42 const int max_iter = 50;
44 double e_previous_step = 0.0;
45 const double tolerance = 5.e-4;
47 for (iter = 0; iter < max_iter; iter++) {
50 if (std::abs(
e_ - e_previous_step) < tolerance) {
53 const double gamma_inv = std::sqrt(1.0 -
v_.
sqr());
57 auto T_mub_mus = eos.
solve_eos(
e_, gamma_inv * nb_, gamma_inv *
ns_);
70 if (iter == max_iter) {
71 std::cout <<
"Warning from solver: max iterations exceeded." 72 <<
" Accuracy: " << std::abs(
e_ - e_previous_step)
73 <<
" is less than tolerance " << tolerance << std::endl;
91 return out <<
"T[mu,0]: " << node.
Tmu0() <<
", nb: " << node.
nb()
92 <<
", ns: " << node.
ns() <<
", v: " << node.
v()
93 <<
", e: " << node.
e() <<
", p: " << node.
p()
94 <<
", T: " << node.
T() <<
", mub: " << node.
mub()
95 <<
", mus: " << node.
mus();
99 const std::array<int, 3> n_cells,
100 const std::array<double, 3> origin,
101 bool periodicity,
double e_critical,
102 double t_start,
double delta_t,
104 bool BF_microcanonical)
105 : eos_typelist_(list_eos_particles()),
106 N_sorts_(eos_typelist_.size()),
111 BF_enforce_microcanonical_(BF_microcanonical) {
113 lat_ = make_unique<RectangularLattice<ThermLatticeNode>>(
114 lat_sizes, n_cells, origin, periodicity, upd);
115 const std::array<double, 3> abc =
lat_->cell_sizes();
124 bool ignore_cells_under_treshold) {
128 for (
auto &node : *
lat_) {
132 if (!ignore_cells_under_treshold ||
133 node.Tmu0().x0() + std::abs(node.Tmu0().x1()) +
134 std::abs(node.Tmu0().x2()) + std::abs(node.Tmu0().x3()) >=
136 node.compute_rest_frame_quantities(
eos_);
145 +0.5 *
lat_->cell_sizes()[0]),
147 +0.5 *
lat_->cell_sizes()[1]),
149 +0.5 *
lat_->cell_sizes()[2]));
153 ParticleList &plist,
const FourVector required_total_momentum) {
154 const auto &log = logger<LogArea::GrandcanThermalizer>();
158 log.info(
"Required 4-momentum: ", required_total_momentum);
159 log.info(
"Sampled 4-momentum: ", conserved.momentum());
161 (required_total_momentum.
threevec() - conserved.momentum().threevec()) /
163 log.info(
"Adjusting momenta by ", mom_to_add);
164 for (
auto &particle : plist) {
165 particle.set_4momentum(particle.type().mass(),
166 particle.momentum().threevec() + mom_to_add);
171 const ThreeVector beta_CM_generated = conserved.momentum().velocity();
175 double E_expected = required_total_momentum.
abs();
176 for (
auto &particle : plist) {
177 particle.boost_momentum(beta_CM_generated);
178 E += particle.momentum().x0();
182 double a, a_min, a_max, er;
183 const int max_iter = 100;
185 if (E_expected >= E) {
193 a = 0.5 * (a_min + a_max);
195 for (
const auto &particle : plist) {
196 const double p2 = particle.momentum().threevec().sqr();
197 const double E2 = particle.momentum().x0() * particle.momentum().x0();
198 E += std::sqrt(E2 + a * (a + 2.0) * p2);
206 log.debug(
"Iteration ", iter,
": a = ", a,
", Δ = ", er);
208 }
while (std::abs(er) > tolerance && iter < max_iter);
210 log.info(
"Renormalizing momenta by factor 1+a, a = ", a);
211 for (
auto &particle : plist) {
212 particle.set_4momentum(particle.type().mass(),
213 (1 + a) * particle.momentum().threevec());
214 particle.boost_momentum(-beta_CM_required);
225 for (
size_t i_type = 0; (i_type < N_sorts_) && (N_to_sample > 0); i_type++) {
226 if (
get_class(i_type) != particle_class) {
250 const double gamma = 1.0 / std::sqrt(1.0 - cell.
v().
sqr());
251 const double N_this_cell =
259 for (
int i = 0; i <
mult_int_[type_index]; i++) {
262 double partial_sum = 0.0;
263 int index_only_thermalized = -1;
264 while (partial_sum < r) {
265 index_only_thermalized++;
266 partial_sum +=
N_in_cells_[index_only_thermalized];
268 const int cell_index = cells_to_sample_[index_only_thermalized];
281 particle.
set_4momentum(m, phitheta.threevec() * momentum_radial);
285 plist.push_back(particle);
290 double time,
int ntest) {
291 const auto &log = logger<LogArea::GrandcanThermalizer>();
296 const double gamma = 1.0 / std::sqrt(1.0 - cell.
v().
sqr());
297 for (
size_t i = 0; i <
N_sorts_; i++) {
306 for (
size_t i = 0; i <
N_sorts_; i++) {
317 const auto Nbar_antibar = bessel_sampler_B.sample();
324 for (
size_t i = 0; i <
N_sorts_; i++) {
328 std::pair<int, int> NS_antiS;
334 NS_antiS = bessel_sampler_S.
sample();
336 NS_antiS = std::make_pair(
339 if (NS_antiS.first - NS_antiS.second !=
349 for (
size_t i = 0; i <
N_sorts_; i++) {
353 std::pair<int, int> NC_antiC;
358 conserved_initial.
charge() - ch_sampled);
359 NC_antiC = bessel_sampler_C.
sample();
361 NC_antiC = std::make_pair(
364 if (NC_antiC.first - NC_antiC.second !=
365 conserved_initial.
charge() - ch_sampled) {
376 for (
size_t itype = 0; itype <
N_sorts_; itype++) {
381 const double e_init = conserved_initial.
momentum().
x0();
384 e_tot += particle.momentum().x0();
386 if (std::abs(e_tot - e_init) > 0.01 * e_init) {
387 log.info(
"Rejecting: energy ", e_tot,
" too far from ", e_init);
398 int S_plus = 0, S_minus = 0, B_plus = 0, B_minus = 0, E_plus = 0, E_minus = 0;
400 auto condition1 = [](int, int, int) {
return true; };
402 while (conserved_initial.
momentum().
x0() > energy ||
413 auto condition2 = [](
int S, int, int) {
return (S < 0); };
415 while (S_plus + S_minus > conserved_initial.
strangeness()) {
419 if (S_plus + S_minus + s_part >= conserved_initial.
strangeness()) {
426 auto condition3 = [](
int S, int, int) {
return (S == 0); };
431 while (conserved_remaining.
momentum().
x0() > energy ||
442 auto condition4 = [](
int S,
int B, int) {
return (S == 0) && (B < 0); };
444 while (B_plus + B_minus > conserved_remaining.
baryon_number()) {
447 if (B_plus + B_minus + bar >= conserved_remaining.
baryon_number()) {
454 auto condition5 = [](
int S,
int B, int) {
return (S == 0) && (B == 0); };
455 conserved_remaining = conserved_initial - QuantumNumbers(
sampled_list_);
458 while (conserved_remaining.
momentum().
x0() > energy ||
459 E_plus < conserved_remaining.
charge()) {
469 auto condition6 = [](
int S,
int B,
int C) {
470 return (S == 0) && (B == 0) && (C < 0);
473 while (E_plus + E_minus > conserved_remaining.
charge()) {
476 if (E_plus + E_minus + charge >= conserved_remaining.
charge()) {
483 auto condition7 = [](
int S,
int B,
int C) {
484 return (S == 0) && (B == 0) && (C == 0);
486 conserved_remaining = conserved_initial - QuantumNumbers(
sampled_list_);
489 while (conserved_remaining.
momentum().
x0() > energy) {
498 const auto &log = logger<LogArea::GrandcanThermalizer>();
499 log.info(
"Starting forced thermalization, time ", time,
" fm/c");
506 for (
auto &particle : particles) {
507 const bool is_on_lattice =
508 lat_->value_at(particle.position().threevec(), node);
509 if (is_on_lattice && node.
e() >
e_crit_) {
523 log.info(
"Removed ",
to_remove_.size(),
" particles.");
531 const size_t lattice_total_cells =
lat_->size();
532 for (
size_t i = 0; i < lattice_total_cells; i++) {
537 log.info(
"Number of cells in the thermalization region = ",
551 throw std::invalid_argument(
552 "This thermalization algorithm is" 553 " not yet implemented");
569 struct to_average on_lattice = {0.0, 0.0, 0.0, 0.0, 0.0};
570 struct to_average in_therm_reg = {0.0, 0.0, 0.0, 0.0, 0.0};
571 double e_sum_on_lattice = 0.0, e_sum_in_therm_reg = 0.0;
572 int node_counter = 0;
573 for (
const auto &node : *
lat_) {
574 const double e = node.e();
575 on_lattice.T += node.T() * e;
576 on_lattice.mub += node.mub() * e;
577 on_lattice.mus += node.mus() * e;
578 on_lattice.nb += node.nb() * e;
579 on_lattice.ns += node.ns() * e;
580 e_sum_on_lattice += e;
582 in_therm_reg.T += node.T() * e;
583 in_therm_reg.mub += node.mub() * e;
584 in_therm_reg.mus += node.mus() * e;
585 in_therm_reg.nb += node.nb() * e;
586 in_therm_reg.ns += node.ns() * e;
587 e_sum_in_therm_reg += e;
592 on_lattice.T /= e_sum_on_lattice;
593 on_lattice.mub /= e_sum_on_lattice;
594 on_lattice.mus /= e_sum_on_lattice;
595 on_lattice.nb /= e_sum_on_lattice;
596 on_lattice.ns /= e_sum_on_lattice;
599 in_therm_reg.T /= e_sum_in_therm_reg;
600 in_therm_reg.mub /= e_sum_in_therm_reg;
601 in_therm_reg.mus /= e_sum_in_therm_reg;
602 in_therm_reg.nb /= e_sum_in_therm_reg;
603 in_therm_reg.ns /= e_sum_in_therm_reg;
606 std::cout <<
"Current time [fm/c]: " << clock.
current_time() << std::endl;
607 std::cout <<
"Averages on the lattice - T[GeV], mub[GeV], mus[GeV], " 608 <<
"nb[fm^-3], ns[fm^-3]: " << on_lattice.T <<
" " << on_lattice.mub
609 <<
" " << on_lattice.mus <<
" " << on_lattice.nb <<
" " 610 << on_lattice.ns << std::endl;
611 std::cout <<
"Averages in therm. region - T[GeV], mub[GeV], mus[GeV], " 612 <<
"nb[fm^-3], ns[fm^-3]: " << in_therm_reg.T <<
" " 613 << in_therm_reg.mub <<
" " << in_therm_reg.mus <<
" " 614 << in_therm_reg.nb <<
" " << in_therm_reg.ns << std::endl;
615 std::cout <<
"Volume with e > e_crit [fm^3]: " <<
cell_volume_ * node_counter
int charge() const
The charge of the particle.
static double net_baryon_density(double T, double mub, double mus, bool account_for_resonance_widths=false)
Compute net baryon density.
const double e_crit_
Critical energy density above which cells are thermalized.
void add_particle(const ParticleData &p, double factor)
Add particle contribution to Tmu0, nb and ns May look like unused at first glance, but it is actually used by update_lattice, where the node type of the lattice is templated.
A class to pre-calculate and store parameters relevant for density calculation.
PdgCode pdgcode() const
Get the pdgcode of the particle.
ThermalizationAlgorithm
Defines the algorithm used for the forced thermalization.
HadronClass get_class(size_t typelist_index) const
Defines the class of hadrons by quantum numbers.
const size_t N_sorts_
Number of different species to be sampled.
The ThreeVector class represents a physical three-vector with the components .
double p() const
Get pressure in the rest frame.
void sample_multinomial(HadronClass particle_class, int N)
The sample_multinomial function samples integer numbers n_i distributed according to the multinomial ...
constexpr double really_small
Numerical error tolerance.
ThermLatticeNode()
Default constructor of thermal quantities on the lattice returning thermodynamic quantities in comput...
std::array< double, 3 > solve_eos(double e, double nb, double ns, std::array< double, 3 > initial_approximation)
Compute temperature and chemical potentials given energy-, net baryon-, net strangeness density and a...
int baryon_number() const
Class to handle the equation of state (EoS) of the hadron gas, consisting of all hadrons included int...
FourVector Tmu0_
Four-momentum flow of the cell.
GrandCanThermalizer(const std::array< double, 3 > lat_sizes, const std::array< int, 3 > n_cells, const std::array< double, 3 > origin, bool periodicity, double e_critical, double t_start, double delta_t, ThermalizationAlgorithm algo, bool BF_microcanonical)
Default constructor for the GranCanThermalizer to allocate the lattice.
void thermalize(const Particles &particles, double time, int ntest)
Main thermalize function, that chooses the algorithm to follow (BF or mode sampling).
int baryon_number() const
double mub() const
Get the net baryon chemical potential.
double ns() const
Get net strangeness density of the cell in the computational frame.
void update_lattice(RectangularLattice< T > *lat, const LatticeUpdate update, const DensityType dens_type, const DensityParameters &par, const Particles &particles, const bool compute_gradient=false)
Updates the contents on the lattice.
int baryon_number() const
double abs() const
calculate the lorentz invariant absolute value
void thermalize_BF_algo(QuantumNumbers &conserved_initial, double time, int ntest)
Samples particles according to the BF algorithm by making use of the.
void from_table(EosTable::table_element &res, double e, double nb) const
Get the element of eos table.
double e() const
Get energy density in the rest frame.
ThreeVector threevec() const
LatticeUpdate
Enumerator option for lattice updates.
std::pair< int, int > sample()
Sample two numbers from given Poissonians with a fixed difference.
virtual double current_time() const =0
double mus() const
Get the net strangeness chemical potential.
double T() const
Get the temperature.
bool is_tabulated() const
Create an EoS table or not?
void print_statistics(const Clock &clock) const
Generates standard output with information about the thermodynamic properties of the lattice...
const ThermalizationAlgorithm algorithm_
Algorithm to choose for sampling of particles obeying conservation laws.
static double partial_density(const ParticleType &ptype, double T, double mub, double mus, bool account_for_resonance_widths=false)
Compute partial density of one hadron sort.
void set_formation_time(const double &form_time)
Set the absolute formation time.
void add_values(const ParticleData &p)
Add the quantum numbers of a single particle to the collection.
void set_rest_frame_quantities(double T0, double mub0, double mus0, const ThreeVector v0)
Set all the rest frame quantities to some values, this is useful for testing.
void update_thermalizer_lattice(const Particles &particles, const DensityParameters &par, bool ignore_cells_under_threshold=true)
Compute all the thermodynamical quantities on the lattice from particles.
ThreeVector v_
Velocity of the rest frame.
double p_
Pressure in the rest frame.
double ns_
Net strangeness density of the cell in the computational frame.
const bool BF_enforce_microcanonical_
Enforce energy conservation as part of BF sampling algorithm or not.
double mub_
Net baryon chemical potential.
ParticleList sampled_list_
Newly generated particles by thermalizer.
ThreeVector velocity() const
Get the velocity (3-vector divided by zero component).
ThreeVector v() const
Get 3-velocity of the rest frame.
void set_4momentum(const FourVector &momentum_vector)
Set the particle's 4-momentum directly.
Non-strange mesons (S = 0) with electric cherge Q < 0.
A container for storing conserved values.
void compute_rest_frame_quantities(HadronGasEos &eos)
Temperature, chemical potentials and rest frame velocity are calculated given the hadron gas equation...
double sample_momenta_from_thermal(const double temperature, const double mass)
Samples a momentum from the Maxwell-Boltzmann (thermal) distribution in a faster way, given by Scott Pratt (see Pratt:2014vja) APPENDIX: ALGORITHM FOR GENERATING PARTICLES math trick: for distribution, sample x by: where are uniform random numbers between [0,1) for : , where is used as rejection weight.
void compute_N_in_cells_mode_algo(F &&condition)
Computes average number of particles in each cell for the mode algorithm.
std::vector< size_t > cells_to_sample_
Cells above critical energy density.
static double pressure(double T, double mub, double mus, bool account_for_resonance_widths=false)
Compute pressure .
Mesons with strangeness S < 0.
The intention of this class is to efficiently sample from the Bessel distribution ...
double N_total_in_cells_
Total number of particles over all cells in thermalization region.
void thermalize_mode_algo(QuantumNumbers &conserved_initial, double time)
Samples particles to the according to the mode algorithm.
const ParticleType & type() const
Get the type of the particle.
Define the data structure for one element of the table.
void renormalize_momenta(ParticleList &plist, const FourVector required_total_momentum)
Changes energy and momenta of the particles in plist to match the required_total_momentum.
Clock tracks the time in the simulation.
Neutral non-strange mesons.
Non-strange mesons (S = 0) with electric cherge Q > 0.
ParticleData sample_in_random_cell_mode_algo(const double time, F &&condition)
Samples one particle and the species, cell, momentum and coordinate are chosen from the corresponding...
std::vector< double > mult_sort_
Real number multiplicity for each particle type.
ParticleList to_remove_
Particles to be removed after this thermalization step.
FourVector momentum() const
Mesons with strangeness S > 0.
std::vector< double > N_in_cells_
Number of particles to be sampled in one cell.
int binomial(const int N, const T &p)
Returns a binomially distributed random number.
double nb_
Net baryon density of the cell in the computational frame.
void set_4position(const FourVector &pos)
Set the particle's 4-position directly.
double e_
Energy density in the rest frame.
The ThermLatticeNode class is intended to compute thermodynamical quantities in a cell given a set of...
HadronClass
Specifier to classify the different hadron species according to their quantum numbers.
std::vector< int > mult_int_
Integer multiplicity for each particle type.
double mus_
Net strangeness chemical potential.
int poisson(const T &lam)
Returns a Poisson distributed random number.
ThreeVector uniform_in_cell() const
void sample_in_random_cell_BF_algo(ParticleList &plist, const double time, size_t type_index)
The total number of particles of species type_index is defined by mult_int_ array that is returned by...
std::array< double, 7 > mult_classes_
The different hadron species according to the enum defined in.
double nb() const
Get net baryon density of the cell in the computational frame.
Angles provides a common interface for generating directions: i.e., two angles that should be interpr...
std::unique_ptr< RectangularLattice< ThermLatticeNode > > lat_
The lattice on which the thermodynamic quantities are calculated.
void distribute_isotropically()
Populate the object with a new direction.
The Particles class abstracts the storage and manipulation of particles.
DensityType
Allows to choose which kind of density to calculate.
std::ostream & operator<<(std::ostream &out, const ActionPtr &action)
Convenience: dereferences the ActionPtr to Action.
double mult_class(const HadronClass cl) const
The FourVector class holds relevant values in Minkowski spacetime with (+, −, −, −) metric signature.
double cell_volume_
Volume of a single cell, necessary to convert thermal densities to actual particle numbers...
HadronGasEos eos_
Hadron gas equation of state.
ParticleData contains the dynamic information of a certain particle.
void boost_momentum(const ThreeVector &v)
Apply a Lorentz-boost to only the momentum.
const ParticleTypePtrList eos_typelist_
List of particle types from which equation of state is computed.
static double net_strange_density(double T, double mub, double mus, bool account_for_resonance_widths=false)
Compute net strangeness density.
const FourVector & momentum() const
Get the particle's 4-momentum.
static double energy_density(double T, double mub, double mus)
Compute energy density.
FourVector Tmu0() const
Get Four-momentum flow of the cell.