus == &type_nucleus ||
2294 produced_nucleus->baryon_number() != type_nucleus.
baryon_number()) {
2299 process_list.push_back(make_unique<CollisionBranch>(
2302 type_N.
name(), produced_nucleus->name(),
" at ",
2303 sqrt_s_,
" GeV, xs[mb] = ", xsection);
2305 return process_list;
2309 double total_string_xs,
StringProcess* string_process,
bool use_AQM)
const {
2310 if (!string_process) {
2311 throw std::runtime_error(
"string_process should be initialized.");
2314 CollisionBranchList channel_list;
2315 if (total_string_xs <= 0.) {
2316 return channel_list;
2325 std::array<int, 2> pdgid;
2326 double AQM_factor = 1.;
2327 for (
int i = 0; i < 2; i++) {
2335 bool can_annihilate =
false;
2338 for (
int iq = 1; iq <= n_q_types; iq++) {
2339 std::array<int, 2> nquark;
2340 for (
int i = 0; i < 2; i++) {
2344 if (nquark[0] != 0 && nquark[1] != 0) {
2345 can_annihilate =
true;
2361 std::array<double, 3> xs =
2364 for (
int ip = 0; ip < 3; ip++) {
2365 xs[ip] *= AQM_factor;
2368 double single_diffr_AX = xs[0], single_diffr_XB = xs[1], double_diffr = xs[2];
2369 double single_diffr = single_diffr_AX + single_diffr_XB;
2370 double diffractive = single_diffr + double_diffr;
2376 double sig_annihilation = 0.0;
2377 if (can_annihilate) {
2383 xs_param *= AQM_factor;
2385 sig_annihilation = std::min(total_string_xs, xs_param);
2388 const double nondiffractive_all =
2389 std::max(0., total_string_xs - sig_annihilation - diffractive);
2390 diffractive = total_string_xs - sig_annihilation - nondiffractive_all;
2391 double_diffr = std::max(0., diffractive - single_diffr);
2392 const double a = (diffractive - double_diffr) / single_diffr;
2393 single_diffr_AX *= a;
2394 single_diffr_XB *= a;
2395 assert(std::abs(single_diffr_AX + single_diffr_XB + double_diffr +
2396 sig_annihilation + nondiffractive_all - total_string_xs) <
2399 double nondiffractive_soft = 0.;
2400 double nondiffractive_hard = 0.;
2401 if (nondiffractive_all > 0.) {
2406 nondiffractive_soft =
2407 nondiffractive_all * std::exp(-hard_xsec / nondiffractive_all);
2408 nondiffractive_hard = nondiffractive_all - nondiffractive_soft;
2419 const double sig_string_soft = total_string_xs - nondiffractive_hard;
2422 if (sig_string_soft > 0.) {
2423 channel_list.push_back(make_unique<CollisionBranch>(
2425 channel_list.push_back(make_unique<CollisionBranch>(
2427 channel_list.push_back(make_unique<CollisionBranch>(
2429 channel_list.push_back(make_unique<CollisionBranch>(
2431 if (can_annihilate) {
2432 channel_list.push_back(make_unique<CollisionBranch>(
2436 if (nondiffractive_hard > 0.) {
2437 channel_list.push_back(make_unique<CollisionBranch>(
2440 return channel_list;
2452 if (pdg_a == pdg_b) {
2472 xs = xs_l * (1. - prob_high) + xs_h * prob_high;
2507 double cross_sec = 0.;
2542 return make_unique<CollisionBranch>(type_pip, type_pim, type_pip, type_pim,
2543 type_piz, nnbar_xsec * scale_xs,
2548 const double current_xs,
const double scale_xs)
const {
2552 double nnbar_xsec = std::max(0.,
ppbar_total(s) * scale_xs - current_xs);
2561 CollisionBranchList channel_list;
2575 if (
sqrt_s_ - 2 * type_N.mass() < 0) {
2576 return channel_list;
2580 type_N, type_Nbar) *
2583 channel_list.push_back(make_unique<CollisionBranch>(
2585 channel_list.push_back(make_unique<CollisionBranch>(
2589 return channel_list;
2593 const bool is_anti_particles)
const {
2596 CollisionBranchList process_list;
2602 ParticleTypePtrList nuc_or_anti_nuc;
2603 if (is_anti_particles) {
2614 nuc_a->charge() + nuc_b->charge()) {
2618 for (
const int twoI :
I_tot_range(*nuc_a, *nuc_b)) {
2620 type_a, type_b, *nuc_a, *nuc_b, twoI);
2627 const double matrix_element =
2629 if (matrix_element <= 0.) {
2637 const double spin_factor = (nuc_a->spin() + 1) * (nuc_b->spin() + 1);
2638 const int sym_fac_in =
2640 const int sym_fac_out =
2641 (nuc_a->iso_multiplet() == nuc_b->iso_multiplet()) ? 2 : 1;
2642 const double xsection = isospin_factor * spin_factor * sym_fac_in /
2643 sym_fac_out * p_cm_final * matrix_element /
2647 process_list.push_back(make_unique<CollisionBranch>(
2650 "2->2 absorption with original particles: ", type_a, type_b);
2655 return process_list;
2662 const double m_a = type_a.
mass();
2663 const double m_b = type_b.
mass();
2664 const double msqr = 2. * (m_a * m_a + m_b * m_b);
2674 const double uplmt = m_a + m_b + 3.0 * (w_a + w_b) + 3.0;
2675 if (sqrts > uplmt) {
2682 return 68. / std::pow(sqrts - 1.104, 1.951);
2691 }
else if (twoI == 0) {
2692 const double parametrization = 14. / msqr;
2699 return 6.5 * parametrization;
2701 return parametrization;
2714 }
else if (twoI == 0) {
2728 }
else if (twoI == 0) {
2738 (1.0 - std::exp(-(sqrts - 2.0) * 20.0));
2745 template <
class IntegrationMethod>
2747 const ParticleTypePtrList& list_res_1,
2748 const ParticleTypePtrList& list_res_2,
2749 const IntegrationMethod integrator)
const {
2753 CollisionBranchList channel_list;
2761 if (type_res_1->charge() + type_res_2->charge() !=
2767 for (
const int twoI :
I_tot_range(type_particle_a, type_particle_b)) {
2769 type_particle_a, type_particle_b, *type_res_1, *type_res_2, twoI);
2776 const double lower_limit = type_res_1->min_mass_kinematic();
2777 const double upper_limit =
sqrt_s_ - type_res_2->mass();
2781 if (upper_limit - lower_limit < 1E-3) {
2787 sqrt_s_, *type_res_1, *type_res_2, twoI);
2788 if (matrix_element <= 0.) {
2795 const double resonance_integral = integrator(*type_res_1, *type_res_2);
2800 const double spin_factor =
2801 (type_res_1->spin() + 1) * (type_res_2->spin() + 1);
2802 const double xsection = isospin_factor * spin_factor * matrix_element *
2806 channel_list.push_back(make_unique<CollisionBranch>(
2809 "Found 2->2 creation process for resonance ", type_res_1,
", ",
2812 type_particle_a, type_particle_b);
2817 return channel_list;
2821 bool use_transition_probability,
2823 bool treat_BBbar_with_strings)
const {
2826 if (!strings_switch) {
2833 const bool is_NN_scattering =
2836 const bool is_BBbar_scattering =
2844 const bool is_AQM_scattering =
2850 const double mass_sum =
2853 if (!is_NN_scattering && !is_BBbar_scattering && !is_Npi_scattering &&
2854 !is_AQM_scattering) {
2858 }
else if (is_BBbar_scattering) {
2865 const bool is_KplusP =
2877 }
else if (pdg1.
is_pion() && pdg2.is_pion()) {
2882 if (!use_transition_probability) {
2883 return static_cast<double>(
sqrt_s_ > mass_sum + aqm_offset);
2887 double region_lower, region_upper;
2888 if (is_Npi_scattering) {
2891 }
else if (is_NN_scattering) {
2897 region_lower = mass_sum + aqm_offset;
2903 }
else if (
sqrt_s_ < region_lower) {
2913 const double region_lower,
const double region_upper)
const {
2922 double x = (
sqrt_s_ - 0.5 * (region_lower + region_upper)) /
2923 (region_upper - region_lower);
2924 assert(x >= -0.5 && x <= 0.5);
2925 double prob = 0.5 * (std::sin(M_PI * x) + 1.0);
2926 assert(prob >= 0. && prob <= 1.);
const double sqrt_s_
Total energy in the center-of-mass frame.
static double d_N_inelastic_xs(double N_kinetic_energy)
Parametrization of deuteron-nucleon inelastic cross section.
CollisionBranchList NNbar_creation() const
Determine the cross section for NNbar creation, which is given by detailed balance from the reverse r...
CollisionBranchList npi_yk() const
Find all processes for Nucleon-Pion to Hyperon-Kaon Scattering.
double string_probability(bool strings_switch, bool use_transition_probability, bool use_AQM, bool treat_nnbar_with_strings) const
CollisionBranchList find_nn_xsection_from_type(const ParticleTypePtrList &type_res_1, const ParticleTypePtrList &type_res_2, const IntegrationMethod integrator) const
Utility function to avoid code replication in nn_xx().
double high_energy() const
Determine the parametrized total cross section at high energies for the given collision,...
CollisionBranchPtr NNbar_to_5pi(const double scale_xs) const
Create collision branch for NNbar annihilation going directly into 5 pions.
CollisionBranchList nn_xx(ReactionsBitSet included_2to2) const
Find all inelastic 2->2 processes for Nucelon-Nucelon Scattering.
double cm_momentum() const
Determine the momenta of the incoming particles in the center-of-mass system.
CollisionBranchList bar_bar_to_nuc_nuc(const bool is_anti_particles) const
Calculate cross sections for resonance absorption (i.e.
CollisionBranchList bb_xx_except_nn(ReactionsBitSet included_2to2) const
Find all inelastic 2->2 processes for Baryon-Baryon (BB) Scattering except the more specific Nucleon-...
CollisionBranchList string_excitation(double total_string_xs, StringProcess *string_process, bool use_AQM) const
Determine the cross section for string excitations, which is given by the difference between the para...
CollisionBranchList dpi_xx(ReactionsBitSet included_2to2) const
Find all inelastic 2->2 processes involving Pion and (anti-) Deuteron (dpi), specifically dπ→ NN,...
double probability_transit_high(const double region_lower, const double region_upper) const
static double xs_dn_dprimen(const double sqrts, const double cm_mom, ParticleTypePtr produced_nucleus, const ParticleType &type_nucleus, const ParticleType &type_N)
Parametrized cross section for Nd → Nd', N̅d → N̅d', N̅d̅→ N̅d̅', Nd̅→ Nd̅' and reverse (e....
CollisionBranchList two_to_four() const
Find all 2->4 processes for the given scattering.
CollisionBranchList ypi_xx(ReactionsBitSet included_2to2) const
Find all inelastic 2->2 processes for Hyperon-Pion (Ypi) Scattering.
CollisionBranchList deltak_xx(ReactionsBitSet included_2to2) const
Find all inelastic 2->2 processes for Delta-Kaon (DeltaK) Scattering.
double formation(const ParticleType &type_resonance, double cm_momentum_sqr) const
Return the 2-to-1 resonance production cross section for a given resonance.
void add_channel(CollisionBranchList &process_list, F &&get_xsection, double sqrts, const ParticleType &type_a, const ParticleType &type_b) const
Helper function: Add a 2-to-2 channel to a collision branch list given a cross section.
double string_hard_cross_section() const
Determine the (parametrized) hard non-diffractive string cross section for this collision.
CollisionBranchPtr NNbar_annihilation(const double current_xs, const double scale_xs) const
Determine the cross section for NNbar annihilation, which is given by the difference between the para...
static double two_to_three_xs(const ParticleType &type_in1, const ParticleType &type_in2, double sqrts)
Determine 2->3 cross section for the scattering of the given particle types.
double nk_el() const
Determine the elastic cross section for a nucleon-kaon (NK) collision.
CollisionBranchList two_to_one() const
Find all resonances that can be produced in a 2->1 collision of the two input particles and the produ...
const ParticleList incoming_particles_
List with data of scattering particles.
double npi_el() const
Determine the elastic cross section for a nucleon-pion (Npi) collision.
double nn_el() const
Determine the (parametrized) elastic cross section for a nucleon-nucleon (NN) collision.
const bool is_BBbar_pair_
Whether incoming particles are a pair of a baryon and an antibaryon (could be different baryon types)
static double two_to_four_xs(const ParticleType &type_in1, const ParticleType &type_in2, double sqrts)
Determine 2->4 cross section for the scattering of the given particle types.
CollisionBranchList generate_collision_list(double elastic_parameter, bool two_to_one_switch, ReactionsBitSet included_2to2, MultiParticleReactionsBitSet included_multi, double low_snn_cut, bool strings_switch, bool use_AQM, bool strings_with_probability, NNbarTreatment nnbar_treatment, StringProcess *string_process, double scale_xs, double additional_el_xs) const
Generate a list of all possible collisions between the incoming particles with the given c....
CollisionBranchList two_to_two(ReactionsBitSet included_2to2) const
Find all inelastic 2->2 processes for the given scattering.
const bool is_NNbar_pair_
Whether incoming particles are a nulecon-antinucleon pair (same isospin)
static double nn_to_resonance_matrix_element(double sqrts, const ParticleType &type_a, const ParticleType &type_b, const int twoI)
Scattering matrix amplitude squared (divided by 16π) for resonance production processes like NN → NR ...
CollisionBranchList rare_two_to_two() const
Find all 2->2 processes which are suppressed at high energies when strings are turned on with probabi...
static double sum_xs_of(const CollisionBranchList &list)
Helper function: Sum all cross sections of the given process list.
CrossSections(const ParticleList &incoming_particles, const double sqrt_s, const std::pair< FourVector, FourVector > potentials)
Construct CrossSections instance.
CollisionBranchList two_to_three() const
Find all 2->3 processes for the given scattering.
static double d_aN_inelastic_xs(double aN_kinetic_energy)
Parametrization of deuteron-antinucleon inelastic cross section.
CollisionBranchPtr elastic(double elast_par, bool use_AQM, double add_el_xs, double scale_xs) const
Determine the elastic cross section for this collision.
CollisionBranchList nk_xx(ReactionsBitSet included_2to2) const
Find all inelastic 2->2 background processes for Nucleon-Kaon (NK) Scattering.
CollisionBranchList dn_xx(ReactionsBitSet included_2to2) const
Find all inelastic 2->2 processes involving Nucleon and (anti-) Deuteron (dN), specifically Nd → Nd',...
static double d_pi_inelastic_xs(double pion_kinetic_energy)
Parametrization of deuteron-pion inelastic cross section.
double elastic_parametrization(bool use_AQM) const
Choose the appropriate parametrizations for given incoming particles and return the (parametrized) el...
static double xs_dpi_dprimepi(const double sqrts, const double cm_mom, ParticleTypePtr produced_nucleus, const ParticleType &type_pi)
Parametrized cross section for πd→ πd' (mockup for πd→ πnp), πd̅→ πd̅' and reverse,...
Range of total isospin for reaction of particle a with particle b.
double get_integral_RR(IsoParticleType *type_res_2, double sqrts)
Look up the tabulated resonance integral for the XX -> RR cross section.
double get_integral_NR(double sqrts)
Look up the tabulated resonance integral for the XX -> NR cross section.
double get_integral_RK(double sqrts)
Look up the tabulated resonance integral for the XX -> RK cross section.
double get_integral_piR(double sqrts)
Look up the tabulated resonance integral for the XX -> piR cross section.
double get_ratio(const ParticleType &a, const ParticleType &b, const ParticleType &c, const ParticleType &d) const
Return the isospin ratio of the given K N -> K Delta cross section.
ParticleData contains the dynamic information of a certain particle.
PdgCode pdgcode() const
Get the pdgcode of the particle.
const ParticleType & type() const
Get the type of the particle.
A pointer-like interface to global references to ParticleType objects.
Particle type contains the static properties of a particle species.
double spectral_function(double m) const
Full spectral function of the resonance (relativistic Breit-Wigner distribution with mass-dependent ...
static const ParticleTypePtr try_find(PdgCode pdgcode)
Returns the ParticleTypePtr for the given pdgcode.
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
const std::string & name() const
int32_t charge() const
The charge of the particle.
int antiparticle_sign() const
static ParticleTypePtrList & list_nucleons()
static ParticleTypePtrList & list_anti_nucleons()
bool is_Nstar1535() const
static const ParticleTypeList & list_all()
double width_at_pole() const
static ParticleTypePtrList & list_anti_Deltas()
static ParticleTypePtrList & list_baryon_resonances()
static ParticleTypePtrList & list_Deltas()
double get_partial_in_width(const double m, const ParticleData &p_a, const ParticleData &p_b) const
Get the mass-dependent partial in-width of a resonance with mass m, decaying into two given daughter ...
unsigned int spin() const
int baryon_number() const
bool is_Deltastar() const
IsoParticleType * iso_multiplet() const
static ParticleTypePtrList & list_light_nuclei()
PdgCode stores a Particle Data Group Particle Numbering Scheme particle type number.
std::int32_t code() const
int antiparticle_sign() const
int nucleus_n() const
Number of neutrons in nucleus.
int nucleus_ap() const
Number of antiprotons in nucleus.
int nucleus_an() const
Number of antineutrons in nucleus.
unsigned int spin() const
bool is_antiparticle_of(const PdgCode rhs) const
int nucleus_p() const
Number of protons in nucleus.
int nucleus_La() const
Number of Lambdas in nucleus.
int nucleus_A() const
Nucleus mass number.
int nucleus_aLa() const
Number of anti-Lambdas in nucleus.
double frac_strange() const
String excitation processes used in SMASH.
static int pdg_map_for_pythia(PdgCode &pdg)
Take pdg code and map onto particle specie which can be handled by PYTHIA.
std::array< double, 3 > cross_sections_diffractive(int pdg_a, int pdg_b, double sqrt_s)
Interface to pythia_sigmatot_ to compute cross-sections of A+B-> different final states Schuler:1993w...
Collection of useful constants that are known at compile time.
std::bitset< 10 > ReactionsBitSet
Container for the 2 to 2 reactions in the code.
NNbarTreatment
Treatment of N Nbar Annihilation.
@ TwoToFive
Directly create 5 pions, use with multi-particle reactions.
@ Resonances
Use intermediate Resonances.
@ Strings
Use string fragmentation.
std::bitset< 4 > MultiParticleReactionsBitSet
Container for the n to m reactions in the code.
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
constexpr int Delta_pp
Δ⁺⁺.
constexpr int h1
h₁(1170).
const PdgCode d(PdgCode::from_decimal(1000010020))
Deuteron.
const PdgCode antid(PdgCode::from_decimal(-1000010020))
Anti-deuteron in decimal digits.
const double pipi_offset
Constant offset as to where to turn on the strings and elastic processes for pi pi reactions (this is...
const std::array< double, 2 > sqrts_range_NN
transition range in N-N collisions: Tuned to reproduce experimental exclusive cross section data,...
const double sqrts_range
constant for the range of transition region in the case of AQM this is added to the sum of masses + s...
const std::array< double, 2 > sqrts_range_Npi
transition range in N-pi collisions
const double sqrts_add_lower
constant for the lower end of transition region in the case of AQM this is added to the sum of masses
const double KN_offset
Constant offset as to where to shift from 2to2 to string processes (in GeV) in the case of KN reactio...
double kplusn_k0p(double mandelstam_s)
K+ n charge exchange cross section parametrization.
double kminusp_pi0lambda(double sqrts)
K- p <-> pi0 Lambda cross section parametrization Fit to Landolt-Börnstein instead of UrQMD values.
T pCM(const T sqrts, const T mass_a, const T mass_b) noexcept
double piminusp_sigma0k0_res(double mandelstam_s)
pi- p -> Sigma0 K0 cross section parametrization, resonance contribution.
T pCM_sqr(const T sqrts, const T mass_a, const T mass_b) noexcept
double ppbar_total(double mandelstam_s)
ppbar total cross section parametrization Source: Bass:1998ca
double piminusp_elastic(double mandelstam_s)
pi-p elastic cross section parametrization Source: GiBUU:parametrizationBarMes_HighEnergy....
double npbar_high_energy(double mandelstam_s)
npbar total cross section at high energies
static double detailed_balance_factor_RR(double sqrts, double pcm, const ParticleType &a, const ParticleType &b, const ParticleType &c, const ParticleType &d)
Helper function: Calculate the detailed balance factor R such that.
double kminusn_piminussigma0(double sqrts)
K- n <-> pi- Sigma0 cross section parametrization Follow from the parametrization with the same stran...
double kbar0p_elastic_background(double mandelstam_s)
Kbar0 p elastic background cross section parametrization Source: Buss:2011mx , B.3....
KaonNucleonRatios kaon_nucleon_ratios
double ppbar_elastic(double mandelstam_s)
ppbar elastic cross section parametrization Source: Bass:1998ca
double kminusp_elastic_background(double mandelstam_s)
K- p elastic background cross section parametrization Source: Buss:2011mx , B.3.9.
double np_high_energy(double mandelstam_s)
np total cross section at high energies
double pp_elastic_high_energy(double mandelstam_s, double m1, double m2)
pp elastic cross section parametrization, with only the high energy part generalized to all energy re...
double Npi_string_hard(double mandelstam_s)
nucleon-pion hard scattering cross section (with partonic scattering)
double kminusn_piminuslambda(double sqrts)
K- n <-> pi- Lambda cross section parametrization Follow from the parametrization with the same stran...
double isospin_clebsch_gordan_sqr_2to2(const ParticleType &p_a, const ParticleType &p_b, const ParticleType &p_c, const ParticleType &p_d, const int I=-1)
Calculate the squared isospin Clebsch-Gordan coefficient for a 2-to-2 reaction A + B -> C + D.
@ TwoToOne
resonance formation (2->1)
@ StringSoftDoubleDiffractive
double diffractive. Two strings are formed, one from A and one from B.
@ TwoToFive
2->5 scattering
@ StringSoftSingleDiffractiveXB
single diffractive AB->XB.
@ TwoToTwo
2->2 inelastic scattering
@ Elastic
elastic scattering: particles remain the same, only momenta change
@ TwoToFour
2->4 scattering
@ StringSoftAnnihilation
a special case of baryon-antibaryon annihilation.
@ StringSoftNonDiffractive
non-diffractive. Two strings are formed both have ends in A and B.
@ StringSoftSingleDiffractiveAX
(41-45) soft string excitations.
@ StringHard
hard string process involving 2->2 QCD process by PYTHIA.
@ TwoToThree
2->3 scattering
constexpr double minimum_sqrts_pythia_can_handle
Energy in GeV, below which hard reactions via pythia are impossible.
double ppbar_high_energy(double mandelstam_s)
ppbar total cross section at high energies
double pp_high_energy(double mandelstam_s)
pp total cross section at high energies
T pCM_sqr_from_s(const T s, const T mass_a, const T mass_b) noexcept
double pipi_string_hard(double mandelstam_s)
pion-pion hard scattering cross section (with partonic scattering)
double piplusp_high_energy(double mandelstam_s)
pi+p total cross section at high energies
double kminusp_piminussigmaplus(double sqrts)
K- p <-> pi- Sigma+ cross section parametrization Taken from UrQMD (Graef:2014mra ).
double piplusp_elastic_high_energy(double mandelstam_s, double m1, double m2)
pi+p elactic cross section parametrization.
double piplusp_sigmapluskplus_pdg(double mandelstam_s)
pi+ p to Sigma+ K+ cross section parametrization, PDG data.
static constexpr int LCrossSections
constexpr double deuteron_mass
Deuteron mass in GeV.
double deuteron_nucleon_elastic(double mandelstam_s)
Deuteron nucleon elastic cross-section [mb] parametrized by Oh:2009gx .
constexpr double nucleon_mass
Nucleon mass in GeV.
constexpr T pow_int(const T base, unsigned const exponent)
Efficient template for calculating integer powers using squaring.
double piminusp_sigmaminuskplus_pdg(double mandelstam_s)
pi- p -> Sigma- K+ cross section parametrization, PDG data.
double piminusp_lambdak0_pdg(double mandelstam_s)
pi- p -> Lambda K0 cross section parametrization, PDG data.
static void append_list(CollisionBranchList &main_list, CollisionBranchList in_list, double weight=1.)
Helper function: Append a list of processes to another (main) list of processes.
static double detailed_balance_factor_stable(double s, const ParticleType &a, const ParticleType &b, const ParticleType &c, const ParticleType &d)
Helper function: Calculate the detailed balance factor R such that.
double k0p_elastic_background(double mandelstam_s)
K0 p elastic background cross section parametrization Source: Buss:2011mx , B.3.9.
constexpr uint64_t pack(int32_t x, int32_t y)
Pack two int32_t into an uint64_t.
double deuteron_pion_elastic(double mandelstam_s)
Deuteron pion elastic cross-section [mb] parametrized to fit pi-d elastic scattering data (the data c...
double NN_string_hard(double mandelstam_s)
nucleon-nucleon hard scattering cross section (with partonic scattering)
double xs_ppbar_annihilation(double mandelstam_s)
parametrized cross-section for proton-antiproton annihilation used in the UrQMD model
double kplusp_inelastic_background(double mandelstam_s)
K+ p inelastic background cross section parametrization Source: Buss:2011mx , B.3....
constexpr double pion_mass
Pion mass in GeV.
constexpr double hbarc
GeV <-> fm conversion factor.
double kminusp_pi0sigma0(double sqrts)
K- p <-> pi0 Sigma0 cross section parametrization Fit to Landolt-Börnstein instead of UrQMD values.
double kplusn_elastic_background(double mandelstam_s)
K+ n elastic background cross section parametrization sigma(K+n->K+n) = sigma(K+n->K0p) = 0....
T pCM_from_s(const T s, const T mass_a, const T mass_b) noexcept
constexpr double really_small
Numerical error tolerance.
double np_elastic(double mandelstam_s)
np elastic cross section parametrization Source: Weil:2013mya , eq.
static double detailed_balance_factor_RK(double sqrts, double pcm, const ParticleType &a, const ParticleType &b, const ParticleType &c, const ParticleType &d)
Helper function: Calculate the detailed balance factor R such that.
double k0n_elastic_background(double mandelstam_s)
K0 n elastic background cross section parametrization Source: Buss:2011mx , B.3.9.
static constexpr int LScatterAction
double kminusp_piplussigmaminus(double sqrts)
K- p <-> pi+ Sigma- cross section parametrization Taken from UrQMD (Graef:2014mra ).
double kbar0n_elastic_background(double mandelstam_s)
Kbar0 n elastic background cross section parametrization Source: Buss:2011mx , B.3....
double kminusp_kbar0n(double mandelstam_s)
K- p <-> Kbar0 n cross section parametrization.
double piminusp_high_energy(double mandelstam_s)
pi-p total cross section at high energies
double kminusn_elastic_background(double mandelstam_s)
K- n elastic background cross section parametrization Source: Buss:2011mx , B.3.9.
double pp_elastic(double mandelstam_s)
pp elastic cross section parametrization Source: Weil:2013mya , eq.
double kplusn_inelastic_background(double mandelstam_s)
K+ n inelastic background cross section parametrization Source: Buss:2011mx , B.3....
double kplusp_elastic_background(double mandelstam_s)
K+ p elastic background cross section parametrization.
double piplusp_elastic_AQM(double mandelstam_s, double m1, double m2)
An overload of piplusp_elastic_high_energy in which the very low part is replaced by a flat 5 mb cros...
double piplusp_elastic(double mandelstam_s)
pi+p elastic cross section parametrization, PDG data.
constexpr double fm2_mb
mb <-> fm^2 conversion factor.