Version: SMASH-1.7
grandcan_thermalizer.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2016-
3  * SMASH Team
4  *
5  * GNU General Public License (GPLv3 or later)
6  */
7 #ifndef SRC_INCLUDE_GRANDCAN_THERMALIZER_H_
8 #define SRC_INCLUDE_GRANDCAN_THERMALIZER_H_
9 
10 #include <memory>
11 #include <vector>
12 
13 #include "angles.h"
14 #include "clock.h"
15 #include "configuration.h"
16 #include "density.h"
17 #include "distributions.h"
18 #include "forwarddeclarations.h"
19 #include "hadgas_eos.h"
20 #include "lattice.h"
21 #include "particledata.h"
22 #include "quantumnumbers.h"
23 
24 namespace smash {
25 
49  public:
65  void add_particle(const ParticleData& p, double factor);
89  void set_rest_frame_quantities(double T0, double mub0, double mus0,
90  const ThreeVector v0);
92  FourVector Tmu0() const { return Tmu0_; }
94  double nb() const { return nb_; }
96  double ns() const { return ns_; }
98  double e() const { return e_; }
100  double p() const { return p_; }
102  ThreeVector v() const { return v_; }
104  double T() const { return T_; }
106  double mub() const { return mub_; }
108  double mus() const { return mus_; }
109 
110  private:
114  double nb_;
116  double ns_;
118  double e_;
120  double p_;
124  double T_;
126  double mub_;
128  double mus_;
129 };
130 
137 std::ostream& operator<<(std::ostream& s, const ThermLatticeNode& node);
138 
143 enum class HadronClass {
145  Baryon = 0,
147  Antibaryon = 1,
149  PositiveSMeson = 2,
151  NegativeSMeson = 3,
157  ZeroQZeroSMeson = 6,
158 };
159 
218  public:
235  GrandCanThermalizer(const std::array<double, 3> lat_sizes,
236  const std::array<int, 3> n_cells,
237  const std::array<double, 3> origin, bool periodicity,
238  double e_critical, double t_start, double delta_t,
239  ThermalizationAlgorithm algo, bool BF_microcanonical);
242  const std::array<double, 3> lat_sizes,
243  const std::array<double, 3> origin, bool periodicity)
245  lat_sizes, conf.take({"Cell_Number"}), origin, periodicity,
246  conf.take({"Critical_Edens"}), conf.take({"Start_Time"}),
247  conf.take({"Timestep"}),
248  conf.take({"Algorithm"}, ThermalizationAlgorithm::BiasedBF),
249  conf.take({"Microcanonical"}, false)) {}
255  bool is_time_to_thermalize(std::unique_ptr<Clock>& clock) const {
256  const double t = clock->current_time();
257  const int n = static_cast<int>(std::floor((t - t_start_) / period_));
258  return (t > t_start_ &&
259  t < t_start_ + n * period_ + clock->timestep_duration());
260  }
268  void update_thermalizer_lattice(const Particles& particles,
269  const DensityParameters& par,
270  bool ignore_cells_under_threshold = true);
272  ThreeVector uniform_in_cell() const;
280  void renormalize_momenta(ParticleList& plist,
281  const FourVector required_total_momentum);
282 
283  // Functions for BF-sampling algorithm
284 
293  void sample_multinomial(HadronClass particle_class, int N);
305  void sample_in_random_cell_BF_algo(ParticleList& plist, const double time,
306  size_t type_index);
319  void thermalize_BF_algo(QuantumNumbers& conserved_initial, double time,
320  int ntest);
321 
322  // Functions for mode-sampling algorithm
323 
328  template <typename F>
329  void compute_N_in_cells_mode_algo(F&& condition) {
330  N_in_cells_.clear();
331  N_total_in_cells_ = 0.0;
332  for (auto cell_index : cells_to_sample_) {
333  const ThermLatticeNode cell = (*lat_)[cell_index];
334  const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
335  double N_tot = 0.0;
336  for (ParticleTypePtr i : eos_typelist_) {
337  if (condition(i->strangeness(), i->baryon_number(), i->charge())) {
338  // N_i = n u^mu dsigma_mu = (isochronous hypersurface) n * V * gamma
339  N_tot += cell_volume_ * gamma *
340  HadronGasEos::partial_density(*i, cell.T(), cell.mub(),
341  cell.mus());
342  }
343  }
344  N_in_cells_.push_back(N_tot);
345  N_total_in_cells_ += N_tot;
346  }
347  }
348 
359  template <typename F>
361  F&& condition) {
362  // Choose random cell, probability = N_in_cell/N_total
363  double r = random::uniform(0.0, N_total_in_cells_);
364  double partial_sum = 0.0;
365  int index_only_thermalized = -1;
366  while (partial_sum < r) {
367  index_only_thermalized++;
368  partial_sum += N_in_cells_[index_only_thermalized];
369  }
370  const int cell_index = cells_to_sample_[index_only_thermalized];
371  const ThermLatticeNode cell = (*lat_)[cell_index];
372  const ThreeVector cell_center = lat_->cell_center(cell_index);
373  const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
374  const double N_in_cell = N_in_cells_[index_only_thermalized];
375  // Which sort to sample - probability N_i/N_tot
376  r = random::uniform(0.0, N_in_cell);
377  double N_sum = 0.0;
378  ParticleTypePtr type_to_sample;
379  for (ParticleTypePtr i : eos_typelist_) {
380  if (!condition(i->strangeness(), i->baryon_number(), i->charge())) {
381  continue;
382  }
383  N_sum +=
384  cell_volume_ * gamma *
385  HadronGasEos::partial_density(*i, cell.T(), cell.mub(), cell.mus());
386  if (N_sum >= r) {
387  type_to_sample = i;
388  break;
389  }
390  }
391  ParticleData particle(*type_to_sample);
392  // Note: it's pole mass for resonances!
393  const double m = type_to_sample->mass();
394  // Position
395  particle.set_4position(FourVector(time, cell_center + uniform_in_cell()));
396  // Momentum
397  double momentum_radial = sample_momenta_from_thermal(cell.T(), m);
398  Angles phitheta;
399  phitheta.distribute_isotropically();
400  particle.set_4momentum(m, phitheta.threevec() * momentum_radial);
401  particle.boost_momentum(-cell.v());
402  particle.set_formation_time(time);
403  return particle;
404  }
405 
414  void thermalize_mode_algo(QuantumNumbers& conserved_initial, double time);
422  void thermalize(const Particles& particles, double time, int ntest);
423 
430  void print_statistics(const Clock& clock) const;
434  double e_crit() const { return e_crit_; }
436  ParticleList particles_to_remove() const { return to_remove_; }
438  ParticleList particles_to_insert() const { return sampled_list_; }
439 
440  private:
445  ParticleTypePtrList list_eos_particles() const {
446  ParticleTypePtrList res;
447  for (const ParticleType& ptype : ParticleType::list_all()) {
448  if (HadronGasEos::is_eos_particle(ptype)) {
449  res.push_back(&ptype);
450  }
451  }
452  return res;
453  }
458  HadronClass get_class(size_t typelist_index) const {
459  const int B = eos_typelist_[typelist_index]->baryon_number();
460  const int S = eos_typelist_[typelist_index]->strangeness();
461  const int ch = eos_typelist_[typelist_index]->charge();
462  // clang-format off
463  return (B > 0) ? HadronClass::Baryon :
464  (B < 0) ? HadronClass::Antibaryon :
465  (S > 0) ? HadronClass::PositiveSMeson :
466  (S < 0) ? HadronClass::NegativeSMeson :
470  // clang-format on
471  }
473  double mult_class(const HadronClass cl) const {
474  return mult_classes_[static_cast<size_t>(cl)];
475  }
477  std::vector<double> N_in_cells_;
479  std::vector<size_t> cells_to_sample_;
481  HadronGasEos eos_ = HadronGasEos(true, false);
483  std::unique_ptr<RectangularLattice<ThermLatticeNode>> lat_;
485  ParticleList to_remove_;
487  ParticleList sampled_list_;
496  const ParticleTypePtrList eos_typelist_;
498  const size_t N_sorts_;
500  std::vector<double> mult_sort_;
502  std::vector<int> mult_int_;
507  std::array<double, 7> mult_classes_;
514  double cell_volume_;
516  const double e_crit_;
518  const double t_start_;
520  const double period_;
525 };
526 
527 } // namespace smash
528 
529 #endif // SRC_INCLUDE_GRANDCAN_THERMALIZER_H_
const double e_crit_
Critical energy density above which cells are thermalized.
void add_particle(const ParticleData &p, double factor)
Add particle contribution to Tmu0, nb and ns May look like unused at first glance, but it is actually used by update_lattice, where the node type of the lattice is templated.
A class to pre-calculate and store parameters relevant for density calculation.
Definition: density.h:106
ThermalizationAlgorithm
Defines the algorithm used for the forced thermalization.
HadronClass get_class(size_t typelist_index) const
Defines the class of hadrons by quantum numbers.
const size_t N_sorts_
Number of different species to be sampled.
The ThreeVector class represents a physical three-vector with the components .
Definition: threevector.h:31
double p() const
Get pressure in the rest frame.
ThermLatticeNode()
Default constructor of thermal quantities on the lattice returning thermodynamic quantities in comput...
Class to handle the equation of state (EoS) of the hadron gas, consisting of all hadrons included int...
Definition: hadgas_eos.h:112
FourVector Tmu0_
Four-momentum flow of the cell.
void add_particle_for_derivatives(const ParticleData &, double, ThreeVector)
dummy function for update_lattice
double sqr() const
Definition: threevector.h:259
double mub() const
Get the net baryon chemical potential.
double ns() const
Get net strangeness density of the cell in the computational frame.
ParticleList particles_to_insert() const
List of newly created particles to be inserted in the simulation.
double e() const
Get energy density in the rest frame.
const double period_
Defines periodicity of the lattice in fm.
Interface to the SMASH configuration files.
static bool is_eos_particle(const ParticleType &ptype)
Check if a particle belongs to the EoS.
Definition: hadgas_eos.h:308
double mus() const
Get the net strangeness chemical potential.
double T() const
Get the temperature.
const ThermalizationAlgorithm algorithm_
Algorithm to choose for sampling of particles obeying conservation laws.
static double partial_density(const ParticleType &ptype, double T, double mub, double mus, bool account_for_resonance_widths=false)
Compute partial density of one hadron sort.
Definition: hadgas_eos.cc:234
RectangularLattice< ThermLatticeNode > & lattice() const
Getter function for the lattice.
void set_formation_time(const double &form_time)
Set the absolute formation time.
Definition: particledata.h:232
void set_rest_frame_quantities(double T0, double mub0, double mus0, const ThreeVector v0)
Set all the rest frame quantities to some values, this is useful for testing.
A container class to hold all the arrays on the lattice and access them.
Definition: lattice.h:46
ThreeVector v_
Velocity of the rest frame.
double p_
Pressure in the rest frame.
static const ParticleTypeList & list_all()
Definition: particletype.cc:55
double mass() const
Definition: particletype.h:144
double ns_
Net strangeness density of the cell in the computational frame.
const bool BF_enforce_microcanonical_
Enforce energy conservation as part of BF sampling algorithm or not.
double mub_
Net baryon chemical potential.
GrandCanThermalizer(Configuration &conf, const std::array< double, 3 > lat_sizes, const std::array< double, 3 > origin, bool periodicity)
ParticleList sampled_list_
Newly generated particles by thermalizer.
double e_crit() const
Get the critical energy density.
ThreeVector v() const
Get 3-velocity of the rest frame.
Particle type contains the static properties of a particle species.
Definition: particletype.h:97
void set_4momentum(const FourVector &momentum_vector)
Set the particle&#39;s 4-momentum directly.
Definition: particledata.h:145
Non-strange mesons (S = 0) with electric cherge Q < 0.
A container for storing conserved values.
void compute_rest_frame_quantities(HadronGasEos &eos)
Temperature, chemical potentials and rest frame velocity are calculated given the hadron gas equation...
double sample_momenta_from_thermal(const double temperature, const double mass)
Samples a momentum from the Maxwell-Boltzmann (thermal) distribution in a faster way, given by Scott Pratt (see Pratt:2014vja) APPENDIX: ALGORITHM FOR GENERATING PARTICLES math trick: for distribution, sample x by: where are uniform random numbers between [0,1) for : , where is used as rejection weight.
void compute_N_in_cells_mode_algo(F &&condition)
Computes average number of particles in each cell for the mode algorithm.
std::vector< size_t > cells_to_sample_
Cells above critical energy density.
Mesons with strangeness S < 0.
T uniform(T min, T max)
Definition: random.h:88
double N_total_in_cells_
Total number of particles over all cells in thermalization region.
The GrandCanThermalizer class implements the following functionality:
Clock tracks the time in the simulation.
Definition: clock.h:68
Neutral non-strange mesons.
Non-strange mesons (S = 0) with electric cherge Q > 0.
ParticleData sample_in_random_cell_mode_algo(const double time, F &&condition)
Samples one particle and the species, cell, momentum and coordinate are chosen from the corresponding...
std::vector< double > mult_sort_
Real number multiplicity for each particle type.
ParticleList to_remove_
Particles to be removed after this thermalization step.
Mesons with strangeness S > 0.
std::vector< double > N_in_cells_
Number of particles to be sampled in one cell.
double nb_
Net baryon density of the cell in the computational frame.
ParticleList particles_to_remove() const
List of particles to be removed from the simulation.
void set_4position(const FourVector &pos)
Set the particle&#39;s 4-position directly.
Definition: particledata.h:190
double e_
Energy density in the rest frame.
The ThermLatticeNode class is intended to compute thermodynamical quantities in a cell given a set of...
HadronClass
Specifier to classify the different hadron species according to their quantum numbers.
std::vector< int > mult_int_
Integer multiplicity for each particle type.
double mus_
Net strangeness chemical potential.
std::array< double, 7 > mult_classes_
The different hadron species according to the enum defined in.
A pointer-like interface to global references to ParticleType objects.
Definition: particletype.h:654
double nb() const
Get net baryon density of the cell in the computational frame.
Angles provides a common interface for generating directions: i.e., two angles that should be interpr...
Definition: angles.h:59
std::unique_ptr< RectangularLattice< ThermLatticeNode > > lat_
The lattice on which the thermodynamic quantities are calculated.
void distribute_isotropically()
Populate the object with a new direction.
Definition: angles.h:188
The Particles class abstracts the storage and manipulation of particles.
Definition: particles.h:33
ParticleTypePtrList list_eos_particles() const
Extracts the particles in the hadron gas equation of state from the complete list of particle types i...
constexpr int n
Neutron.
std::ostream & operator<<(std::ostream &out, const ActionPtr &action)
Convenience: dereferences the ActionPtr to Action.
Definition: action.h:463
double mult_class(const HadronClass cl) const
bool is_time_to_thermalize(std::unique_ptr< Clock > &clock) const
Check that the clock is close to n * period of thermalization, since the thermalization only happens ...
The FourVector class holds relevant values in Minkowski spacetime with (+, −, −, −) metric signature.
Definition: fourvector.h:33
double cell_volume_
Volume of a single cell, necessary to convert thermal densities to actual particle numbers...
ParticleData contains the dynamic information of a certain particle.
Definition: particledata.h:52
void boost_momentum(const ThreeVector &v)
Apply a Lorentz-boost to only the momentum.
Definition: particledata.h:313
const ParticleTypePtrList eos_typelist_
List of particle types from which equation of state is computed.
const double t_start_
Starting time of the simulation.
Definition: action.h:24
FourVector Tmu0() const
Get Four-momentum flow of the cell.