|
double | smash::breit_wigner (double m, double pole, double width) |
| Returns a relativistic Breit-Wigner distribution. More...
|
|
double | smash::breit_wigner_nonrel (double m, double pole, double width) |
| Returns a non-relativistic Breit-Wigner distribution, which is essentially a Cauchy distribution with half width. More...
|
|
double | smash::cauchy (double x, double pole, double width) |
| Returns a Cauchy distribution (sometimes also called Lorentz or non-relativistic Breit-Wigner distribution) with the given parameters. More...
|
|
double | smash::density_integrand_mass (const double energy, const double momentum_sqr, const double temperature) |
| density_integrand_mass - off_equilibrium distribution for massive particles More...
|
|
double | smash::density_integrand_1M_IC (const double energy, const double momentum_sqr, const double temperature) |
| density integrand - 1M_IC massless particles for expanding metric initialization, see Bazow:2016oky [7] More...
|
|
double | smash::density_integrand_2M_IC (const double energy, const double momentum_sqr, const double temperature) |
| density integrand - 2M_IC massless particles for expanding metric initialization, see Bazow:2016oky [7] More...
|
|
double | smash::juttner_distribution_func (double momentum_radial, double mass, double temperature, double effective_chemical_potential, double statistics) |
| Relativistic Juttner distribution function is just a convenience wrapper for displaying Fermi, Bose, and Boltzmann distributions in one mathematical form. More...
|
|
double | smash::sample_momenta_non_eq_mass (const double temperature, const double mass) |
| Samples a momentum via rejection method from the non-equilibrium distribution. More...
|
|
double | smash::sample_momenta_1M_IC (const double temperature, const double mass) |
| Samples a momentum from the non-equilibrium distribution 1M_IC from Bazow:2016oky [7]. More...
|
|
double | smash::sample_momenta_2M_IC (const double temperature, const double mass) |
| Samples a momentum from the non-equilibrium distribution 2M_IC from Bazow:2016oky [7]. More...
|
|
double | smash::sample_momenta_from_thermal (const double temperature, const double mass) |
| Samples a momentum from the Maxwell-Boltzmann (thermal) distribution in a faster way, given by Scott Pratt (see Pratt:2014vja [44]) APPENDIX: ALGORITHM FOR GENERATING PARTICLES math trick: for \( x^{n-1}e^{-x} \) distribution, sample x by: \( x = -ln(r_1 r_2 r_3 ... r_n) \) where \( r_i \) are uniform random numbers between [0,1) for \( T/m > 0.6 \): \( p^2 e^{-E/T} = p^2 e^{-p/T} * e^{(p-E)/T} \), where \( e^{(p-E)/T}\) is used as rejection weight. More...
|
|
double | smash::sample_momenta_IC_ES (const double temperature) |
| Sample momenta according to the momentum distribution in Bazow:2016oky [7]. More...
|
|