Version: SMASH-3.1
smash::ScatterActionPhoton Class Reference

#include <scatteractionphoton.h>

ScatterActionPhoton is a special action which takes two incoming particles and performs a perturbative electromagnetic scattering.

The final state particles are not further propagated, only written to the output.

Definition at line 27 of file scatteractionphoton.h.

Inheritance diagram for smash::ScatterActionPhoton:
smash::ScatterAction smash::Action

Public Types

enum class  ReactionType {
  no_reaction , pi_z_pi_p_rho_p , pi_z_pi_m_rho_m , pi_p_rho_z_pi_p ,
  pi_m_rho_z_pi_m , pi_m_rho_p_pi_z , pi_p_rho_m_pi_z , pi_z_rho_p_pi_p ,
  pi_z_rho_m_pi_m , pi_p_pi_m_rho_z , pi_z_rho_z_pi_z
}
 Enum for encoding the photon process. More...
 

Public Member Functions

 ScatterActionPhoton (const ParticleList &in, const double time, const int n_frac_photons, const double hadronic_cross_section_input)
 Construct a ScatterActionPhoton object. More...
 
void perform_photons (const OutputsList &outputs)
 Create the photon final state and write to output. More...
 
void generate_final_state () override
 Generate the final-state for the photon scatter process. More...
 
double get_total_weight () const override
 Return the weight of the last created photon. More...
 
double hadronic_cross_section () const
 Return the total cross section of the underlying hadronic scattering. More...
 
double sample_out_hadron_mass (const ParticleTypePtr out_type)
 Sample the mass of the outgoing hadron. More...
 
void add_dummy_hadronic_process (double reaction_cross_section)
 Adds one hadronic process with a given cross-section. More...
 
void add_single_process ()
 Add the photonic process. More...
 
- Public Member Functions inherited from smash::ScatterAction
 ScatterAction (const ParticleData &in_part1, const ParticleData &in_part2, double time, bool isotropic=false, double string_formation_time=1.0, double box_length=-1.0, bool is_total_parametrized=false)
 Construct a ScatterAction object. More...
 
void add_collision (CollisionBranchPtr p)
 Add a new collision channel. More...
 
void add_collisions (CollisionBranchList pv)
 Add several new collision channels at once. More...
 
double transverse_distance_sqr () const
 Calculate the transverse distance of the two incoming particles in their local rest frame. More...
 
double cov_transverse_distance_sqr () const
 Calculate the transverse distance of the two incoming particles in their local rest frame written in a covariant form. More...
 
double mandelstam_s () const
 Determine the Mandelstam s variable,. More...
 
double relative_velocity () const
 Get the relative velocity of the two incoming particles. More...
 
double get_partial_weight () const override
 Get the partial cross section of the chosen channel. More...
 
void sample_angles (std::pair< double, double > masses, double kinetic_energy_cm) override
 Sample final-state angles in a 2->2 collision (possibly anisotropic). More...
 
void add_all_scatterings (const ScatterActionsFinderParameters &finder_parameters)
 Add all possible scattering subprocesses for this action object. More...
 
void set_parametrized_total_cross_section (const ScatterActionsFinderParameters &finder_parameters)
 Given the incoming particles, assigns the correct parametrization of the total cross section. More...
 
const CollisionBranchList & collision_channels ()
 Get list of possible collision channels. More...
 
void set_string_interface (StringProcess *str_proc)
 Set the StringProcess object to be used. More...
 
virtual double cross_section () const
 Get the total cross section of the scattering particles, either from a parametrization, or from the sum of partials. More...
 
- Public Member Functions inherited from smash::Action
 Action (const ParticleList &in_part, double time)
 Construct an action object with incoming particles and relative time. More...
 
 Action (const ParticleData &in_part, const ParticleData &out_part, double time, ProcessType type)
 Construct an action object with the incoming particles, relative time, and the already known outgoing particles and type of the process. More...
 
 Action (const ParticleList &in_part, const ParticleList &out_part, double absolute_execution_time, ProcessType type)
 Construct an action object with the incoming particles, absolute time, and the already known outgoing particles and type of the process. More...
 
 Action (const Action &)=delete
 Copying is disabled. Use pointers or create a new Action. More...
 
virtual ~Action ()
 Virtual Destructor. More...
 
bool operator< (const Action &rhs) const
 Determine whether one action takes place before another in time. More...
 
virtual ProcessType get_type () const
 Get the process type. More...
 
template<typename Branch >
void add_process (ProcessBranchPtr< Branch > &p, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add a new subprocess. More...
 
template<typename Branch >
void add_processes (ProcessBranchList< Branch > pv, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add several new subprocesses at once. More...
 
virtual double perform (Particles *particles, uint32_t id_process)
 Actually perform the action, e.g. More...
 
bool is_valid (const Particles &particles) const
 Check whether the action still applies. More...
 
bool is_pauli_blocked (const std::vector< Particles > &ensembles, const PauliBlocker &p_bl) const
 Check if the action is Pauli-blocked. More...
 
const ParticleList & incoming_particles () const
 Get the list of particles that go into the action. More...
 
void update_incoming (const Particles &particles)
 Update the incoming particles that are stored in this action to the state they have in the global particle list. More...
 
const ParticleList & outgoing_particles () const
 Get the list of particles that resulted from the action. More...
 
double time_of_execution () const
 Get the time at which the action is supposed to be performed. More...
 
virtual double check_conservation (const uint32_t id_process) const
 Check various conservation laws. More...
 
double sqrt_s () const
 Determine the total energy in the center-of-mass frame [GeV]. More...
 
FourVector total_momentum_of_outgoing_particles () const
 Calculate the total kinetic momentum of the outgoing particles. More...
 
FourVector get_interaction_point () const
 Get the interaction point. More...
 
std::pair< FourVector, FourVectorget_potential_at_interaction_point () const
 Get the skyrme and asymmetry potential at the interaction point. More...
 
void set_stochastic_pos_idx ()
 Setter function that stores a random incoming particle index latter used to determine the interaction point. More...
 

Static Public Member Functions

static ReactionType photon_reaction_type (const ParticleList &in)
 Determine photon process from incoming particles. More...
 
static bool is_photon_reaction (const ParticleList &in)
 Check if particles can undergo an implemented photon process. More...
 
static ParticleTypePtr outgoing_hadron_type (const ParticleList &in)
 Return ParticleTypePtr of hadron in the out channel, given the incoming particles. More...
 
static ParticleTypePtr outgoing_hadron_type (const ReactionType reaction)
 Return ParticleTypePtr of hadron in the out channel, given the ReactionType. More...
 
static bool is_kinematically_possible (const double s_sqrt, const ParticleList &in)
 Check if CM-energy is sufficient to produce hadron in final state. More...
 
- Static Public Member Functions inherited from smash::Action
static double lambda_tilde (double a, double b, double c)
 Little helper function that calculates the lambda function (sometimes written with a tilde to better distinguish it) that appears e.g. More...
 
static void sample_manybody_phasespace_impl (double sqrts, const std::vector< double > &m, std::vector< FourVector > &sampled_momenta)
 Implementation of the full n-body phase-space sampling (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 

Private Types

enum class  MediatorType { SUM , PION , OMEGA }
 Compile-time switch for setting the handling of processes which can happen via different mediating particles. More...
 

Private Member Functions

double rho_mass () const
 Find the mass of the participating rho-particle. More...
 
CollisionBranchList create_collision_branch ()
 Creates a CollisionBranchList containing the photon processes. More...
 
double total_cross_section (MediatorType mediator=default_mediator_) const
 Calculate the total cross section of the photon process. More...
 
double total_cross_section_w_ff (const double E_photon)
 Compute the total cross corrected for form factors. More...
 
double diff_cross_section (const double t, const double m_rho, MediatorType mediator=default_mediator_) const
 Calculate the differential cross section of the photon process. More...
 
double diff_cross_section_w_ff (const double t, const double m_rho, const double E_photon)
 Compute the differential cross section corrected for form factors. More...
 
double form_factor_pion (const double E_photon) const
 Compute the form factor for a process with a pion as the lightest exchange particle. More...
 
double form_factor_omega (const double E_photon) const
 Compute the form factor for a process with a omega as the lightest exchange particle. More...
 
std::pair< double, double > form_factor_pair (const double E_photon)
 For processes which can happen via (pi, a1, rho) and omega exchange, return the form factor for the (pi, a1, rho) process in the first argument, for the omega process in the second. More...
 
std::pair< double, double > total_cross_section_pair ()
 For processes which can happen via (pi, a1, rho) and omega exchange, return the total cross section for the (pi, a1, rho) process in the first argument, for the omega process in the second. More...
 
std::pair< double, double > diff_cross_section_pair (const double t, const double m_rho)
 For processes which can happen via (pi, a1, rho) and omega exchange, return the differential cross section for the (pi, a1, rho) process in the first argument, for the omega process in the second. More...
 

Private Attributes

CollisionBranchList collision_processes_photons_
 Holds the photon branch. More...
 
bool collision_branch_created_ = false
 Was the collision branch already created? More...
 
const ReactionType reac_
 Photonic process as determined from incoming particles. More...
 
const int number_of_fractional_photons_
 Number of photons created for each hadronic scattering, needed for correct weighting. More...
 
const ParticleTypePtr hadron_out_t_
 ParticleTypePtr to the type of the outgoing hadron. More...
 
const double hadron_out_mass_
 Mass of outgoing hadron. More...
 
double weight_ = 0.0
 Weight of the produced photon. More...
 
double cross_section_photons_ = 0.0
 Total cross section of photonic process. More...
 
const double hadronic_cross_section_
 Total hadronic cross section. More...
 

Static Private Attributes

static constexpr MediatorType default_mediator_ = MediatorType::SUM
 Value used for default exchange particle. See MediatorType. More...
 

Additional Inherited Members

- Protected Member Functions inherited from smash::ScatterAction
double cm_momentum () const
 Get the momentum of the center of mass of the incoming particles in the calculation frame. More...
 
double cm_momentum_squared () const
 Get the squared momentum of the center of mass of the incoming particles in the calculation frame. More...
 
ThreeVector beta_cm () const
 Get the velocity of the center of mass of the scattering/incoming particles in the calculation frame. More...
 
double gamma_cm () const
 Get the gamma factor corresponding to a boost to the center of mass frame of the colliding particles. More...
 
void elastic_scattering ()
 Perform an elastic two-body scattering, i.e. just exchange momentum. More...
 
void inelastic_scattering ()
 Perform an inelastic two-body scattering, i.e. new particles are formed. More...
 
void two_to_many_scattering ()
 Perform an inelastic two-to-many-body scattering (more than 2) More...
 
void create_string_final_state ()
 Creates the final states for string-processes after they are performed. More...
 
void string_excitation ()
 Todo(ryu): document better - it is not really UrQMD-based, isn't it? Perform the UrQMD-based string excitation and decay. More...
 
void format_debug_output (std::ostream &out) const override
 Writes information about this scatter action to the out stream. More...
 
- Protected Member Functions inherited from smash::Action
FourVector total_momentum () const
 Sum of 4-momenta of incoming particles. More...
 
template<typename Branch >
const Branch * choose_channel (const ProcessBranchList< Branch > &subprocesses, double total_weight)
 Decide for a particular final-state channel via Monte-Carlo and return it as a ProcessBranch. More...
 
virtual std::pair< double, double > sample_masses (double kinetic_energy_cm) const
 Sample final-state masses in general X->2 processes (thus also fixing the absolute c.o.m. More...
 
void sample_2body_phasespace ()
 Sample the full 2-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
virtual void sample_manybody_phasespace ()
 Sample the full n-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
void assign_formation_time_to_outgoing_particles ()
 Assign the formation time to the outgoing particles. More...
 
- Protected Attributes inherited from smash::ScatterAction
CollisionBranchList collision_channels_
 List of possible collisions. More...
 
double sum_of_partial_cross_sections_
 Current sum of partial hadronic cross sections. More...
 
double partial_cross_section_
 Partial cross-section to the chosen outgoing channel. More...
 
bool isotropic_ = false
 Do this collision isotropically? More...
 
double string_formation_time_ = 1.0
 Time fragments take to be fully formed in hard string excitation. More...
 
- Protected Attributes inherited from smash::Action
ParticleList incoming_particles_
 List with data of incoming particles. More...
 
ParticleList outgoing_particles_
 Initially this stores only the PDG codes of final-state particles. More...
 
const double time_of_execution_
 Time at which the action is supposed to be performed (absolute time in the lab frame in fm). More...
 
ProcessType process_type_
 type of process More...
 
double box_length_ = -1.0
 Box length: needed to determine coordinates of collision correctly in case of collision through the wall. More...
 
int stochastic_position_idx_ = -1
 This stores a randomly-chosen index to an incoming particle. More...
 

Member Enumeration Documentation

◆ ReactionType

Enum for encoding the photon process.

It is uniquely determined by the incoming particles. The naming scheme is : Incoming_1__Incoming_2__Outgoing_hadron. The photon is omitted in the naming.

Enumerator
no_reaction 
pi_z_pi_p_rho_p 
pi_z_pi_m_rho_m 
pi_p_rho_z_pi_p 
pi_m_rho_z_pi_m 
pi_m_rho_p_pi_z 
pi_p_rho_m_pi_z 
pi_z_rho_p_pi_p 
pi_z_rho_m_pi_m 
pi_p_pi_m_rho_z 
pi_z_rho_z_pi_z 

Definition at line 112 of file scatteractionphoton.h.

112  {
113  no_reaction,
114  pi_z_pi_p_rho_p,
115  pi_z_pi_m_rho_m,
116  pi_p_rho_z_pi_p,
117  pi_m_rho_z_pi_m,
118  pi_m_rho_p_pi_z,
119  pi_p_rho_m_pi_z,
120  pi_z_rho_p_pi_p,
121  pi_z_rho_m_pi_m,
122  pi_p_pi_m_rho_z,
123  pi_z_rho_z_pi_z
124  };

◆ MediatorType

Compile-time switch for setting the handling of processes which can happen via different mediating particles.

Relevant only for the processes pi0 + rho => pi + y and pi + rho => pi0 + gamma, which both can happen via exchange of (rho, a1, pi) or omega. If MediatorType::SUM is set, the cross section for both processes is added. If MediatorType::PION/ OMEGA is set, only the respective processes are computed.

Enumerator
SUM 
PION 
OMEGA 

Definition at line 218 of file scatteractionphoton.h.

218 { SUM, PION, OMEGA };

Constructor & Destructor Documentation

◆ ScatterActionPhoton()

smash::ScatterActionPhoton::ScatterActionPhoton ( const ParticleList &  in,
const double  time,
const int  n_frac_photons,
const double  hadronic_cross_section_input 
)

Construct a ScatterActionPhoton object.

Parameters
[in]inParticleList of incoming particles.
[in]timeTime relative to underlying hadronic action.
[in]n_frac_photonsNumber of photons to produce for each hadronic scattering.
[in]hadronic_cross_section_inputCross-section of underlying hadronic cross-section.
Returns
The constructed object.

Definition at line 26 of file scatteractionphoton.cc.

29  : ScatterAction(in[0], in[1], time),
31  number_of_fractional_photons_(n_frac_photons),
34  hadronic_cross_section_(hadronic_cross_section_input) {}
const int number_of_fractional_photons_
Number of photons created for each hadronic scattering, needed for correct weighting.
const double hadronic_cross_section_
Total hadronic cross section.
const ReactionType reac_
Photonic process as determined from incoming particles.
static ParticleTypePtr outgoing_hadron_type(const ParticleList &in)
Return ParticleTypePtr of hadron in the out channel, given the incoming particles.
const double hadron_out_mass_
Mass of outgoing hadron.
static ReactionType photon_reaction_type(const ParticleList &in)
Determine photon process from incoming particles.
const ParticleTypePtr hadron_out_t_
ParticleTypePtr to the type of the outgoing hadron.
double sample_out_hadron_mass(const ParticleTypePtr out_type)
Sample the mass of the outgoing hadron.
ScatterAction(const ParticleData &in_part1, const ParticleData &in_part2, double time, bool isotropic=false, double string_formation_time=1.0, double box_length=-1.0, bool is_total_parametrized=false)
Construct a ScatterAction object.

Member Function Documentation

◆ perform_photons()

void smash::ScatterActionPhoton::perform_photons ( const OutputsList &  outputs)

Create the photon final state and write to output.

Parameters
[in]outputsList of all outputs. Does not have to be a specific photon output, the function will take care of this.

Definition at line 89 of file scatteractionphoton.cc.

89  {
90  for (int i = 0; i < number_of_fractional_photons_; i++) {
92  for (const auto &output : outputs) {
93  if (output->is_photon_output()) {
94  // we do not care about the local density
95  output->at_interaction(*this, 0.0);
96  }
97  }
98  }
99 }
void generate_final_state() override
Generate the final-state for the photon scatter process.

◆ generate_final_state()

void smash::ScatterActionPhoton::generate_final_state ( )
overridevirtual

Generate the final-state for the photon scatter process.

Generates only one photon / hadron pair

Reimplemented from smash::ScatterAction.

Definition at line 190 of file scatteractionphoton.cc.

190  {
191  // we have only one reaction per incoming particle pair
192  if (collision_processes_photons_.size() != 1) {
193  logg[LScatterAction].fatal()
194  << "Problem in ScatterActionPhoton::generate_final_state().\n";
195  throw std::runtime_error("");
196  }
197  auto *proc = collision_processes_photons_[0].get();
198 
199  outgoing_particles_ = proc->particle_list();
200  process_type_ = proc->get_type();
201 
202  FourVector middle_point = get_interaction_point();
203 
204  // t is defined to be the momentum exchanged between the rho meson and the
205  // photon in pi + rho -> pi + photon channel. Therefore,
206  // get_t_range needs to be called with m2 being the rho mass instead of the
207  // pion mass. So, particles 1 and 2 are swapped if necessary.
208 
209  if (!incoming_particles_[0].pdgcode().is_pion()) {
210  std::swap(incoming_particles_[0], incoming_particles_[1]);
211  }
212 
213  // 2->2 inelastic scattering
214  // Sample the particle momenta in CM system
215  const double m1 = incoming_particles_[0].effective_mass();
216  const double m2 = incoming_particles_[1].effective_mass();
217 
218  const double &m_out = hadron_out_mass_;
219 
220  const double s = mandelstam_s();
221  const double sqrts = sqrt_s();
222  std::array<double, 2> mandelstam_t = get_t_range(sqrts, m1, m2, m_out, 0.0);
223  const double t1 = mandelstam_t[1];
224  const double t2 = mandelstam_t[0];
225  const double pcm_in = cm_momentum();
226  const double pcm_out = pCM(sqrts, m_out, 0.0);
227 
228  const double t = random::uniform(t1, t2);
229 
230  double costheta = (t - pow_int(m2, 2) +
231  0.5 * (s + pow_int(m2, 2) - pow_int(m1, 2)) *
232  (s - pow_int(m_out, 2)) / s) /
233  (pcm_in * (s - pow_int(m_out, 2)) / sqrts);
234 
235  // on very rare occasions near the kinematic threshold numerical issues give
236  // unphysical angles.
237  if (costheta > 1 || costheta < -1) {
238  logg[LScatterAction].warn()
239  << "Cos(theta)of photon scattering out of physical bounds in "
240  "the following scattering: "
241  << incoming_particles_ << "Clamping to [-1,1].";
242  if (costheta > 1.0)
243  costheta = 1.0;
244  if (costheta < -1.0)
245  costheta = -1.0;
246  }
247  Angles phitheta(random::uniform(0.0, twopi), costheta);
248  outgoing_particles_[0].set_4momentum(hadron_out_mass_,
249  phitheta.threevec() * pcm_out);
250  outgoing_particles_[1].set_4momentum(0.0, -phitheta.threevec() * pcm_out);
251 
252  // Set positions & boost to computational frame.
253  for (ParticleData &new_particle : outgoing_particles_) {
254  new_particle.set_4position(middle_point);
255  new_particle.boost_momentum(
257  }
258 
259  const double E_Photon = outgoing_particles_[1].momentum()[0];
260 
261  // Weighing of the fractional photons
263  // if rho in final state take already sampled mass (same as m_out). If rho
264  // is incoming take the mass of the incoming particle
265  const double m_rho = rho_mass();
266 
267  // compute the differential cross section with form factor included
268  const double diff_xs = diff_cross_section_w_ff(t, m_rho, E_Photon);
269 
270  weight_ = diff_xs * (t2 - t1) /
272  } else {
273  // compute the total cross section with form factor included
274  const double total_xs = total_cross_section_w_ff(E_Photon);
275 
276  weight_ = total_xs / hadronic_cross_section();
277  }
278  // Scale weight by cross section scaling factor of incoming particles
279  weight_ *= incoming_particles_[0].xsec_scaling_factor() *
280  incoming_particles_[1].xsec_scaling_factor();
281 
282  // Photons are not really part of the normal processes, so we have to set a
283  // constant arbitrary number.
284  const auto id_process = ID_PROCESS_PHOTON;
285  Action::check_conservation(id_process);
286 }
FourVector total_momentum_of_outgoing_particles() const
Calculate the total kinetic momentum of the outgoing particles.
Definition: action.cc:157
ParticleList outgoing_particles_
Initially this stores only the PDG codes of final-state particles.
Definition: action.h:363
virtual double check_conservation(const uint32_t id_process) const
Check various conservation laws.
Definition: action.cc:475
double sqrt_s() const
Determine the total energy in the center-of-mass frame [GeV].
Definition: action.h:271
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:355
FourVector get_interaction_point() const
Get the interaction point.
Definition: action.cc:68
ProcessType process_type_
type of process
Definition: action.h:372
double total_cross_section_w_ff(const double E_photon)
Compute the total cross corrected for form factors.
double diff_cross_section_w_ff(const double t, const double m_rho, const double E_photon)
Compute the differential cross section corrected for form factors.
CollisionBranchList collision_processes_photons_
Holds the photon branch.
double rho_mass() const
Find the mass of the participating rho-particle.
double weight_
Weight of the produced photon.
double hadronic_cross_section() const
Return the total cross section of the underlying hadronic scattering.
double mandelstam_s() const
Determine the Mandelstam s variable,.
double cm_momentum() const
Get the momentum of the center of mass of the incoming particles in the calculation frame.
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
T uniform(T min, T max)
Definition: random.h:88
T pCM(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:79
constexpr std::uint32_t ID_PROCESS_PHOTON
Process ID for any photon process.
Definition: constants.h:118
constexpr double twopi
.
Definition: constants.h:45
std::array< T, 2 > get_t_range(const T sqrts, const T m1, const T m2, const T m3, const T m4)
Get the range of Mandelstam-t values allowed in a particular 2->2 process, see PDG 2014 booklet,...
Definition: kinematics.h:109
constexpr T pow_int(const T base, unsigned const exponent)
Efficient template for calculating integer powers using squaring.
Definition: pow.h:23
static constexpr int LScatterAction

◆ get_total_weight()

double smash::ScatterActionPhoton::get_total_weight ( ) const
inlineoverridevirtual

Return the weight of the last created photon.

Returns
The total weight.

Reimplemented from smash::ScatterAction.

Definition at line 64 of file scatteractionphoton.h.

64 { return weight_; }

◆ hadronic_cross_section()

double smash::ScatterActionPhoton::hadronic_cross_section ( ) const
inline

Return the total cross section of the underlying hadronic scattering.

Returns
total cross-section [mb]

Definition at line 71 of file scatteractionphoton.h.

71 { return hadronic_cross_section_; }

◆ sample_out_hadron_mass()

double smash::ScatterActionPhoton::sample_out_hadron_mass ( const ParticleTypePtr  out_type)

Sample the mass of the outgoing hadron.

Returns the pole mass if particle is stable.

Parameters
[in]out_typeTypePtr of the outgoing hadron.
Returns
Mass of outgoing hadron [GeV]

Definition at line 296 of file scatteractionphoton.cc.

297  {
298  double mass = out_t->mass();
299  const double cms_energy = sqrt_s();
300  if (cms_energy <= out_t->min_mass_kinematic()) {
301  throw InvalidResonanceFormation(
302  "Problem in ScatterActionPhoton::sample_hadron_mass");
303  }
304 
305  if (!out_t->is_stable()) {
306  mass = out_t->sample_resonance_mass(0, cms_energy);
307  }
308 
309  return mass;
310 }

◆ add_dummy_hadronic_process()

void smash::ScatterActionPhoton::add_dummy_hadronic_process ( double  reaction_cross_section)

Adds one hadronic process with a given cross-section.

The intended use is to add the hadronic cross-section from the already performed hadronic action without recomputing it.

Parameters
[in]reaction_cross_sectionTotal cross-section of underlying hadronic process [mb]

Definition at line 288 of file scatteractionphoton.cc.

289  {
290  CollisionBranchPtr dummy_process = std::make_unique<CollisionBranch>(
291  incoming_particles_[0].type(), incoming_particles_[1].type(),
292  reaction_cross_section, ProcessType::TwoToTwo);
293  add_collision(std::move(dummy_process));
294 }
void add_collision(CollisionBranchPtr p)
Add a new collision channel.
@ TwoToTwo
See here for a short description.

◆ add_single_process()

void smash::ScatterActionPhoton::add_single_process ( )
inline

Add the photonic process.

Also compute the total cross section as a side effect.

Definition at line 100 of file scatteractionphoton.h.

100  {
101  add_processes<CollisionBranch>(create_collision_branch(),
104  }
double cross_section_photons_
Total cross section of photonic process.
CollisionBranchList create_collision_branch()
Creates a CollisionBranchList containing the photon processes.

◆ photon_reaction_type()

ScatterActionPhoton::ReactionType smash::ScatterActionPhoton::photon_reaction_type ( const ParticleList &  in)
static

Determine photon process from incoming particles.

If incoming particles are not part of any implemented photonic process, return no_reaction.

Parameters
[in]inParticleList of incoming particles.
Returns
ReactionType enum-member

Definition at line 36 of file scatteractionphoton.cc.

37  {
38  if (in.size() != 2) {
40  }
41 
42  PdgCode a = in[0].pdgcode();
43  PdgCode b = in[1].pdgcode();
44 
45  // swap so that pion is first and there are less cases to be listed
46  if (!a.is_pion()) {
47  std::swap(a, b);
48  }
49 
50  switch (pack(a.code(), b.code())) {
51  case (pack(pdg::pi_p, pdg::pi_z)):
52  case (pack(pdg::pi_z, pdg::pi_p)):
54 
55  case (pack(pdg::pi_m, pdg::pi_z)):
56  case (pack(pdg::pi_z, pdg::pi_m)):
58 
59  case (pack(pdg::pi_p, pdg::rho_z)):
61 
62  case (pack(pdg::pi_m, pdg::rho_z)):
64 
65  case (pack(pdg::pi_m, pdg::rho_p)):
67 
68  case (pack(pdg::pi_p, pdg::rho_m)):
70 
71  case (pack(pdg::pi_z, pdg::rho_p)):
73 
74  case (pack(pdg::pi_z, pdg::rho_m)):
76 
77  case (pack(pdg::pi_p, pdg::pi_m)):
78  case (pack(pdg::pi_m, pdg::pi_p)):
80 
81  case (pack(pdg::pi_z, pdg::rho_z)):
83 
84  default:
86  }
87 }
constexpr int pi_p
π⁺.
constexpr int rho_p
ρ⁺.
constexpr int rho_m
ρ⁻.
constexpr int pi_z
π⁰.
constexpr int rho_z
ρ⁰.
constexpr int pi_m
π⁻.
constexpr uint64_t pack(int32_t x, int32_t y)
Pack two int32_t into an uint64_t.

◆ is_photon_reaction()

static bool smash::ScatterActionPhoton::is_photon_reaction ( const ParticleList &  in)
inlinestatic

Check if particles can undergo an implemented photon process.

This function does not check the involved kinematics.

Parameters
[in]inParticleList of incoming particles.
Returns
bool if photon reaction implemented.

Definition at line 145 of file scatteractionphoton.h.

145  {
147  }

◆ outgoing_hadron_type() [1/2]

ParticleTypePtr smash::ScatterActionPhoton::outgoing_hadron_type ( const ParticleList &  in)
static

Return ParticleTypePtr of hadron in the out channel, given the incoming particles.

This function is overloaded since we need the hadron type in different places.

Parameters
[in]inParticleList of incoming particles.
Returns
ParticeTypePtr to hadron in outgoing channel.

Definition at line 147 of file scatteractionphoton.cc.

148  {
149  auto reac = photon_reaction_type(in);
150  return outgoing_hadron_type(reac);
151 }

◆ outgoing_hadron_type() [2/2]

ParticleTypePtr smash::ScatterActionPhoton::outgoing_hadron_type ( const ReactionType  reaction)
static

Return ParticleTypePtr of hadron in the out channel, given the ReactionType.

This function is overloaded since we need the hadron type in different places.

Parameters
[in]reactionReactionType, determined from incoming particles.
Returns
ParticeTypePtr to hadron in outgoing channel.

Definition at line 101 of file scatteractionphoton.cc.

102  {
103  static const ParticleTypePtr rho_z_particle_ptr =
105  static const ParticleTypePtr rho_p_particle_ptr =
107  static const ParticleTypePtr rho_m_particle_ptr =
109  static const ParticleTypePtr pi_z_particle_ptr =
111  static const ParticleTypePtr pi_p_particle_ptr =
113  static const ParticleTypePtr pi_m_particle_ptr =
115 
116  switch (reaction) {
118  return rho_p_particle_ptr;
119  break;
121  return rho_m_particle_ptr;
122  break;
124  return rho_z_particle_ptr;
125  break;
126 
129  return pi_p_particle_ptr;
130 
133  return pi_m_particle_ptr;
134 
138  return pi_z_particle_ptr;
139  break;
140  default:
141  // default constructor constructs p with invalid index
142  ParticleTypePtr p{};
143  return p;
144  }
145 }
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
Definition: particletype.cc:99
constexpr int p
Proton.

◆ is_kinematically_possible()

bool smash::ScatterActionPhoton::is_kinematically_possible ( const double  s_sqrt,
const ParticleList &  in 
)
static

Check if CM-energy is sufficient to produce hadron in final state.

Parameters
[in]s_sqrtCM-energy [GeV]
[in]inParticleList of incoming hadrons
Returns
true if particles can be produced.

Definition at line 153 of file scatteractionphoton.cc.

154  {
155  auto reac = photon_reaction_type(in);
156  auto hadron = outgoing_hadron_type(in);
157 
158  if (reac == ReactionType::no_reaction)
159  return false;
160 
163  return false;
164  }
165 
166  // C15 has only s-channel. Make sure that CM-energy is high
167  // enough to produce mediating omega meson
168  if ((reac == ReactionType::pi_m_rho_p_pi_z ||
171  if (s_sqrt < omega_mass) {
172  return false;
173  }
174  }
175 
176  // for all other processes: if cm-energy is not high enough to produce final
177  // state particle reject the collision.
178  if (hadron->is_stable() && s_sqrt < hadron->mass()) {
179  return false;
180  // Make sure energy is high enough to not only create final state particle,
181  // but to also assign momentum.
182  } else if (!hadron->is_stable() &&
183  s_sqrt < (hadron->min_mass_spectral() + really_small)) {
184  return false;
185  } else {
186  return true;
187  }
188 }
static constexpr MediatorType default_mediator_
Value used for default exchange particle. See MediatorType.
constexpr double really_small
Numerical error tolerance.
Definition: constants.h:37
constexpr double omega_mass
omega mass in GeV.
Definition: constants.h:79

◆ rho_mass()

double smash::ScatterActionPhoton::rho_mass ( ) const
private

Find the mass of the participating rho-particle.

In case of a rho in the incoming channel it is the mass of the incoming rho, in case of an rho in the outgoing channel it is the mass sampled in the constructor. When an rho acts in addition as a mediator, its mass is the same as the incoming / outgoing rho. This function returns the alrady sampled mass or the mass of the incoming rho, depending on the process.

Returns
mass of participating rho [GeV]

Definition at line 312 of file scatteractionphoton.cc.

312  {
313  assert(reac_ != ReactionType::no_reaction);
314  switch (reac_) {
315  // rho in final state. use already sampled mass
319  return hadron_out_mass_;
320  // rho in initial state, use its mass
328  return (incoming_particles_[0].is_rho())
329  ? incoming_particles_[0].effective_mass()
330  : incoming_particles_[1].effective_mass();
332  default:
333  throw std::runtime_error(
334  "Invalid ReactionType in ScatterActionPhoton::rho_mass()");
335  }
336 }

◆ create_collision_branch()

CollisionBranchList smash::ScatterActionPhoton::create_collision_branch ( )
private

Creates a CollisionBranchList containing the photon processes.

By construction (perturbative treatment) this list will always contain only one branch.

Returns
List containing the photon collision branch

Definition at line 338 of file scatteractionphoton.cc.

338  {
339  CollisionBranchList process_list;
340 
341  static ParticleTypePtr photon_particle = &ParticleType::find(pdg::photon);
342  double xsection = total_cross_section();
343 
344  process_list.push_back(std::make_unique<CollisionBranch>(
345  *hadron_out_t_, *photon_particle, xsection, ProcessType::TwoToTwo));
347  return process_list;
348 }
double total_cross_section(MediatorType mediator=default_mediator_) const
Calculate the total cross section of the photon process.
bool collision_branch_created_
Was the collision branch already created?
constexpr int photon
Photon.

◆ total_cross_section()

double smash::ScatterActionPhoton::total_cross_section ( MediatorType  mediator = default_mediator_) const
private

Calculate the total cross section of the photon process.

Formfactors are not included

Parameters
[in]mediatorSwitch for determing which mediating particle to use
Returns
Total cross section. [mb]

Definition at line 350 of file scatteractionphoton.cc.

350  {
351  CollisionBranchList process_list;
352  CrosssectionsPhoton<ComputationMethod::Analytic> xs_object;
353 
354  const double s = mandelstam_s();
355  // the mass of the mediating particle depends on the channel. For an incoming
356  // rho it is the mass of the incoming particle, for an outgoing rho it is the
357  // sampled mass
358  const double m_rho = rho_mass();
359  double xsection = 0.0;
360 
361  switch (reac_) {
363  xsection = xs_object.xs_pi_pi_rho0(s, m_rho);
364  break;
365 
368  xsection = xs_object.xs_pi_pi0_rho(s, m_rho);
369  break;
370 
373  xsection = xs_object.xs_pi_rho0_pi(s, m_rho);
374  break;
375 
378  if (mediator == MediatorType::SUM) {
379  xsection = xs_object.xs_pi_rho_pi0(s, m_rho);
380  break;
381  } else if (mediator == MediatorType::PION) {
382  xsection = xs_object.xs_pi_rho_pi0_rho_mediated(s, m_rho);
383  break;
384  } else if (mediator == MediatorType::OMEGA) {
385  xsection = xs_object.xs_pi_rho_pi0_omega_mediated(s, m_rho);
386  break;
387  } else {
388  throw std::runtime_error("");
389  }
392  if (mediator == MediatorType::SUM) {
393  xsection = xs_object.xs_pi0_rho_pi(s, m_rho);
394  break;
395  } else if (mediator == MediatorType::PION) {
396  xsection = xs_object.xs_pi0_rho_pi_rho_mediated(s, m_rho);
397  break;
398  } else if (mediator == MediatorType::OMEGA) {
399  xsection = xs_object.xs_pi0_rho_pi_omega_mediated(s, m_rho);
400  break;
401  } else {
402  throw std::runtime_error("");
403  }
404 
406  xsection = xs_object.xs_pi0_rho0_pi0(s, m_rho);
407  break;
408 
410  // never reached
411  break;
412  }
413 
414  if (xsection == 0.0) {
415  // Vanishing cross sections are problematic for the creation of a
416  // CollisionBranch. For infrastructure reasons it is however necessary to
417  // create such a collision branch whenever the underlying hadronic
418  // scattering is a candidate for a photon interaction. In these cases we
419  // need to manually set a dummy value for the cross section and produce the
420  // photon. This photon will however automatically be assigned a 0 weight
421  // because of the vanishing cross section and therefore not be of relevance
422  // for any analysis.
423  // In other cases, where the collision branch was already created, we
424  // do not want to overwrite the cross section, of course.
425  xsection = collision_branch_created_ ? 0.0 : 0.01;
426  } else if (xsection < 0) {
427  // Due to numerical reasons it can happen that the calculated cross sections
428  // are negative (approximately -1e-15) if sqrt(s) is close to the threshold
429  // energy. In those cases the cross section is manually set to 0.1 mb, which
430  // is a reasonable value for the processes we are looking at (C14,C15,C16).
431  xsection = 0.1;
432  logg[LScatterAction].warn(
433  "Calculated negative cross section.\nParticles ", incoming_particles_,
434  " mass rho particle: ", m_rho, ", sqrt_s: ", std::sqrt(s));
435  }
436  return xsection;
437 }

◆ total_cross_section_w_ff()

double smash::ScatterActionPhoton::total_cross_section_w_ff ( const double  E_photon)
private

Compute the total cross corrected for form factors.

Takes care of correct handling of reactions with multiple processes by reading the default_mediator_ member variable.

Parameters
[in]E_photonof outgoing photon [GeV]
Returns
total cross section including form factors [mb]

The form factor is assumed to be a hadronic dipole form factor which takes the shape: FF = (2*Lambda^2/(2*Lambda^2 - t))^2 with Lambda = 1.0 GeV. t depends on the lightest possible exchange particle in the different channels. This could either be a pion or an omega meson. For the computation the parametrizations given in (Turbide:2006zz [59]) are used.

Definition at line 439 of file scatteractionphoton.cc.

439  {
449  /* C12, C13, C15, C16 need special treatment. These processes have identical
450  incoming and outgoing particles, but diffrent mediating particles and
451  hence different form factors. If both channels are added up
452  (MediatorType::SUM), each contribution is corrected by the corresponding
453  form factor.
454  */
455  switch (reac_) {
461  std::pair<double, double> FF = form_factor_pair(E_photon);
462  std::pair<double, double> xs = total_cross_section_pair();
463  const double xs_ff =
464  pow_int(FF.first, 4) * xs.first + pow_int(FF.second, 4) * xs.second;
465  return cut_off(xs_ff);
466  } else if (default_mediator_ == MediatorType::PION) {
467  const double FF = form_factor_pion(E_photon);
468  const double xs = total_cross_section();
469  return cut_off(pow_int(FF, 4) * xs);
470  } else if (default_mediator_ == MediatorType::OMEGA) {
471  const double FF = form_factor_omega(E_photon);
472  const double xs = total_cross_section();
473  return cut_off(pow_int(FF, 4) * xs);
474  }
475  break;
476  }
482  const double FF = form_factor_pion(E_photon);
483  const double xs = total_cross_section();
484  const double xs_ff = pow_int(FF, 4) * xs;
485  return cut_off(xs_ff);
486  }
487 
489  const double FF = form_factor_omega(E_photon);
490  const double xs = total_cross_section();
491  const double xs_ff = pow_int(FF, 4) * xs;
492  return cut_off(xs_ff);
493  }
494 
496  default:
497  throw std::runtime_error("");
498  return 0;
499  }
500 }
std::pair< double, double > total_cross_section_pair()
For processes which can happen via (pi, a1, rho) and omega exchange, return the total cross section f...
double form_factor_omega(const double E_photon) const
Compute the form factor for a process with a omega as the lightest exchange particle.
double form_factor_pion(const double E_photon) const
Compute the form factor for a process with a pion as the lightest exchange particle.
std::pair< double, double > form_factor_pair(const double E_photon)
For processes which can happen via (pi, a1, rho) and omega exchange, return the form factor for the (...
double cut_off(const double sigma_mb)
Cross section after cut off.

◆ diff_cross_section()

double smash::ScatterActionPhoton::diff_cross_section ( const double  t,
const double  m_rho,
MediatorType  mediator = default_mediator_ 
) const
private

Calculate the differential cross section of the photon process.

Formfactors are not included

Parameters
[in]tMandelstam-t [GeV^2].
[in]m_rhoMass of the incoming or outgoing rho-particle [GeV]
[in]mediatorSwitch for determing which mediating particle to use
Returns
Differential cross section. [mb/ \(GeV^2\)]

Definition at line 502 of file scatteractionphoton.cc.

504  {
505  const double s = mandelstam_s();
506  double diff_xsection = 0.0;
507 
508  CrosssectionsPhoton<ComputationMethod::Analytic> xs_object;
509 
510  switch (reac_) {
512  diff_xsection = xs_object.xs_diff_pi_pi_rho0(s, t, m_rho);
513  break;
514 
517  diff_xsection = xs_object.xs_diff_pi_pi0_rho(s, t, m_rho);
518  break;
519 
522  diff_xsection = xs_object.xs_diff_pi_rho0_pi(s, t, m_rho);
523  break;
524 
527  if (mediator == MediatorType::SUM) {
528  diff_xsection =
529  xs_object.xs_diff_pi_rho_pi0_rho_mediated(s, t, m_rho) +
530  xs_object.xs_diff_pi_rho_pi0_omega_mediated(s, t, m_rho);
531  } else if (mediator == MediatorType::OMEGA) {
532  diff_xsection =
533  xs_object.xs_diff_pi_rho_pi0_omega_mediated(s, t, m_rho);
534  } else if (mediator == MediatorType::PION) {
535  diff_xsection = xs_object.xs_diff_pi_rho_pi0_rho_mediated(s, t, m_rho);
536  }
537  break;
538 
541  if (mediator == MediatorType::SUM) {
542  diff_xsection =
543  xs_object.xs_diff_pi0_rho_pi_rho_mediated(s, t, m_rho) +
544  xs_object.xs_diff_pi0_rho_pi_omega_mediated(s, t, m_rho);
545  } else if (mediator == MediatorType::OMEGA) {
546  diff_xsection =
547  xs_object.xs_diff_pi0_rho_pi_omega_mediated(s, t, m_rho);
548  } else if (mediator == MediatorType::PION) {
549  diff_xsection = xs_object.xs_diff_pi0_rho_pi_rho_mediated(s, t, m_rho);
550  }
551  break;
552 
554  diff_xsection = xs_object.xs_diff_pi0_rho0_pi0(s, t, m_rho);
555  break;
557  // never reached
558  break;
559  }
560 
561  // Rarely, it can happen that the computed differential cross sections slip
562  // slightly below zero for numerical reasons. This is unphysical. We
563  // approximate them with dSigma/dt = 0.01 mb/GeV^2, which is a reasonable
564  // value in the kinetic regime where this occurs.
565  if (diff_xsection < 0) {
566  diff_xsection = 0.01;
567  }
568  return diff_xsection;
569 }

◆ diff_cross_section_w_ff()

double smash::ScatterActionPhoton::diff_cross_section_w_ff ( const double  t,
const double  m_rho,
const double  E_photon 
)
private

Compute the differential cross section corrected for form factors.

Takes care of correct handling of reactions with multiple processes by reading the default_mediator_ member variable.

Parameters
[in]tMandelstam-t [GeV^2]
[in]m_rhoMass of the incoming or outgoing rho-particle [GeV]
[in]E_photonof outgoing photon [GeV]
Returns
diff. cross section [mb / GeV \(^2\)]

The form factor is assumed to be a hadronic dipole form factor which takes the shape: FF = (2*Lambda^2/(2*Lambda^2 - t))^2 with Lambda = 1.0 GeV. t depends on the lightest possible exchange particle in the different channels. This could either be a pion or an omega meson. For the computation the parametrizations given in (Turbide:2006zz [59]) are used.

Definition at line 571 of file scatteractionphoton.cc.

573  {
583  /* C12, C13, C15, C16 need special treatment. These processes have identical
584  incoming and outgoing particles, but diffrent mediating particles and
585  hence different form factors. If both channels are added up
586  (MediatorType::SUM), each contribution is corrected by the corresponding
587  form factor.
588  */
589  switch (reac_) {
595  std::pair<double, double> FF = form_factor_pair(E_photon);
596  std::pair<double, double> diff_xs = diff_cross_section_pair(t, m_rho);
597  const double xs_ff = pow_int(FF.first, 4) * diff_xs.first +
598  pow_int(FF.second, 4) * diff_xs.second;
599  return cut_off(xs_ff);
600  } else if (default_mediator_ == MediatorType::PION) {
601  const double FF = form_factor_pion(E_photon);
602  const double diff_xs = diff_cross_section(t, m_rho);
603  return cut_off(pow_int(FF, 4) * diff_xs);
604  } else if (default_mediator_ == MediatorType::OMEGA) {
605  const double FF = form_factor_omega(E_photon);
606  const double diff_xs = diff_cross_section(t, m_rho);
607  return cut_off(pow_int(FF, 4) * diff_xs);
608  }
609  break;
610  }
616  const double FF = form_factor_pion(E_photon);
617  const double xs = diff_cross_section(t, m_rho);
618  const double xs_ff = pow_int(FF, 4) * xs;
619  return cut_off(xs_ff);
620  }
621 
623  const double FF = form_factor_omega(E_photon);
624  const double xs = diff_cross_section(t, m_rho);
625  const double xs_ff = pow_int(FF, 4) * xs;
626  return cut_off(xs_ff);
627  }
628 
630  default:
631  throw std::runtime_error("");
632  return 0;
633  }
634 }
std::pair< double, double > diff_cross_section_pair(const double t, const double m_rho)
For processes which can happen via (pi, a1, rho) and omega exchange, return the differential cross se...
double diff_cross_section(const double t, const double m_rho, MediatorType mediator=default_mediator_) const
Calculate the differential cross section of the photon process.

◆ form_factor_pion()

double smash::ScatterActionPhoton::form_factor_pion ( const double  E_photon) const
private

Compute the form factor for a process with a pion as the lightest exchange particle.

See wiki for details how form factors are handled.

Parameters
[in]E_photonEnergy of photon [GeV]
Returns
form factor

Definition at line 636 of file scatteractionphoton.cc.

636  {
637  const double Lambda = 1.0;
638  const double Lambda2 = Lambda * Lambda;
639 
640  const double t_ff = 34.5096 * std::pow(E_photon, 0.737) -
641  67.557 * std::pow(E_photon, 0.7584) +
642  32.858 * std::pow(E_photon, 0.7806);
643  const double ff = 2 * Lambda2 / (2 * Lambda2 - t_ff);
644 
645  return ff * ff;
646 }
constexpr int Lambda
Λ.

◆ form_factor_omega()

double smash::ScatterActionPhoton::form_factor_omega ( const double  E_photon) const
private

Compute the form factor for a process with a omega as the lightest exchange particle.

See wiki for details how form factors are handled.

Parameters
[in]E_photonEnergy of photon [GeV]
Returns
form factor

Definition at line 648 of file scatteractionphoton.cc.

648  {
649  const double Lambda = 1.0;
650  const double Lambda2 = Lambda * Lambda;
651 
652  const double t_ff = -61.595 * std::pow(E_photon, 0.9979) +
653  28.592 * std::pow(E_photon, 1.1579) +
654  37.738 * std::pow(E_photon, 0.9317) -
655  5.282 * std::pow(E_photon, 1.3686);
656  const double ff = 2 * Lambda2 / (2 * Lambda2 - t_ff);
657 
658  return ff * ff;
659 }

◆ form_factor_pair()

std::pair< double, double > smash::ScatterActionPhoton::form_factor_pair ( const double  E_photon)
private

For processes which can happen via (pi, a1, rho) and omega exchange, return the form factor for the (pi, a1, rho) process in the first argument, for the omega process in the second.

If only one process exists, both values are the same. Helper function to easier combine processes with different mediating particles.

Parameters
[in]E_photonEnergy of the photon [GeV]
Returns
Form factor for (pi,a1,rho) in the first argument, for omega in the second.

Definition at line 661 of file scatteractionphoton.cc.

662  {
663  return std::pair<double, double>(form_factor_pion(E_photon),
664  form_factor_omega(E_photon));
665 }

◆ total_cross_section_pair()

std::pair< double, double > smash::ScatterActionPhoton::total_cross_section_pair ( )
private

For processes which can happen via (pi, a1, rho) and omega exchange, return the total cross section for the (pi, a1, rho) process in the first argument, for the omega process in the second.

If only one process exists, both values are the same.Helper function to easier combine processes with different mediating particles.

Returns
total cross section for (pi,a1,rho) in the first argument, for omega in the second.

Definition at line 667 of file scatteractionphoton.cc.

667  {
668  const double xs_pion = total_cross_section(MediatorType::PION);
669  const double xs_omega = total_cross_section(MediatorType::OMEGA);
670 
671  return std::pair<double, double>(xs_pion, xs_omega);
672 }

◆ diff_cross_section_pair()

std::pair< double, double > smash::ScatterActionPhoton::diff_cross_section_pair ( const double  t,
const double  m_rho 
)
private

For processes which can happen via (pi, a1, rho) and omega exchange, return the differential cross section for the (pi, a1, rho) process in the first argument, for the omega process in the second.

If only one process exists, both values are the same.Helper function to easier combine processes with different mediating particles.

Parameters
[in]tMandelstam-t [GeV^2]
[in]m_rhoMass of the incoming or outgoing rho-particle [GeV]
Returns
diff. cross section for (pi,a1,rho) in the first argument, for omega in the second.

Definition at line 674 of file scatteractionphoton.cc.

675  {
676  const double diff_xs_pion = diff_cross_section(t, m_rho, MediatorType::PION);
677  const double diff_xs_omega =
679 
680  return std::pair<double, double>(diff_xs_pion, diff_xs_omega);
681 }

Member Data Documentation

◆ collision_processes_photons_

CollisionBranchList smash::ScatterActionPhoton::collision_processes_photons_
private

Holds the photon branch.

As of now, this will always hold only one branch.

Definition at line 188 of file scatteractionphoton.h.

◆ collision_branch_created_

bool smash::ScatterActionPhoton::collision_branch_created_ = false
private

Was the collision branch already created?

Definition at line 191 of file scatteractionphoton.h.

◆ reac_

const ReactionType smash::ScatterActionPhoton::reac_
private

Photonic process as determined from incoming particles.

Definition at line 194 of file scatteractionphoton.h.

◆ number_of_fractional_photons_

const int smash::ScatterActionPhoton::number_of_fractional_photons_
private

Number of photons created for each hadronic scattering, needed for correct weighting.

Note that in generate_final_state() only one photon + hadron is created.

Definition at line 201 of file scatteractionphoton.h.

◆ hadron_out_t_

const ParticleTypePtr smash::ScatterActionPhoton::hadron_out_t_
private

ParticleTypePtr to the type of the outgoing hadron.

Definition at line 204 of file scatteractionphoton.h.

◆ hadron_out_mass_

const double smash::ScatterActionPhoton::hadron_out_mass_
private

Mass of outgoing hadron.

Definition at line 207 of file scatteractionphoton.h.

◆ default_mediator_

constexpr MediatorType smash::ScatterActionPhoton::default_mediator_ = MediatorType::SUM
staticconstexprprivate

Value used for default exchange particle. See MediatorType.

Definition at line 220 of file scatteractionphoton.h.

◆ weight_

double smash::ScatterActionPhoton::weight_ = 0.0
private

Weight of the produced photon.

Definition at line 223 of file scatteractionphoton.h.

◆ cross_section_photons_

double smash::ScatterActionPhoton::cross_section_photons_ = 0.0
private

Total cross section of photonic process.

Definition at line 226 of file scatteractionphoton.h.

◆ hadronic_cross_section_

const double smash::ScatterActionPhoton::hadronic_cross_section_
private

Total hadronic cross section.

Definition at line 229 of file scatteractionphoton.h.


The documentation for this class was generated from the following files: