Version: SMASH-3.0
decayactionsfinder.cc
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2014-2020,2022
4  * SMASH Team
5  *
6  * GNU General Public License (GPLv3 or later)
7  *
8  */
9 
11 
12 #include "smash/constants.h"
13 #include "smash/decayaction.h"
14 #include "smash/decaymodes.h"
15 #include "smash/fourvector.h"
16 #include "smash/random.h"
17 
18 namespace smash {
19 
21  const ParticleList &search_list, double dt, const double,
22  const std::vector<FourVector> &) const {
23  ActionList actions;
24  /* for short time steps this seems reasonable to expect
25  * less than 10 decays in most time steps */
26  actions.reserve(10);
27 
28  for (const auto &p : search_list) {
29  if (p.type().is_stable()) {
30  continue; // particle doesn't decay
31  }
32 
33  DecayBranchList processes = p.type().get_partial_widths(
34  p.momentum(), p.position().threevec(), WhichDecaymodes::Hadronic);
35  // total decay width (mass-dependent)
36  const double width = total_weight<DecayBranch>(processes);
37 
38  // check if there are any (hadronic) decays
39  if (!(width > 0.0)) {
40  continue;
41  }
42 
43  constexpr double one_over_hbarc = 1. / hbarc;
44 
45  /* The decay_time is sampled from an exponential distribution.
46  * Even though it may seem suspicious that it is sampled every
47  * timestep, it can be proven that this still overall obeys
48  * the exponential decay law.
49  */
50  double decay_time =
51  res_lifetime_factor_ * random::exponential<double>(
52  /* The clock goes slower in the rest
53  * frame of the resonance */
54  one_over_hbarc * p.inverse_gamma() * width);
55  /* If the particle is not yet formed, shift the decay time by the time it
56  * takes the particle to form */
57  if (p.xsec_scaling_factor() < 1.0) {
58  decay_time += p.formation_time() - p.position().x0();
59  }
60  if (decay_time < dt) {
61  /* => decay_time ∈ [0, dt[
62  * => the particle decays in this timestep. */
63  auto act = std::make_unique<DecayAction>(p, decay_time);
64  act->add_decays(std::move(processes));
65  actions.emplace_back(std::move(act));
66  }
67  }
68  return actions;
69 }
70 
71 ActionList DecayActionsFinder::find_final_actions(const Particles &search_list,
72  bool /*only_res*/) const {
73  ActionList actions;
74 
75  for (const auto &p : search_list) {
76  if (!do_final_weak_decays_ && p.type().is_stable()) {
77  continue; // particle is stable with respect to strong interaction
78  }
79 
80  if (p.type().decay_modes().is_empty()) {
81  continue; // particle cannot decay (not even e.m. or weakly)
82  }
83 
84  auto act = std::make_unique<DecayAction>(p, 0.);
85  act->add_decays(p.type().get_partial_widths(
86  p.momentum(), p.position().threevec(), WhichDecaymodes::All));
87  actions.emplace_back(std::move(act));
88  }
89  return actions;
90 }
91 
92 } // namespace smash
const double res_lifetime_factor_
Multiplicative factor to be applied to resonance lifetimes.
const bool do_final_weak_decays_
Do weak decays at the end? Weak here means all non-strong decays, so electro-magnetic decays are done...
ActionList find_final_actions(const Particles &search_list, bool only_res=false) const override
Force all resonances to decay at the end of the simulation.
ActionList find_actions_in_cell(const ParticleList &search_list, double dt, const double, const std::vector< FourVector > &) const override
Check the whole particle list for decays.
The Particles class abstracts the storage and manipulation of particles.
Definition: particles.h:33
Collection of useful constants that are known at compile time.
constexpr int p
Proton.
Definition: action.h:24
constexpr double hbarc
GeV <-> fm conversion factor.
Definition: constants.h:25
@ Hadronic
Ignore dilepton decay modes widths.
@ All
All decay mode widths.