Version: SMASH-2.1
smash::Action Class Referenceabstract

#include <action.h>

Action is the base class for a generic process that takes a number of incoming particles and transforms them into any number of outgoing particles.

Currently such an action can be either a decay, a two-body collision, a wallcrossing or a thermalization. (see derived classes).

Definition at line 35 of file action.h.

Inheritance diagram for smash::Action:
[legend]
Collaboration diagram for smash::Action:
[legend]

Classes

class  InvalidResonanceFormation
 Thrown for example when ScatterAction is called to perform with a wrong number of final-state particles or when the energy is too low to produce the resonance. More...
 

Public Member Functions

 Action (const ParticleList &in_part, double time)
 Construct an action object with incoming particles and relative time. More...
 
 Action (const ParticleData &in_part, const ParticleData &out_part, double time, ProcessType type)
 Construct an action object with the incoming particles, relative time, and the already known outgoing particles and type of the process. More...
 
 Action (const ParticleList &in_part, const ParticleList &out_part, double absolute_execution_time, ProcessType type)
 Construct an action object with the incoming particles, absolute time, and the already known outgoing particles and type of the process. More...
 
 Action (const Action &)=delete
 Copying is disabled. Use pointers or create a new Action. More...
 
virtual ~Action ()
 Virtual Destructor. More...
 
bool operator< (const Action &rhs) const
 Determine whether one action takes place before another in time. More...
 
virtual double get_total_weight () const =0
 Return the total weight value, which is mainly used for the weight output entry. More...
 
virtual double get_partial_weight () const =0
 Return the specific weight for the chosen outgoing channel, which is mainly used for the partial weight output entry. More...
 
virtual ProcessType get_type () const
 Get the process type. More...
 
template<typename Branch >
void add_process (ProcessBranchPtr< Branch > &p, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add a new subprocess. More...
 
template<typename Branch >
void add_processes (ProcessBranchList< Branch > pv, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add several new subprocesses at once. More...
 
virtual void generate_final_state ()=0
 Generate the final state for this action. More...
 
virtual void perform (Particles *particles, uint32_t id_process)
 Actually perform the action, e.g. More...
 
bool is_valid (const Particles &particles) const
 Check whether the action still applies. More...
 
bool is_pauli_blocked (const std::vector< Particles > &ensembles, const PauliBlocker &p_bl) const
 Check if the action is Pauli-blocked. More...
 
const ParticleList & incoming_particles () const
 Get the list of particles that go into the action. More...
 
void update_incoming (const Particles &particles)
 Update the incoming particles that are stored in this action to the state they have in the global particle list. More...
 
const ParticleList & outgoing_particles () const
 Get the list of particles that resulted from the action. More...
 
double time_of_execution () const
 Get the time at which the action is supposed to be performed. More...
 
virtual void check_conservation (const uint32_t id_process) const
 Check various conservation laws. More...
 
double sqrt_s () const
 Determine the total energy in the center-of-mass frame [GeV]. More...
 
FourVector total_momentum_of_outgoing_particles () const
 Calculate the total kinetic momentum of the outgoing particles. More...
 
FourVector get_interaction_point () const
 Get the interaction point. More...
 
std::pair< FourVector, FourVectorget_potential_at_interaction_point () const
 Get the skyrme and asymmetry potential at the interaction point. More...
 
void set_stochastic_pos_idx ()
 Setter function that stores a random incoming particle index latter used to determine the interaction point. More...
 

Static Public Member Functions

static double lambda_tilde (double a, double b, double c)
 Little helper function that calculates the lambda function (sometimes written with a tilde to better distinguish it) that appears e.g. More...
 

Protected Member Functions

FourVector total_momentum () const
 Sum of 4-momenta of incoming particles. More...
 
template<typename Branch >
const Branch * choose_channel (const ProcessBranchList< Branch > &subprocesses, double total_weight)
 Decide for a particular final-state channel via Monte-Carlo and return it as a ProcessBranch. More...
 
virtual std::pair< double, double > sample_masses (double kinetic_energy_cm) const
 Sample final-state masses in general X->2 processes (thus also fixing the absolute c.o.m. More...
 
virtual void sample_angles (std::pair< double, double > masses, double kinetic_energy_cm)
 Sample final-state momenta in general X->2 processes (here: using an isotropical angular distribution). More...
 
void sample_2body_phasespace ()
 Sample the full 2-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
virtual void sample_3body_phasespace ()
 Sample the full 3-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
virtual void sample_5body_phasespace ()
 Sample the full 5-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
void assign_formation_time_to_outgoing_particles ()
 Assign the formation time to the outgoing particles. More...
 
virtual void format_debug_output (std::ostream &out) const =0
 Writes information about this action to the out stream. More...
 

Protected Attributes

ParticleList incoming_particles_
 List with data of incoming particles. More...
 
ParticleList outgoing_particles_
 Initially this stores only the PDG codes of final-state particles. More...
 
const double time_of_execution_
 Time at which the action is supposed to be performed (absolute time in the lab frame in fm/c). More...
 
ProcessType process_type_
 type of process More...
 
double box_length_ = -1.0
 Box length: needed to determine coordinates of collision correctly in case of collision through the wall. More...
 
int stochastic_position_idx_ = -1
 This stores a randomly-chosen index to an incoming particle. More...
 

Private Member Functions

const ParticleTypetype_of_pout (const ParticleData &p_out) const
 Get the type of a given particle. More...
 
const ParticleTypetype_of_pout (const ParticleTypePtr &p_out) const
 Get the particle type for given pointer to a particle type. More...
 

Friends

std::ostream & operator<< (std::ostream &out, const Action &action)
 Dispatches formatting to the virtual Action::format_debug_output function. More...
 

Constructor & Destructor Documentation

◆ Action() [1/4]

smash::Action::Action ( const ParticleList &  in_part,
double  time 
)
inline

Construct an action object with incoming particles and relative time.

Parameters
[in]in_partlist of incoming particles
[in]timetime at which the action is supposed to take place (relative to the current time of the incoming particles)

Definition at line 44 of file action.h.

45  : incoming_particles_(in_part),
46  time_of_execution_(time + in_part[0].position().x0()) {}
const double time_of_execution_
Time at which the action is supposed to be performed (absolute time in the lab frame in fm/c).
Definition: action.h:345
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:331

◆ Action() [2/4]

smash::Action::Action ( const ParticleData in_part,
const ParticleData out_part,
double  time,
ProcessType  type 
)
inline

Construct an action object with the incoming particles, relative time, and the already known outgoing particles and type of the process.

Parameters
[in]in_partlist of incoming particles
[in]out_partlist of outgoing particles
[in]timetime at which the action is supposed to take place (relative to the current time of the incoming particles)
[in]typetype of the interaction

Definition at line 58 of file action.h.

60  : incoming_particles_({in_part}),
61  outgoing_particles_({out_part}),
62  time_of_execution_(time + in_part.position().x0()),
63  process_type_(type) {}
ParticleList outgoing_particles_
Initially this stores only the PDG codes of final-state particles.
Definition: action.h:339
ProcessType process_type_
type of process
Definition: action.h:348

◆ Action() [3/4]

smash::Action::Action ( const ParticleList &  in_part,
const ParticleList &  out_part,
double  absolute_execution_time,
ProcessType  type 
)
inline

Construct an action object with the incoming particles, absolute time, and the already known outgoing particles and type of the process.

Parameters
[in]in_partlist of incoming particles
[in]out_partlist of outgoing particles
[in]absolute_execution_timeabsolute time at which the action is supposed to take place
[in]typetype of the interaction

Definition at line 75 of file action.h.

77  : incoming_particles_(std::move(in_part)),
78  outgoing_particles_(std::move(out_part)),
79  time_of_execution_(absolute_execution_time),
80  process_type_(type) {}

◆ Action() [4/4]

smash::Action::Action ( const Action )
delete

Copying is disabled. Use pointers or create a new Action.

◆ ~Action()

smash::Action::~Action ( )
virtualdefault

Virtual Destructor.

Destructor.

The declaration of the destructor is necessary to make it virtual.

Member Function Documentation

◆ operator<()

bool smash::Action::operator< ( const Action rhs) const
inline

Determine whether one action takes place before another in time.

Returns
if the first argument action takes place before the other

Definition at line 96 of file action.h.

96  {
97  return time_of_execution_ < rhs.time_of_execution_;
98  }

◆ get_total_weight()

virtual double smash::Action::get_total_weight ( ) const
pure virtual

Return the total weight value, which is mainly used for the weight output entry.

It has different meanings depending of the type of action. It is the total cross section in case of a ScatterAction, the total decay width in case of a DecayAction and the shining weight in case of a DecayActionDilepton.

Prefer to use a more specific function. If there is no weight for the action type, 0 should be returned.

Returns
total cross section, decay width or shining weight

Implemented in smash::ThermalizationAction, smash::BremsstrahlungAction, smash::DecayAction, smash::DecayActionDilepton, smash::HypersurfacecrossingAction, smash::ScatterAction, smash::ScatterActionMulti, smash::ScatterActionPhoton, and smash::WallcrossingAction.

Here is the caller graph for this function:

◆ get_partial_weight()

virtual double smash::Action::get_partial_weight ( ) const
pure virtual

Return the specific weight for the chosen outgoing channel, which is mainly used for the partial weight output entry.

For scatterings it will be the partial cross section, for decays (including dilepton decays) the partial decay width.

If there is no weight for the action type, 0 should be returned.

Returns
specific weight for the chosen output channel.

Implemented in smash::ThermalizationAction, smash::DecayAction, smash::HypersurfacecrossingAction, smash::ScatterAction, smash::ScatterActionMulti, and smash::WallcrossingAction.

Here is the caller graph for this function:

◆ get_type()

virtual ProcessType smash::Action::get_type ( ) const
inlinevirtual

Get the process type.

Returns
type of the process

Definition at line 131 of file action.h.

131 { return process_type_; }
Here is the caller graph for this function:

◆ add_process()

template<typename Branch >
void smash::Action::add_process ( ProcessBranchPtr< Branch > &  p,
ProcessBranchList< Branch > &  subprocesses,
double &  total_weight 
)
inline

Add a new subprocess.

Parameters
[in]pprocess to be added
[out]subprocessesprocesses, where p is added to
[out]total_weightsummed weights of all the subprocesses

Definition at line 141 of file action.h.

143  {
144  if (p->weight() > 0) {
145  total_weight += p->weight();
146  subprocesses.emplace_back(std::move(p));
147  }
148  }
constexpr int p
Proton.

◆ add_processes()

template<typename Branch >
void smash::Action::add_processes ( ProcessBranchList< Branch >  pv,
ProcessBranchList< Branch > &  subprocesses,
double &  total_weight 
)
inline

Add several new subprocesses at once.

Parameters
[in]pvprocesses list to be added
[out]subprocessesprocesses, where pv are added to
[out]total_weightsummed weights of all the subprocesses

Definition at line 158 of file action.h.

160  {
161  subprocesses.reserve(subprocesses.size() + pv.size());
162  for (auto &proc : pv) {
163  if (proc->weight() > 0) {
164  total_weight += proc->weight();
165  subprocesses.emplace_back(std::move(proc));
166  }
167  }
168  }

◆ generate_final_state()

virtual void smash::Action::generate_final_state ( )
pure virtual

Generate the final state for this action.

This function selects a subprocess by Monte-Carlo decision and sets up the final-state particles in phase space.

Implemented in smash::ThermalizationAction, smash::BremsstrahlungAction, smash::DecayAction, smash::HypersurfacecrossingAction, smash::ScatterAction, smash::ScatterActionMulti, smash::ScatterActionPhoton, and smash::WallcrossingAction.

◆ perform()

void smash::Action::perform ( Particles particles,
uint32_t  id_process 
)
virtual

Actually perform the action, e.g.

carry out a decay or scattering by updating the particle list.

This function removes the initial-state particles from the particle list and then inserts the final-state particles. It does not do any sanity checks, but assumes that is_valid has been called to determine if the action is still valid.

Parameters
[in]id_processunique id of the performed process
[out]particlesparticle list that is updated

Note that you are required to increase id_process before the next call, such that you get unique numbers.

Definition at line 124 of file action.cc.

124  {
125  assert(id_process != 0);
126 
127  for (ParticleData &p : outgoing_particles_) {
128  // store the history info
130  p.set_history(p.get_history().collisions_per_particle + 1, id_process,
132  }
133  }
134 
135  /* For elastic collisions and box wall crossings it is not necessary to remove
136  * particles from the list and insert new ones, it is enough to update their
137  * properties. */
138  particles->update(incoming_particles_, outgoing_particles_,
141 
142  logg[LAction].debug("Particle map now has ", particles->size(), " elements.");
143 
144  /* Check the conservation laws if the modifications of the total kinetic
145  * energy of the outgoing particles by the mean field potentials are not
146  * taken into account. */
147  if (UB_lat_pointer == nullptr && UI3_lat_pointer == nullptr) {
148  check_conservation(id_process);
149  }
150 }
virtual void check_conservation(const uint32_t id_process) const
Check various conservation laws.
Definition: action.cc:413
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
static constexpr int LAction
Definition: action.h:25
@ Wall
box wall crossing
@ Elastic
elastic scattering: particles remain the same, only momenta change
RectangularLattice< FourVector > * UB_lat_pointer
Pointer to the skyrme potential on the lattice.
RectangularLattice< FourVector > * UI3_lat_pointer
Pointer to the symmmetry potential on the lattice.
Here is the call graph for this function:

◆ is_valid()

bool smash::Action::is_valid ( const Particles particles) const

Check whether the action still applies.

It can happen that a different action removed the incoming_particles from the set of existing particles in the experiment, or that the particle has scattered elastically in the meantime. In this case the Action doesn't apply anymore and should be discarded.

Parameters
[in]particlescurrent particle list
Returns
true, if action still applies; false otherwise

Definition at line 28 of file action.cc.

28  {
29  return std::all_of(
31  [&particles](const ParticleData &p) { return particles.is_valid(p); });
32 }
bool all_of(Container &&c, UnaryPredicate &&p)
Convenience wrapper for std::all_of that operates on a complete container.
Definition: algorithms.h:80
Here is the call graph for this function:

◆ is_pauli_blocked()

bool smash::Action::is_pauli_blocked ( const std::vector< Particles > &  ensembles,
const PauliBlocker p_bl 
) const

Check if the action is Pauli-blocked.

If there are baryons in the final state then blocking probability is \( 1 - \Pi (1-f_i) \), where the product is taken by all fermions in the final state and \( f_i \) denotes the phase-space density at the position of i-th final-state fermion.

Parameters
[in]ensemblescurrent particle list, all ensembles
[in]p_blPauliBlocker that stores the configurations concerning Pauli-blocking.
Returns
true, if the action is Pauli-blocked, false otherwise

Definition at line 34 of file action.cc.

35  {
36  // Wall-crossing actions should never be blocked: currently
37  // if the action is blocked, a particle continues to propagate in a straight
38  // line. This would simply bring it out of the box.
40  return false;
41  }
42  for (const auto &p : outgoing_particles_) {
43  if (p.is_baryon()) {
44  const auto f =
45  p_bl.phasespace_dens(p.position().threevec(), p.momentum().threevec(),
46  ensembles, p.pdgcode(), incoming_particles_);
47  if (f > random::uniform(0., 1.)) {
48  logg[LPauliBlocking].debug("Action ", *this,
49  " is pauli-blocked with f = ", f);
50  return true;
51  }
52  }
53  }
54  return false;
55 }
T uniform(T min, T max)
Definition: random.h:88
static constexpr int LPauliBlocking
Definition: action.cc:26
Here is the call graph for this function:

◆ incoming_particles()

const ParticleList & smash::Action::incoming_particles ( ) const

Get the list of particles that go into the action.

Returns
a list of incoming particles

Definition at line 57 of file action.cc.

57  {
58  return incoming_particles_;
59 }
Here is the caller graph for this function:

◆ update_incoming()

void smash::Action::update_incoming ( const Particles particles)

Update the incoming particles that are stored in this action to the state they have in the global particle list.

Parameters
[in]particlescurrent particle list

Definition at line 61 of file action.cc.

61  {
62  for (auto &p : incoming_particles_) {
63  p = particles.lookup(p);
64  }
65 }
Here is the call graph for this function:

◆ outgoing_particles()

const ParticleList& smash::Action::outgoing_particles ( ) const
inline

Get the list of particles that resulted from the action.

Returns
list of outgoing particles

Definition at line 245 of file action.h.

245 { return outgoing_particles_; }
Here is the caller graph for this function:

◆ time_of_execution()

double smash::Action::time_of_execution ( ) const
inline

Get the time at which the action is supposed to be performed.

Returns
absolute time in the calculation frame in fm/c

Definition at line 252 of file action.h.

252 { return time_of_execution_; }

◆ check_conservation()

void smash::Action::check_conservation ( const uint32_t  id_process) const
virtual

Check various conservation laws.

Parameters
[in]id_processprocess id only used for debugging output

Reimplemented in smash::HypersurfacecrossingAction.

Definition at line 413 of file action.cc.

413  {
414  QuantumNumbers before(incoming_particles_);
415  QuantumNumbers after(outgoing_particles_);
416  if (before != after) {
417  std::stringstream particle_names;
418  for (const auto &p : incoming_particles_) {
419  particle_names << p.type().name();
420  }
421  particle_names << " vs. ";
422  for (const auto &p : outgoing_particles_) {
423  particle_names << p.type().name();
424  }
425  particle_names << "\n";
426  std::string err_msg = before.report_deviations(after);
427  logg[LAction].error() << particle_names.str() << err_msg;
428  /* Pythia does not conserve energy and momentum at high energy, so we just
429  * print the error and continue. */
432  return;
433  }
434  if (id_process == ID_PROCESS_PHOTON) {
435  throw std::runtime_error("Conservation laws violated in photon process");
436  } else {
437  throw std::runtime_error("Conservation laws violated in process " +
438  std::to_string(id_process));
439  }
440  }
441 }
constexpr std::uint32_t ID_PROCESS_PHOTON
Process ID for any photon process.
Definition: constants.h:124
@ StringHard
hard string process involving 2->2 QCD process by PYTHIA.
bool is_string_soft_process(ProcessType p)
Check if a given process type is a soft string excitation.
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sqrt_s()

double smash::Action::sqrt_s ( ) const
inline

Determine the total energy in the center-of-mass frame [GeV].

Returns
\( \sqrt{s}\) of incoming particles

Definition at line 266 of file action.h.

266 { return total_momentum().abs(); }
FourVector total_momentum() const
Sum of 4-momenta of incoming particles.
Definition: action.h:365
double abs() const
calculate the lorentz invariant absolute value
Definition: fourvector.h:459
Here is the call graph for this function:
Here is the caller graph for this function:

◆ total_momentum_of_outgoing_particles()

FourVector smash::Action::total_momentum_of_outgoing_particles ( ) const

Calculate the total kinetic momentum of the outgoing particles.

Use this to determine the momemtum and boost of the outgoing particles by calcluating the total momentum of the incoming particles and correcting it for the effect of potentials. This function is used when the species of the outgoing particles are already determined.

Returns
total kinetic momentum of the outgoing particles [GeV]

Definition at line 152 of file action.cc.

152  {
153  const auto potentials = get_potential_at_interaction_point();
154  /* scale_B returns the difference of the total force scales of the skyrme
155  * potential between the initial and final states. */
156  double scale_B = 0.0;
157  /* scale_I3 returns the difference of the total force scales of the symmetry
158  * potential between the initial and final states. */
159  double scale_I3 = 0.0;
160  for (const auto &p_in : incoming_particles_) {
161  // Get the force scale of the incoming particle.
162  const auto scale =
163  ((pot_pointer != nullptr) ? pot_pointer->force_scale(p_in.type())
164  : std::make_pair(0.0, 0));
165  scale_B += scale.first;
166  scale_I3 += scale.second * p_in.type().isospin3_rel();
167  }
168  for (const auto &p_out : outgoing_particles_) {
169  // Get the force scale of the outgoing particle.
170  const auto scale = ((pot_pointer != nullptr)
172  : std::make_pair(0.0, 0));
173  scale_B -= scale.first;
174  scale_I3 -= scale.second * type_of_pout(p_out).isospin3_rel();
175  }
176  /* Rescale to get the potential difference between the
177  * initial and final state, and thus get the total momentum
178  * of the outgoing particles*/
179  return total_momentum() + potentials.first * scale_B +
180  potentials.second * scale_I3;
181 }
std::pair< FourVector, FourVector > get_potential_at_interaction_point() const
Get the skyrme and asymmetry potential at the interaction point.
Definition: action.cc:108
const ParticleType & type_of_pout(const ParticleData &p_out) const
Get the type of a given particle.
Definition: action.h:491
double isospin3_rel() const
Definition: particletype.h:179
static std::pair< double, int > force_scale(const ParticleType &data)
Evaluates the scaling factor of the forces acting on the particles.
Definition: potentials.cc:318
Potentials * pot_pointer
Pointer to a Potential class.
Here is the call graph for this function:
Here is the caller graph for this function:

◆ get_interaction_point()

FourVector smash::Action::get_interaction_point ( ) const

Get the interaction point.

Returns
four vector of interaction point

Definition at line 67 of file action.cc.

67  {
68  // Estimate for the interaction point in the calculational frame
69  FourVector interaction_point = FourVector(0., 0., 0., 0.);
70  for (const auto &part : incoming_particles_) {
71  interaction_point += part.position();
72  }
73  interaction_point /= incoming_particles_.size();
74  /*
75  * In case of periodic boundaries interaction point is not necessarily
76  * (x1 + x2)/2. Consider only one dimension, e.g. x, the rest are analogous.
77  * Instead of x, there can be x + k * L, where k is any integer and L
78  * is period.Interaction point is either. Therefore, interaction point is
79  * (x1 + k * L + x2 + m * L) / 2 = (x1 + x2) / 2 + n * L / 2. We need
80  * this interaction point to be with [0, L], so n can be {-1, 0, 1}.
81  * Which n to choose? Our guiding principle is that n should be such that
82  * interaction point is closest to interacting particles.
83  */
84  if (box_length_ > 0 && stochastic_position_idx_ < 0) {
85  assert(incoming_particles_.size() == 2);
86  const FourVector r1 = incoming_particles_[0].position(),
87  r2 = incoming_particles_[1].position(), r = r1 - r2;
88  for (int i = 1; i < 4; i++) {
89  const double d = std::abs(r[i]);
90  if (d > 0.5 * box_length_) {
91  if (interaction_point[i] >= 0.5 * box_length_) {
92  interaction_point[i] -= 0.5 * box_length_;
93  } else {
94  interaction_point[i] += 0.5 * box_length_;
95  }
96  }
97  }
98  }
99  /* In case of scatterings via the stochastic criterion, use postion of random
100  * incoming particle to prevent density hotspots in grid cell centers. */
101  if (stochastic_position_idx_ >= 0) {
102  interaction_point =
104  }
105  return interaction_point;
106 }
int stochastic_position_idx_
This stores a randomly-chosen index to an incoming particle.
Definition: action.h:362
double box_length_
Box length: needed to determine coordinates of collision correctly in case of collision through the w...
Definition: action.h:355
Here is the caller graph for this function:

◆ get_potential_at_interaction_point()

std::pair< FourVector, FourVector > smash::Action::get_potential_at_interaction_point ( ) const

Get the skyrme and asymmetry potential at the interaction point.

Returns
skyrme and asymmetry potential [GeV]

Definition at line 108 of file action.cc.

109  {
110  const ThreeVector r = get_interaction_point().threevec();
111  FourVector UB = FourVector();
112  FourVector UI3 = FourVector();
113  /* Check:
114  * Lattice is turned on. */
115  if (UB_lat_pointer != nullptr) {
116  UB_lat_pointer->value_at(r, UB);
117  }
118  if (UI3_lat_pointer != nullptr) {
119  UI3_lat_pointer->value_at(r, UI3);
120  }
121  return std::make_pair(UB, UI3);
122 }
FourVector get_interaction_point() const
Get the interaction point.
Definition: action.cc:67
ThreeVector threevec() const
Definition: fourvector.h:324
Here is the call graph for this function:
Here is the caller graph for this function:

◆ set_stochastic_pos_idx()

void smash::Action::set_stochastic_pos_idx ( )
inline

Setter function that stores a random incoming particle index latter used to determine the interaction point.

Definition at line 298 of file action.h.

298  {
299  const int max_inc_idx = incoming_particles_.size() - 1;
301  }
T uniform_int(T min, T max)
Definition: random.h:100
Here is the call graph for this function:

◆ lambda_tilde()

static double smash::Action::lambda_tilde ( double  a,
double  b,
double  c 
)
inlinestatic

Little helper function that calculates the lambda function (sometimes written with a tilde to better distinguish it) that appears e.g.

in the relative velocity or 3-to-2 probability calculation, where it is used with a=s, b=m1^2 and c=m2^2. Defintion found e.g. in Seifert:2017oyb [45], eq. (5).

Definition at line 310 of file action.h.

310  {
311  const double res = (a - b - c) * (a - b - c) - 4. * b * c;
312  if (res < 0.0) {
313  // floating point precision problem
314  return 0.0;
315  }
316  return res;
317  }
Here is the caller graph for this function:

◆ total_momentum()

FourVector smash::Action::total_momentum ( ) const
inlineprotected

Sum of 4-momenta of incoming particles.

Definition at line 365 of file action.h.

365  {
366  FourVector mom(0.0, 0.0, 0.0, 0.0);
367  for (const auto &p : incoming_particles_) {
368  mom += p.momentum();
369  }
370  return mom;
371  }
Here is the caller graph for this function:

◆ choose_channel()

template<typename Branch >
const Branch* smash::Action::choose_channel ( const ProcessBranchList< Branch > &  subprocesses,
double  total_weight 
)
inlineprotected

Decide for a particular final-state channel via Monte-Carlo and return it as a ProcessBranch.

Template Parameters
BranchType of processbranch
Parameters
[in]subprocesseslist of possible processes
[in]total_weightsummed weight of all processes
Returns
ProcessBranch that is sampled

Definition at line 383 of file action.h.

384  {
385  double random_weight = random::uniform(0., total_weight);
386  double weight_sum = 0.;
387  /* Loop through all subprocesses and select one by Monte Carlo, based on
388  * their weights. */
389  for (const auto &proc : subprocesses) {
390  weight_sum += proc->weight();
391  if (random_weight <= weight_sum) {
392  /* Return the full process information. */
393  return proc.get();
394  }
395  }
396  /* Should never get here. */
398  "Problem in choose_channel: ", subprocesses.size(), " ",
399  weight_sum, " ", total_weight, " ",
400  // random_weight, "\n", *this);
401  random_weight, "\n");
402  std::abort();
403  }
#define SMASH_SOURCE_LOCATION
Hackery that is required to output the location in the source code where the log statement occurs.
Definition: logging.h:243
Here is the call graph for this function:

◆ sample_masses()

std::pair< double, double > smash::Action::sample_masses ( double  kinetic_energy_cm) const
protectedvirtual

Sample final-state masses in general X->2 processes (thus also fixing the absolute c.o.m.

momentum).

Parameters
[in]kinetic_energy_cmtotal kinetic energy of the outgoing particles in their center of mass frame [GeV]
Exceptions
InvalidResonanceFormation
Returns
masses of final state particles

Reimplemented in smash::DecayAction.

Definition at line 245 of file action.cc.

246  {
247  const ParticleType &t_a = outgoing_particles_[0].type();
248  const ParticleType &t_b = outgoing_particles_[1].type();
249  // start with pole masses
250  std::pair<double, double> masses = {t_a.mass(), t_b.mass()};
251 
252  if (kinetic_energy_cm < t_a.min_mass_kinematic() + t_b.min_mass_kinematic()) {
253  const std::string reaction = incoming_particles_[0].type().name() +
254  incoming_particles_[1].type().name() + "→" +
255  t_a.name() + t_b.name();
256  throw InvalidResonanceFormation(
257  reaction + ": not enough energy, " + std::to_string(kinetic_energy_cm) +
258  " < " + std::to_string(t_a.min_mass_kinematic()) + " + " +
259  std::to_string(t_b.min_mass_kinematic()));
260  }
261 
262  /* If one of the particles is a resonance, sample its mass. */
263  if (!t_a.is_stable() && t_b.is_stable()) {
264  masses.first = t_a.sample_resonance_mass(t_b.mass(), kinetic_energy_cm);
265  } else if (!t_b.is_stable() && t_a.is_stable()) {
266  masses.second = t_b.sample_resonance_mass(t_a.mass(), kinetic_energy_cm);
267  } else if (!t_a.is_stable() && !t_b.is_stable()) {
268  // two resonances in final state
269  masses = t_a.sample_resonance_masses(t_b, kinetic_energy_cm);
270  }
271  return masses;
272 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sample_angles()

void smash::Action::sample_angles ( std::pair< double, double >  masses,
double  kinetic_energy_cm 
)
protectedvirtual

Sample final-state momenta in general X->2 processes (here: using an isotropical angular distribution).

Parameters
[in]kinetic_energy_cmtotal kinetic energy of the outgoing particles in their center of mass frame [GeV]
[in]massesmasses of each of the final state particles

Reimplemented in smash::ScatterAction.

Definition at line 274 of file action.cc.

275  {
276  ParticleData *p_a = &outgoing_particles_[0];
277  ParticleData *p_b = &outgoing_particles_[1];
278 
279  const double pcm = pCM(kinetic_energy_cm, masses.first, masses.second);
280  if (!(pcm > 0.0)) {
281  logg[LAction].warn("Particle: ", p_a->pdgcode(), " radial momentum: ", pcm);
282  logg[LAction].warn("Ektot: ", kinetic_energy_cm, " m_a: ", masses.first,
283  " m_b: ", masses.second);
284  }
285  /* Here we assume an isotropic angular distribution. */
286  Angles phitheta;
287  phitheta.distribute_isotropically();
288 
289  p_a->set_4momentum(masses.first, phitheta.threevec() * pcm);
290  p_b->set_4momentum(masses.second, -phitheta.threevec() * pcm);
291  /* Debug message is printed before boost, so that p_a and p_b are
292  * the momenta in the center of mass frame and thus opposite to
293  * each other.*/
294  logg[LAction].debug("p_a: ", *p_a, "\np_b: ", *p_b);
295 }
T pCM(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:79
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sample_2body_phasespace()

void smash::Action::sample_2body_phasespace ( )
protected

Sample the full 2-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles.

Definition at line 297 of file action.cc.

297  {
298  /* This function only operates on 2-particle final states. */
299  assert(outgoing_particles_.size() == 2);
300  const FourVector p_tot = total_momentum_of_outgoing_particles();
301  const double cm_kin_energy = p_tot.abs();
302  // first sample the masses
303  const std::pair<double, double> masses = sample_masses(cm_kin_energy);
304  // after the masses are fixed (and thus also pcm), sample the angles
305  sample_angles(masses, cm_kin_energy);
306 }
FourVector total_momentum_of_outgoing_particles() const
Calculate the total kinetic momentum of the outgoing particles.
Definition: action.cc:152
virtual void sample_angles(std::pair< double, double > masses, double kinetic_energy_cm)
Sample final-state momenta in general X->2 processes (here: using an isotropical angular distribution...
Definition: action.cc:274
virtual std::pair< double, double > sample_masses(double kinetic_energy_cm) const
Sample final-state masses in general X->2 processes (thus also fixing the absolute c....
Definition: action.cc:245
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sample_3body_phasespace()

void smash::Action::sample_3body_phasespace ( )
protectedvirtual

Sample the full 3-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles.

Exceptions
std::invalid_argumentif one outgoing particle is a resonance

Reimplemented in smash::BremsstrahlungAction, and smash::DecayActionDilepton.

Definition at line 308 of file action.cc.

308  {
309  assert(outgoing_particles_.size() == 3);
310  if (!outgoing_particles_[0].type().is_stable() ||
311  !outgoing_particles_[1].type().is_stable() ||
312  !outgoing_particles_[2].type().is_stable()) {
313  throw std::invalid_argument(
314  "sample_3body_phasespace: Found resonance in to be sampled outgoing "
315  "particles, but assumes stable particles.");
316  }
317 
318  const double m_a = outgoing_particles_[0].type().mass(),
319  m_b = outgoing_particles_[1].type().mass(),
320  m_c = outgoing_particles_[2].type().mass();
321  const double sqrts = sqrt_s();
322 
323  // sample mab from pCM(sqrt, mab, mc) pCM (mab, ma, mb) <= sqrts^2/4
324  double mab, r, probability, pcm_ab, pcm;
325  do {
326  mab = random::uniform(m_a + m_b, sqrts - m_c);
327  r = random::canonical();
328  pcm = pCM(sqrts, mab, m_c);
329  pcm_ab = pCM(mab, m_a, m_b);
330  probability = pcm * pcm_ab * 4 / (sqrts * sqrts);
331  } while (r > probability);
332  Angles phitheta;
333  phitheta.distribute_isotropically();
334  outgoing_particles_[2].set_4momentum(m_c, pcm * phitheta.threevec());
335  const ThreeVector beta_cm =
336  pcm * phitheta.threevec() / std::sqrt(pcm * pcm + mab * mab);
337 
338  phitheta.distribute_isotropically();
339  outgoing_particles_[0].set_4momentum(m_a, pcm_ab * phitheta.threevec());
340  outgoing_particles_[1].set_4momentum(m_b, -pcm_ab * phitheta.threevec());
341  outgoing_particles_[0].boost_momentum(beta_cm);
342  outgoing_particles_[1].boost_momentum(beta_cm);
343 }
double sqrt_s() const
Determine the total energy in the center-of-mass frame [GeV].
Definition: action.h:266
T canonical()
Definition: random.h:113
Here is the call graph for this function:
Here is the caller graph for this function:

◆ sample_5body_phasespace()

void smash::Action::sample_5body_phasespace ( )
protectedvirtual

Sample the full 5-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles.

Definition at line 345 of file action.cc.

345  {
346  assert(outgoing_particles_.size() == 5);
347  if (!outgoing_particles_[0].type().is_stable() ||
348  !outgoing_particles_[1].type().is_stable() ||
349  !outgoing_particles_[2].type().is_stable() ||
350  !outgoing_particles_[3].type().is_stable() ||
351  !outgoing_particles_[4].type().is_stable()) {
352  throw std::invalid_argument(
353  "sample_5body_phasespace: Found resonance in to be sampled outgoing "
354  "particles, but assumes stable particles.");
355  }
356  const double m_a = outgoing_particles_[0].type().mass(),
357  m_b = outgoing_particles_[1].type().mass(),
358  m_c = outgoing_particles_[2].type().mass(),
359  m_d = outgoing_particles_[3].type().mass(),
360  m_e = outgoing_particles_[4].type().mass();
361  const double sqrts = sqrt_s();
362 
363  // Sample 2-body PS for 1+2+3 and 4+5
364  const double mde = random::uniform(
365  m_d + m_e, sqrts - m_a - m_b - m_c); // invariant mass of 4+5 pair
366  const double mabc = sqrts - mde; // invariant mass of 1+2+3 pair
367 
368  const double pcm = pCM(sqrts, mabc, mde);
369 
370  Angles phitheta;
371  phitheta.distribute_isotropically();
372  const ThreeVector beta_cm123 =
373  pcm * phitheta.threevec() / std::sqrt(pcm * pcm + mabc * mabc);
374  const ThreeVector beta_cm45 =
375  pcm * phitheta.threevec() / std::sqrt(pcm * pcm + mde * mde);
376 
377  // Sample 3-body PS for 1,2 and 3
378  double mab, r, probability, pcm_ab, pcm_abc;
379  do {
380  mab = random::uniform(m_a + m_b, mabc - m_c);
381  r = random::canonical();
382  pcm_abc = pCM(mabc, mab, m_c);
383  pcm_ab = pCM(mab, m_a, m_b);
384  probability = pcm_abc * pcm_ab * 4 / (mabc * mabc);
385  } while (r > probability);
386  phitheta.distribute_isotropically();
387  outgoing_particles_[2].set_4momentum(m_c, pcm_abc * phitheta.threevec());
388  const ThreeVector beta_cm =
389  pcm_abc * phitheta.threevec() / std::sqrt(pcm_abc * pcm_abc + mab * mab);
390 
391  phitheta.distribute_isotropically();
392  outgoing_particles_[0].set_4momentum(m_a, pcm_ab * phitheta.threevec());
393  outgoing_particles_[1].set_4momentum(m_b, -pcm_ab * phitheta.threevec());
394  outgoing_particles_[0].boost_momentum(beta_cm);
395  outgoing_particles_[1].boost_momentum(beta_cm);
396 
397  // Sample 2-body PS for 4 and 5
398  const double pcm_de = pCM(mde, m_d, m_e);
399 
400  phitheta.distribute_isotropically();
401  outgoing_particles_[3].set_4momentum(m_d, pcm_de * phitheta.threevec());
402  outgoing_particles_[4].set_4momentum(m_e, -pcm_de * phitheta.threevec());
403 
404  // Boost according to intial 1+2+3 and 4+5 sampling
405  outgoing_particles_[3].boost_momentum(beta_cm45);
406  outgoing_particles_[4].boost_momentum(beta_cm45);
407 
408  outgoing_particles_[0].boost_momentum(-beta_cm123);
409  outgoing_particles_[1].boost_momentum(-beta_cm123);
410  outgoing_particles_[2].boost_momentum(-beta_cm123);
411 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ assign_formation_time_to_outgoing_particles()

void smash::Action::assign_formation_time_to_outgoing_particles ( )
protected

Assign the formation time to the outgoing particles.

The formation time is set to the largest formation time of the incoming particles, if it is larger than the execution time. The newly produced particles are supposed to continue forming exactly like the latest forming ingoing particle. Therefore the details on the formation are adopted. The initial cross section scaling factor of the incoming particles is considered to also be the scaling factor of the newly produced outgoing particles. If the formation time is smaller than the exectution time, the execution time is taken to be the formation time.

Note: Make sure to assign the formation times before boosting the outgoing particles to the computational frame.

Definition at line 183 of file action.cc.

183  {
184  /* Find incoming particle with largest formation time i.e. the last formed
185  * incoming particle. If all particles form at the same time, take the one
186  * with the lowest cross section scaling factor */
187  ParticleList::iterator last_formed_in_part;
188  bool all_incoming_same_formation_time =
190  [&](const ParticleData &data_comp) {
191  return std::abs(incoming_particles_[0].formation_time() -
192  data_comp.formation_time()) < really_small;
193  });
194  if (all_incoming_same_formation_time) {
195  last_formed_in_part =
196  std::min_element(incoming_particles_.begin(), incoming_particles_.end(),
197  [](const ParticleData &a, const ParticleData &b) {
198  return a.initial_xsec_scaling_factor() <
199  b.initial_xsec_scaling_factor();
200  });
201  } else {
202  last_formed_in_part =
203  std::max_element(incoming_particles_.begin(), incoming_particles_.end(),
204  [](const ParticleData &a, const ParticleData &b) {
205  return a.formation_time() < b.formation_time();
206  });
207  }
208 
209  const double form_time_begin = last_formed_in_part->begin_formation_time();
210  const double sc = last_formed_in_part->initial_xsec_scaling_factor();
211 
212  if (last_formed_in_part->formation_time() > time_of_execution_) {
213  for (ParticleData &new_particle : outgoing_particles_) {
214  if (new_particle.initial_xsec_scaling_factor() < 1.0) {
215  /* The new cross section scaling factor will be the product of the
216  * cross section scaling factor of the ingoing particles and of the
217  * outgoing ones (since the outgoing ones are also string fragments
218  * and thus take time to form). */
219  double sc_out = new_particle.initial_xsec_scaling_factor();
220  new_particle.set_cross_section_scaling_factor(sc * sc_out);
221  if (last_formed_in_part->formation_time() >
222  new_particle.formation_time()) {
223  /* If the unformed incoming particles' formation time is larger than
224  * the current outgoing particle's formation time, then the latter
225  * is overwritten by the former*/
226  new_particle.set_slow_formation_times(
227  time_of_execution_, last_formed_in_part->formation_time());
228  }
229  } else {
230  // not a string product
231  new_particle.set_slow_formation_times(
232  form_time_begin, last_formed_in_part->formation_time());
233  new_particle.set_cross_section_scaling_factor(sc);
234  }
235  }
236  } else {
237  for (ParticleData &new_particle : outgoing_particles_) {
238  if (new_particle.initial_xsec_scaling_factor() == 1.0) {
239  new_particle.set_formation_time(time_of_execution_);
240  }
241  }
242  }
243 }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ type_of_pout() [1/2]

const ParticleType& smash::Action::type_of_pout ( const ParticleData p_out) const
inlineprivate

Get the type of a given particle.

Parameters
[in]p_outparticle of which the type will be returned
Returns
type of given particle

Definition at line 491 of file action.h.

491  {
492  return p_out.type();
493  }
Here is the call graph for this function:
Here is the caller graph for this function:

◆ type_of_pout() [2/2]

const ParticleType& smash::Action::type_of_pout ( const ParticleTypePtr p_out) const
inlineprivate

Get the particle type for given pointer to a particle type.

Helper function for total_momentum_of_outgoing_particles

Parameters
[in]p_outpointer to a particle type
Returns
particle type

Definition at line 502 of file action.h.

502  {
503  return *p_out;
504  }

Member Data Documentation

◆ incoming_particles_

ParticleList smash::Action::incoming_particles_
protected

List with data of incoming particles.

Definition at line 331 of file action.h.

◆ outgoing_particles_

ParticleList smash::Action::outgoing_particles_
protected

Initially this stores only the PDG codes of final-state particles.

After perform was called it contains the complete particle data of the outgoing particles.

Definition at line 339 of file action.h.

◆ time_of_execution_

const double smash::Action::time_of_execution_
protected

Time at which the action is supposed to be performed (absolute time in the lab frame in fm/c).

Definition at line 345 of file action.h.

◆ process_type_

ProcessType smash::Action::process_type_
protected

type of process

Definition at line 348 of file action.h.

◆ box_length_

double smash::Action::box_length_ = -1.0
protected

Box length: needed to determine coordinates of collision correctly in case of collision through the wall.

Ignored if negative.

Definition at line 355 of file action.h.

◆ stochastic_position_idx_

int smash::Action::stochastic_position_idx_ = -1
protected

This stores a randomly-chosen index to an incoming particle.

If non-negative, the the interaction point equals the postion of the chosen particle (index). This is done for the stochastic criterion.

Definition at line 362 of file action.h.


The documentation for this class was generated from the following files: