Version: SMASH-1.8
smash::Experiment< Modus > Class Template Reference

#include <experiment.h>

template<typename Modus>
class smash::Experiment< Modus >

The main class, where the simulation of an experiment is executed.

The Experiment class owns all data (maybe indirectly) relevant for the execution of the experiment simulation. The experiment can be conducted in different running modi. Since the abstraction of these differences should not incur any overhead, the design is built around the Policy pattern.

The Policy pattern was defined by Andrei Alexandrescu in his book "Modern C++ Design: Generic Programming and Design Patterns Applied". Addison-Wesley:

A policy defines a class interface or a class template interface. The interface consists of one or all of the following: inner type definitions, member functions, and member variables.

The policy pattern can also be understood as a compile-time variant of the strategy pattern.

The Modus template parameter defines the "policy" of the Experiment class. It determines several aspects of the experiment execution at compile time. The original strategy pattern would select these differences at run time, thus incurring an overhead. This overhead becomes severe in cases where calls to strategy/policy functions are done very frequently. Using the policy pattern, the compiler can fully optimize: It creates a new instance of all functions in Experiment for all different Modus types.

Definition at line 138 of file experiment.h.

Inheritance diagram for smash::Experiment< Modus >:
[legend]
Collaboration diagram for smash::Experiment< Modus >:
[legend]

Public Member Functions

void run () override
 Runs the experiment. More...
 
 Experiment (Configuration config, const bf::path &output_path)
 Create a new Experiment. More...
 
void initialize_new_event ()
 This is called in the beginning of each event. More...
 
void run_time_evolution ()
 Runs the time evolution of an event with fixed-sized time steps or without timesteps, from action to actions. More...
 
void do_final_decays ()
 Performs the final decays of an event. More...
 
void final_output (const int evt_num)
 Output at the end of an event. More...
 
Particlesparticles ()
 Provides external access to SMASH particles. More...
 
Modus * modus ()
 Provides external access to SMASH calculation modus. More...
 
- Public Member Functions inherited from smash::ExperimentBase
 ExperimentBase ()=default
 
virtual ~ExperimentBase ()=default
 The virtual destructor avoids undefined behavior when destroying derived objects. More...
 

Private Member Functions

template<typename Container >
bool perform_action (Action &action, const Container &particles_before_actions)
 Perform the given action. More...
 
void create_output (const std::string &format, const std::string &content, const bf::path &output_path, const OutputParameters &par)
 Create a list of output files. More...
 
void propagate_and_shine (double to_time)
 Propagate all particles until time to_time without any interactions and shine dileptons. More...
 
void run_time_evolution_timestepless (Actions &actions)
 Performs all the propagations and actions during a certain time interval neglecting the influence of the potentials. More...
 
void intermediate_output ()
 Intermediate output during an event. More...
 
void update_potentials ()
 Recompute potentials on lattices if necessary. More...
 
double compute_min_cell_length (double dt) const
 Calculate the minimal size for the grid cells such that the ScatterActionsFinder will find all collisions within the maximal transverse distance (which is determined by the maximal cross section). More...
 
double next_output_time () const
 Shortcut for next output time. More...
 

Private Attributes

ExperimentParameters parameters_
 Struct of several member variables. More...
 
DensityParameters density_param_
 Structure to precalculate and hold parameters for density computations. More...
 
Modus modus_
 Instance of the Modus template parameter. More...
 
Particles particles_
 Complete particle list. More...
 
std::unique_ptr< Potentialspotentials_
 An instance of potentials class, that stores parameters of potentials, calculates them and their gradients. More...
 
std::unique_ptr< PauliBlockerpauli_blocker_
 An instance of PauliBlocker class that stores parameters needed for Pauli blocking calculations and computes phase-space density. More...
 
OutputsList outputs_
 A list of output formaters. More...
 
OutputPtr dilepton_output_
 The Dilepton output. More...
 
OutputPtr photon_output_
 The Photon output. More...
 
std::vector< bool > nucleon_has_interacted_ = {}
 nucleon_has_interacted_ labels whether the particles in the nuclei have experienced any collisions or not. More...
 
bool projectile_target_interact_ = false
 Whether the projectile and the target collided. More...
 
std::vector< FourVectorbeam_momentum_ = {}
 The initial nucleons in the ColliderModus propagate with beam_momentum_, if Fermi motion is frozen. More...
 
std::vector< std::unique_ptr< ActionFinderInterface > > action_finders_
 The Action finder objects. More...
 
std::unique_ptr< DecayActionsFinderDileptondilepton_finder_
 The Dilepton Action Finder. More...
 
std::unique_ptr< ActionFinderInterfacephoton_finder_
 The (Scatter) Actions Finder for Direct Photons. More...
 
int n_fractional_photons_
 Number of fractional photons produced per single reaction. More...
 
std::unique_ptr< DensityLatticejmu_B_lat_
 Baryon density on the lattices. More...
 
std::unique_ptr< DensityLatticejmu_I3_lat_
 Isospin projection density on the lattices. More...
 
std::unique_ptr< DensityLatticejmu_custom_lat_
 Custom density on the lattices. More...
 
DensityType dens_type_lattice_printout_ = DensityType::None
 Type of density for lattice printout. More...
 
std::unique_ptr< RectangularLattice< FourVector > > UB_lat_ = nullptr
 Lattices for Skyrme potentials (evaluated in the local rest frame) times the baryon flow 4-velocity. More...
 
std::unique_ptr< RectangularLattice< FourVector > > UI3_lat_ = nullptr
 Lattices for symmetry potentials (evaluated in the local rest frame) times the isospin flow 4-velocity. More...
 
std::unique_ptr< RectangularLattice< std::pair< ThreeVector, ThreeVector > > > FB_lat_
 Lattices for the electric and magnetic components of the Skyrme force. More...
 
std::unique_ptr< RectangularLattice< std::pair< ThreeVector, ThreeVector > > > FI3_lat_
 Lattices for the electric and magnetic component of the symmetry force. More...
 
std::unique_ptr< RectangularLattice< EnergyMomentumTensor > > Tmn_
 Lattices of energy-momentum tensors for printout. More...
 
bool printout_tmn_ = false
 Whether to print the energy-momentum tensor. More...
 
bool printout_tmn_landau_ = false
 Whether to print the energy-momentum tensor in Landau frame. More...
 
bool printout_v_landau_ = false
 Whether to print the 4-velocity in Landau fram. More...
 
bool printout_lattice_td_ = false
 Whether to print the thermodynamics quantities evaluated on the lattices. More...
 
std::unique_ptr< GrandCanThermalizerthermalizer_
 Instance of class used for forced thermalization. More...
 
StringProcessprocess_string_ptr_
 Pointer to the string process class object, which is used to set the random seed for PYTHIA objects in each event. More...
 
const int nevents_
 Number of events. More...
 
const double end_time_
 simulation time at which the evolution is stopped. More...
 
const double delta_time_startup_
 The clock's timestep size at start up. More...
 
const bool force_decays_
 This indicates whether we force all resonances to decay in the last timestep. More...
 
const bool use_grid_
 This indicates whether to use the grid. More...
 
const ExpansionProperties metric_
 This struct contains information on the metric to be used. More...
 
const bool dileptons_switch_
 This indicates whether dileptons are switched on. More...
 
const bool photons_switch_
 This indicates whether photons are switched on. More...
 
const bool bremsstrahlung_switch_
 This indicates whether bremsstrahlung is switched on. More...
 
const bool IC_output_switch_
 This indicates whether the IC output is enabled. More...
 
const TimeStepMode time_step_mode_
 This indicates whether to use time steps. More...
 
double max_transverse_distance_sqr_ = std::numeric_limits<double>::max()
 Maximal distance at which particles can interact, squared. More...
 
QuantumNumbers conserved_initial_
 The conserved quantities of the system. More...
 
double initial_mean_field_energy_
 The initial total mean field energy in the system. More...
 
SystemTimePoint time_start_ = SystemClock::now()
 system starting time of the simulation More...
 
DensityType dens_type_ = DensityType::None
 Type of density to be written to collision headers. More...
 
uint64_t interactions_total_ = 0
 Total number of interactions for current timestep. More...
 
uint64_t previous_interactions_total_ = 0
 Total number of interactions for previous timestep. More...
 
uint64_t wall_actions_total_ = 0
 Total number of wall-crossings for current timestep. More...
 
uint64_t previous_wall_actions_total_ = 0
 Total number of wall-crossings for previous timestep. More...
 
uint64_t total_pauli_blocked_ = 0
 Total number of Pauli-blockings for current timestep. More...
 
uint64_t total_hypersurface_crossing_actions_ = 0
 Total number of particles removed from the evolution in hypersurface crossing actions. More...
 
double total_energy_removed_ = 0.0
 Total energy removed from the system in hypersurface crossing actions. More...
 
int64_t seed_ = -1
 random seed for the next event. More...
 

Friends

class ExperimentBase
 
std::ostream & operator<< (std::ostream &out, const Experiment &e)
 Creates a verbose textual description of the setup of the Experiment. More...
 

Additional Inherited Members

- Static Public Member Functions inherited from smash::ExperimentBase
static std::unique_ptr< ExperimentBasecreate (Configuration config, const bf::path &output_path)
 Factory method that creates and initializes a new Experiment<Modus>. More...
 

Constructor & Destructor Documentation

◆ Experiment()

template<typename Modus>
smash::Experiment< Modus >::Experiment ( Configuration  config,
const bf::path &  output_path 
)
explicit

Create a new Experiment.

This constructor is only called from the ExperimentBase::create factory method.

Parameters
[in]configThe Configuration object contains all initial setup of the experiment. It is forwarded to the constructors of member variables as needed. Note that the object is passed by non-const reference. This is only necessary for bookkeeping: Values are not only read, but actually taken out of the object. Thus, all values that remain were not used.
[in]output_pathThe directory where the output files are written.

Member Function Documentation

◆ run()

template<typename Modus >
void smash::Experiment< Modus >::run ( )
overridevirtual

Runs the experiment.

The constructor does the setup of the experiment. The run function executes the complete experiment.

Implements smash::ExperimentBase.

Definition at line 2104 of file experiment.h.

2104  {
2105  const auto &mainlog = logg[LMain];
2106  for (int j = 0; j < nevents_; j++) {
2107  mainlog.info() << "Event " << j;
2108 
2109  // Sample initial particles, start clock, some printout and book-keeping
2111  /* In the ColliderModus, if the first collisions within the same nucleus are
2112  * forbidden, 'nucleon_has_interacted_', which records whether a nucleon has
2113  * collided with another nucleon, is initialized equal to false. If allowed,
2114  * 'nucleon_has_interacted' is initialized equal to true, which means these
2115  * incoming particles have experienced some fake scatterings, they can
2116  * therefore collide with each other later on since these collisions are not
2117  * "first" to them. */
2118  if (modus_.is_collider()) {
2119  if (!modus_.cll_in_nucleus()) {
2120  nucleon_has_interacted_.assign(modus_.total_N_number(), false);
2121  } else {
2122  nucleon_has_interacted_.assign(modus_.total_N_number(), true);
2123  }
2124  }
2125  /* In the ColliderModus, if Fermi motion is frozen, assign the beam momenta
2126  * to the nucleons in both the projectile and the target. */
2127  if (modus_.is_collider() && modus_.fermi_motion() == FermiMotion::Frozen) {
2128  for (int i = 0; i < modus_.total_N_number(); i++) {
2129  const auto mass_beam = particles_.copy_to_vector()[i].effective_mass();
2130  const auto v_beam = i < modus_.proj_N_number()
2131  ? modus_.velocity_projectile()
2132  : modus_.velocity_target();
2133  const auto gamma = 1.0 / std::sqrt(1.0 - v_beam * v_beam);
2134  beam_momentum_.emplace_back(FourVector(gamma * mass_beam, 0.0, 0.0,
2135  gamma * v_beam * mass_beam));
2136  }
2137  }
2138 
2139  // Output at event start
2140  for (const auto &output : outputs_) {
2141  output->at_eventstart(particles_, j);
2142  }
2143 
2145 
2146  if (force_decays_) {
2147  do_final_decays();
2148  }
2149 
2150  // Output at event end
2151  final_output(j);
2152  }
2153 }

◆ initialize_new_event()

template<typename Modus >
void smash::Experiment< Modus >::initialize_new_event ( )

This is called in the beginning of each event.

It initializes particles according to selected modus, resets the clock and saves the initial conserved quantities for subsequent sanity checks.

Definition at line 1376 of file experiment.h.

1376  {
1378  logg[LExperiment].info() << "random number seed: " << seed_;
1379  /* Set seed for the next event. It has to be positive, so it can be entered
1380  * in the config.
1381  *
1382  * We have to be careful about the minimal integer, whose absolute value
1383  * cannot be represented. */
1384  int64_t r = random::advance();
1385  while (r == INT64_MIN) {
1386  r = random::advance();
1387  }
1388  seed_ = std::abs(r);
1389  /* Set the random seed used in PYTHIA hadronization
1390  * to be same with the SMASH one.
1391  * In this way we ensure that the results are reproducible
1392  * for every event if one knows SMASH random seed. */
1393  if (process_string_ptr_ != NULL) {
1395  }
1396 
1397  particles_.reset();
1398 
1399  // Sample particles according to the initial conditions
1400  double start_time = modus_.initial_conditions(&particles_, parameters_);
1401  /* For box modus make sure that particles are in the box. In principle, after
1402  * a correct initialization they should be, so this is just playing it safe.
1403  */
1404  modus_.impose_boundary_conditions(&particles_, outputs_);
1405  // Reset the simulation clock
1406  double timestep = delta_time_startup_;
1407 
1408  switch (time_step_mode_) {
1409  case TimeStepMode::Fixed:
1410  break;
1411  case TimeStepMode::None:
1412  timestep = end_time_ - start_time;
1413  // Take care of the box modus + timestepless propagation
1414  const double max_dt = modus_.max_timestep(max_transverse_distance_sqr_);
1415  if (max_dt > 0. && max_dt < timestep) {
1416  timestep = max_dt;
1417  }
1418  break;
1419  }
1420  std::unique_ptr<UniformClock> clock_for_this_event;
1421  if (modus_.is_list() && (timestep < 0.0)) {
1422  throw std::runtime_error(
1423  "Timestep for the given event is negative. \n"
1424  "This might happen if the formation times of the input particles are "
1425  "larger than the specified end time of the simulation.");
1426  }
1427  clock_for_this_event = make_unique<UniformClock>(start_time, timestep);
1428  parameters_.labclock = std::move(clock_for_this_event);
1429 
1430  // Reset the output clock
1431  parameters_.outputclock->reset(start_time, true);
1432  // remove time before starting time in case of custom output times.
1433  parameters_.outputclock->remove_times_in_past(start_time);
1434 
1435  logg[LExperiment].debug(
1436  "Lab clock: t_start = ", parameters_.labclock->current_time(),
1437  ", dt = ", parameters_.labclock->timestep_duration());
1438 
1439  /* Save the initial conserved quantum numbers and total momentum in
1440  * the system for conservation checks */
1441  conserved_initial_ = QuantumNumbers(particles_);
1442  wall_actions_total_ = 0;
1444  interactions_total_ = 0;
1449  total_energy_removed_ = 0.0;
1450  // Print output headers
1451  logg[LExperiment].info() << hline;
1452  logg[LExperiment].info() << "Time[fm] Ekin[GeV] E_MF[GeV] ETotal[GeV] "
1453  << "ETot/N[GeV] D(ETot/N)[GeV] Scatt&Decays "
1454  << "Particles Comp.Time";
1455  logg[LExperiment].info() << hline;
1456  double E_mean_field = 0.0;
1457  if (potentials_) {
1459  // using the lattice is necessary
1460  if ((jmu_B_lat_ != nullptr)) {
1461  E_mean_field =
1463  }
1464  }
1465  initial_mean_field_energy_ = E_mean_field;
1468  parameters_.labclock->current_time(), E_mean_field,
1470 }
Here is the call graph for this function:

◆ run_time_evolution()

template<typename Modus >
void smash::Experiment< Modus >::run_time_evolution ( )

Runs the time evolution of an event with fixed-sized time steps or without timesteps, from action to actions.

Within one timestep (fixed) evolution from action to action is invoked.

Definition at line 1628 of file experiment.h.

1628  {
1629  Actions actions;
1630 
1631  while (parameters_.labclock->current_time() < end_time_) {
1632  const double t = parameters_.labclock->current_time();
1633  const double dt =
1634  std::min(parameters_.labclock->timestep_duration(), end_time_ - t);
1635  logg[LExperiment].debug("Timestepless propagation for next ", dt, " fm/c.");
1636 
1637  // Perform forced thermalization if required
1638  if (thermalizer_ &&
1639  thermalizer_->is_time_to_thermalize(parameters_.labclock)) {
1640  const bool ignore_cells_under_treshold = true;
1641  thermalizer_->update_thermalizer_lattice(particles_, density_param_,
1642  ignore_cells_under_treshold);
1643  const double current_t = parameters_.labclock->current_time();
1644  thermalizer_->thermalize(particles_, current_t,
1646  ThermalizationAction th_act(*thermalizer_, current_t);
1647  if (th_act.any_particles_thermalized()) {
1648  perform_action(th_act, particles_);
1649  }
1650  }
1651 
1652  if (particles_.size() > 0 && action_finders_.size() > 0) {
1653  /* (1.a) Create grid. */
1654  double min_cell_length = compute_min_cell_length(dt);
1655  logg[LExperiment].debug("Creating grid with minimal cell length ",
1656  min_cell_length);
1657  const auto &grid =
1658  use_grid_ ? modus_.create_grid(particles_, min_cell_length, dt)
1659  : modus_.create_grid(particles_, min_cell_length, dt,
1661 
1662  const double cell_vol = grid.cell_volume();
1663 
1664  /* (1.b) Iterate over cells and find actions. */
1665  grid.iterate_cells(
1666  [&](const ParticleList &search_list) {
1667  for (const auto &finder : action_finders_) {
1668  actions.insert(finder->find_actions_in_cell(
1669  search_list, dt, cell_vol, beam_momentum_));
1670  }
1671  },
1672  [&](const ParticleList &search_list,
1673  const ParticleList &neighbors_list) {
1674  for (const auto &finder : action_finders_) {
1675  actions.insert(finder->find_actions_with_neighbors(
1676  search_list, neighbors_list, dt, beam_momentum_));
1677  }
1678  });
1679  }
1680 
1681  /* \todo (optimizations) Adapt timestep size here */
1682 
1683  /* (2) Propagation from action to action until the end of timestep */
1685 
1686  /* (3) Update potentials (if computed on the lattice) and
1687  * compute new momenta according to equations of motion */
1688  if (potentials_) {
1690  update_momenta(&particles_, parameters_.labclock->timestep_duration(),
1691  *potentials_, FB_lat_.get(), FI3_lat_.get());
1692  }
1693 
1694  /* (4) Expand universe if non-minkowskian metric; updates
1695  * positions and momenta according to the selected expansion */
1698  }
1699 
1700  ++(*parameters_.labclock);
1701 
1702  /* (5) Check conservation laws.
1703  *
1704  * Check conservation of conserved quantities if potentials and string
1705  * fragmentation are off. If potentials are on then momentum is conserved
1706  * only in average. If string fragmentation is on, then energy and
1707  * momentum are only very roughly conserved in high-energy collisions. */
1710  std::string err_msg = conserved_initial_.report_deviations(particles_);
1711  if (!err_msg.empty()) {
1712  logg[LExperiment].error() << err_msg;
1713  throw std::runtime_error("Violation of conserved quantities!");
1714  }
1715  }
1716  }
1717 
1718  if (pauli_blocker_) {
1719  logg[LExperiment].info(
1720  "Interactions: Pauli-blocked/performed = ", total_pauli_blocked_, "/",
1722  }
1723 }
Here is the call graph for this function:

◆ do_final_decays()

template<typename Modus >
void smash::Experiment< Modus >::do_final_decays ( )

Performs the final decays of an event.

Definition at line 1995 of file experiment.h.

1995  {
1996  /* At end of time evolution: Force all resonances to decay. In order to handle
1997  * decay chains, we need to loop until no further actions occur. */
1998  uint64_t interactions_old;
1999  const auto particles_before_actions = particles_.copy_to_vector();
2000  do {
2001  Actions actions;
2002 
2003  interactions_old = interactions_total_;
2004 
2005  // Dileptons: shining of remaining resonances
2006  if (dilepton_finder_ != nullptr) {
2007  for (const auto &output : outputs_) {
2008  dilepton_finder_->shine_final(particles_, output.get(), true);
2009  }
2010  }
2011  // Find actions.
2012  for (const auto &finder : action_finders_) {
2013  actions.insert(finder->find_final_actions(particles_));
2014  }
2015  // Perform actions.
2016  while (!actions.is_empty()) {
2017  perform_action(*actions.pop(), particles_before_actions);
2018  }
2019  // loop until no more decays occur
2020  } while (interactions_total_ > interactions_old);
2021 
2022  // Dileptons: shining of stable particles at the end
2023  if (dilepton_finder_ != nullptr) {
2024  for (const auto &output : outputs_) {
2025  dilepton_finder_->shine_final(particles_, output.get(), false);
2026  }
2027  }
2028 }
Here is the call graph for this function:

◆ final_output()

template<typename Modus >
void smash::Experiment< Modus >::final_output ( const int  evt_num)

Output at the end of an event.

Parameters
[in]evt_numNumber of the event

Definition at line 2031 of file experiment.h.

2031  {
2032  /* make sure the experiment actually ran (note: we should compare this
2033  * to the start time, but we don't know that. Therefore, we check that
2034  * the time is positive, which should heuristically be the same). */
2035  if (likely(parameters_.labclock > 0)) {
2036  const uint64_t wall_actions_this_interval =
2038  const uint64_t interactions_this_interval = interactions_total_ -
2040  wall_actions_this_interval;
2041  double E_mean_field = 0.0;
2042  if (potentials_) {
2043  // using the lattice is necessary
2044  if ((jmu_B_lat_ != nullptr)) {
2045  E_mean_field =
2047  }
2048  }
2050  particles_, interactions_this_interval, conserved_initial_, time_start_,
2051  end_time_, E_mean_field, initial_mean_field_energy_);
2052  if (IC_output_switch_ && (particles_.size() == 0)) {
2053  // Verify there is no more energy in the system if all particles were
2054  // removed when crossing the hypersurface
2055  const double remaining_energy =
2057  if (remaining_energy > really_small) {
2058  throw std::runtime_error(
2059  "There is remaining energy in the system although all particles "
2060  "were removed.\n"
2061  "E_remain = " +
2062  std::to_string(remaining_energy) + " [GeV]");
2063  } else {
2064  logg[LExperiment].info() << hline;
2065  logg[LExperiment].info()
2066  << "Time real: " << SystemClock::now() - time_start_;
2067  logg[LExperiment].info()
2068  << "Interactions before reaching hypersurface: "
2071  logg[LExperiment].info()
2072  << "Total number of particles removed on hypersurface: "
2074  }
2075  } else {
2076  logg[LExperiment].info() << hline;
2077  logg[LExperiment].info()
2078  << "Time real: " << SystemClock::now() - time_start_;
2079  logg[LExperiment].info() << "Final interaction number: "
2081  }
2082 
2083  // Check if there are unformed particles
2084  int unformed_particles_count = 0;
2085  for (const auto &particle : particles_) {
2086  if (particle.formation_time() > end_time_) {
2087  unformed_particles_count++;
2088  }
2089  }
2090  if (unformed_particles_count > 0) {
2091  logg[LExperiment].warn(
2092  "End time might be too small. ", unformed_particles_count,
2093  " unformed particles were found at the end of the evolution.");
2094  }
2095  }
2096 
2097  for (const auto &output : outputs_) {
2098  output->at_eventend(particles_, evt_num, modus_.impact_parameter(),
2100  }
2101 }
Here is the call graph for this function:

◆ particles()

template<typename Modus>
Particles* smash::Experiment< Modus >::particles ( )
inline

Provides external access to SMASH particles.

This is helpful if SMASH is used as a 3rd-party library.

Definition at line 223 of file experiment.h.

223 { return &particles_; }

◆ modus()

template<typename Modus>
Modus* smash::Experiment< Modus >::modus ( )
inline

Provides external access to SMASH calculation modus.

This is helpful if SMASH is used as a 3rd-party library.

Definition at line 229 of file experiment.h.

229 { return &modus_; }

◆ perform_action()

template<typename Modus>
template<typename Container >
bool smash::Experiment< Modus >::perform_action ( Action action,
const Container &  particles_before_actions 
)
private

Perform the given action.

Template Parameters
Containertype that holds the particles before the action.
Parameters
[in]actionThe action to perform. If it performs, it'll modify the private member particles_.
[in]particles_before_actionsA container with the ParticleData from this time step before any actions were performed.
Returns
False if the action is rejected either due to invalidity or Pauli-blocking, or true if it's accepted and performed.

◆ create_output()

template<typename Modus >
void smash::Experiment< Modus >::create_output ( const std::string &  format,
const std::string &  content,
const bf::path &  output_path,
const OutputParameters par 
)
private

Create a list of output files.

Parameters
[in]formatFormat of the output file (e.g. Root, Oscar, Vtk)
[in]contentContent of the output (e.g. particles, collisions)
[in]output_pathPath of the output file
[in]parOutput options.(e.g. Extended)

Definition at line 576 of file experiment.h.

579  {
580  logg[LExperiment].info() << "Adding output " << content << " of format "
581  << format << std::endl;
582 
583  if (format == "VTK" && content == "Particles") {
584  outputs_.emplace_back(
585  make_unique<VtkOutput>(output_path, content, out_par));
586  } else if (format == "Root") {
587 #ifdef SMASH_USE_ROOT
588  if (content == "Initial_Conditions") {
589  outputs_.emplace_back(
590  make_unique<RootOutput>(output_path, "SMASH_IC", out_par));
591  } else {
592  outputs_.emplace_back(
593  make_unique<RootOutput>(output_path, content, out_par));
594  }
595 #else
596  logg[LExperiment].error(
597  "Root output requested, but Root support not compiled in");
598 #endif
599  } else if (format == "Binary") {
600  if (content == "Collisions" || content == "Dileptons" ||
601  content == "Photons") {
602  outputs_.emplace_back(
603  make_unique<BinaryOutputCollisions>(output_path, content, out_par));
604  } else if (content == "Particles") {
605  outputs_.emplace_back(
606  make_unique<BinaryOutputParticles>(output_path, content, out_par));
607  } else if (content == "Initial_Conditions") {
608  outputs_.emplace_back(make_unique<BinaryOutputInitialConditions>(
609  output_path, content, out_par));
610  }
611  } else if (format == "Oscar1999" || format == "Oscar2013") {
612  outputs_.emplace_back(
613  create_oscar_output(format, content, output_path, out_par));
614  } else if (content == "Thermodynamics" && format == "ASCII") {
615  outputs_.emplace_back(
616  make_unique<ThermodynamicOutput>(output_path, content, out_par));
617  } else if (content == "Thermodynamics" && format == "VTK") {
618  printout_lattice_td_ = true;
619  outputs_.emplace_back(
620  make_unique<VtkOutput>(output_path, content, out_par));
621  } else if (content == "Initial_Conditions" && format == "ASCII") {
622  outputs_.emplace_back(
623  make_unique<ICOutput>(output_path, "SMASH_IC", out_par));
624  } else {
625  logg[LExperiment].error()
626  << "Unknown combination of format (" << format << ") and content ("
627  << content << "). Fix the config.";
628  }
629 }
Here is the call graph for this function:

◆ propagate_and_shine()

template<typename Modus >
void smash::Experiment< Modus >::propagate_and_shine ( double  to_time)
private

Propagate all particles until time to_time without any interactions and shine dileptons.

Parameters
[in]to_timeTime at the end of propagation [fm/c]

Definition at line 1726 of file experiment.h.

1726  {
1727  const double dt =
1729  if (dilepton_finder_ != nullptr) {
1730  for (const auto &output : outputs_) {
1731  dilepton_finder_->shine(particles_, output.get(), dt);
1732  }
1733  }
1734 }
Here is the call graph for this function:

◆ run_time_evolution_timestepless()

template<typename Modus >
void smash::Experiment< Modus >::run_time_evolution_timestepless ( Actions actions)
private

Performs all the propagations and actions during a certain time interval neglecting the influence of the potentials.

This function is called in either the time stepless cases or the cases with time steps. In a time stepless case, the time interval should be equal to the whole evolution time, while in the case with time step, the intervals are given by the time steps.

Parameters
[in,out]actionsActions occur during a certain time interval. They provide the ending times of the propagations and are updated during the time interval.

Definition at line 1751 of file experiment.h.

1751  {
1752  const double start_time = parameters_.labclock->current_time();
1753  const double end_time =
1754  std::min(parameters_.labclock->next_time(), end_time_);
1755  double time_left = end_time - start_time;
1756  logg[LExperiment].debug(
1757  "Timestepless propagation: ", "Actions size = ", actions.size(),
1758  ", start time = ", start_time, ", end time = ", end_time);
1759 
1760  // iterate over all actions
1761  while (!actions.is_empty()) {
1762  // get next action
1763  ActionPtr act = actions.pop();
1764  if (!act->is_valid(particles_)) {
1765  logg[LExperiment].debug(~einhard::DRed(), "✘ ", act,
1766  " (discarded: invalid)");
1767  continue;
1768  }
1769  if (act->time_of_execution() > end_time) {
1770  logg[LExperiment].error(
1771  act, " scheduled later than end time: t_action[fm/c] = ",
1772  act->time_of_execution(), ", t_end[fm/c] = ", end_time);
1773  }
1774  logg[LExperiment].debug(~einhard::Green(), "✔ ", act);
1775 
1776  while (next_output_time() <= act->time_of_execution()) {
1777  logg[LExperiment].debug("Propagating until output time: ",
1778  next_output_time());
1780  ++(*parameters_.outputclock);
1782  }
1783 
1784  /* (1) Propagate to the next action. */
1785  logg[LExperiment].debug("Propagating until next action ", act,
1786  ", action time = ", act->time_of_execution());
1787  propagate_and_shine(act->time_of_execution());
1788 
1789  /* (2) Perform action.
1790  *
1791  * Update the positions of the incoming particles, because the information
1792  * in the action object will be outdated as the particles have been
1793  * propagated since the construction of the action. */
1794  act->update_incoming(particles_);
1795  const bool performed = perform_action(*act, particles_);
1796 
1797  /* No need to update actions for outgoing particles
1798  * if the action is not performed. */
1799  if (!performed) {
1800  continue;
1801  }
1802 
1803  /* (3) Update actions for newly-produced particles. */
1804 
1805  time_left = end_time - act->time_of_execution();
1806  const ParticleList &outgoing_particles = act->outgoing_particles();
1807  // Cell volume set to zero, since there is no grid
1808  const double cell_vol = 0.0;
1809  for (const auto &finder : action_finders_) {
1810  // Outgoing particles can still decay, cross walls...
1811  actions.insert(finder->find_actions_in_cell(outgoing_particles, time_left,
1812  cell_vol, beam_momentum_));
1813  // ... and collide with other particles.
1814  actions.insert(finder->find_actions_with_surrounding_particles(
1815  outgoing_particles, particles_, time_left, beam_momentum_));
1816  }
1817 
1819  }
1820 
1821  while (next_output_time() <= end_time) {
1822  logg[LExperiment].debug("Propagating until output time: ",
1823  next_output_time());
1825  ++(*parameters_.outputclock);
1826  // Avoid duplicating printout at event end time
1827  if (parameters_.outputclock->current_time() < end_time_) {
1829  }
1830  }
1831  logg[LExperiment].debug("Propagating to time ", end_time);
1832  propagate_and_shine(end_time);
1833 }
Here is the call graph for this function:

◆ intermediate_output()

template<typename Modus >
void smash::Experiment< Modus >::intermediate_output ( )
private

Intermediate output during an event.

Definition at line 1836 of file experiment.h.

1836  {
1837  const uint64_t wall_actions_this_interval =
1840  const uint64_t interactions_this_interval = interactions_total_ -
1842  wall_actions_this_interval;
1844  double E_mean_field = 0.0;
1845  if (potentials_) {
1846  // using the lattice is necessary
1847  if ((jmu_B_lat_ != nullptr)) {
1848  E_mean_field =
1850  /*
1851  * Mean field calculated in a box should remain approximately constant if
1852  * the system is in equilibrium, and so deviations from its original value
1853  * may signal a phase transition or other dynamical process. This
1854  * comparison only makes sense in the Box Modus, hence the condition.
1855  */
1856  if (modus_.length() > 0.0) {
1857  double tmp = (E_mean_field - initial_mean_field_energy_) /
1858  (E_mean_field + initial_mean_field_energy_);
1859  /*
1860  * This is displayed when the system evolves away from its initial
1861  * configuration (which is when the total mean field energy in the box
1862  * deviates from its initial value).
1863  */
1864  if (std::abs(tmp) > 0.01) {
1865  logg[LExperiment].info()
1866  << "\n\n\n\t The mean field at t = "
1867  << parameters_.outputclock->current_time()
1868  << " [fm/c] differs from the mean field at t = 0:"
1869  << "\n\t\t initial_mean_field_energy_ = "
1870  << initial_mean_field_energy_ << " [GeV]"
1871  << "\n\t\t abs[(E_MF - E_MF(t=0))/(E_MF + E_MF(t=0))] = "
1872  << std::abs(tmp)
1873  << "\n\t\t E_MF/E_MF(t=0) = "
1874  << E_mean_field / initial_mean_field_energy_ << "\n\n";
1875  }
1876  }
1877  }
1878  }
1879 
1881  particles_, interactions_this_interval, conserved_initial_, time_start_,
1882  parameters_.outputclock->current_time(), E_mean_field,
1884  const LatticeUpdate lat_upd = LatticeUpdate::AtOutput;
1885  // save evolution data
1886  if (!(modus_.is_box() && parameters_.outputclock->current_time() <
1887  modus_.equilibration_time())) {
1888  for (const auto &output : outputs_) {
1889  if (output->is_dilepton_output() || output->is_photon_output() ||
1890  output->is_IC_output()) {
1891  continue;
1892  }
1893 
1894  output->at_intermediate_time(particles_, parameters_.outputclock,
1895  density_param_);
1896 
1897  // Thermodynamic output on the lattice versus time
1898  switch (dens_type_lattice_printout_) {
1899  case DensityType::Baryon:
1901  density_param_, particles_, false);
1902  output->thermodynamics_output(ThermodynamicQuantity::EckartDensity,
1904  break;
1906  update_lattice(jmu_I3_lat_.get(), lat_upd,
1908  particles_, false);
1909  output->thermodynamics_output(ThermodynamicQuantity::EckartDensity,
1911  *jmu_I3_lat_);
1912  break;
1913  case DensityType::None:
1914  break;
1915  default:
1916  update_lattice(jmu_custom_lat_.get(), lat_upd,
1918  particles_, false);
1919  output->thermodynamics_output(ThermodynamicQuantity::EckartDensity,
1921  *jmu_custom_lat_);
1922  }
1926  if (printout_tmn_) {
1927  output->thermodynamics_output(ThermodynamicQuantity::Tmn,
1929  }
1930  if (printout_tmn_landau_) {
1931  output->thermodynamics_output(ThermodynamicQuantity::TmnLandau,
1933  }
1934  if (printout_v_landau_) {
1935  output->thermodynamics_output(ThermodynamicQuantity::LandauVelocity,
1937  }
1938  }
1939 
1940  if (thermalizer_) {
1941  output->thermodynamics_output(*thermalizer_);
1942  }
1943  }
1944  }
1945 }
Here is the call graph for this function:

◆ update_potentials()

template<typename Modus >
void smash::Experiment< Modus >::update_potentials ( )
private

Recompute potentials on lattices if necessary.

Definition at line 1948 of file experiment.h.

1948  {
1949  if (potentials_) {
1950  if (potentials_->use_symmetry() && jmu_I3_lat_ != nullptr) {
1953  true);
1954  }
1955  if ((potentials_->use_skyrme() || potentials_->use_symmetry()) &&
1956  jmu_B_lat_ != nullptr) {
1959  const size_t UBlattice_size = UB_lat_->size();
1960  assert(UBlattice_size == UI3_lat_->size());
1961  for (size_t i = 0; i < UBlattice_size; i++) {
1962  auto jB = (*jmu_B_lat_)[i];
1963  const FourVector flow_four_velocity_B =
1964  std::abs(jB.density()) > really_small ? jB.jmu_net() / jB.density()
1965  : FourVector();
1966  double baryon_density = jB.density();
1967  ThreeVector baryon_grad_rho = jB.grad_rho();
1968  ThreeVector baryon_dj_dt = jB.dj_dt();
1969  ThreeVector baryon_rot_j = jB.rot_j();
1970  if (potentials_->use_skyrme()) {
1971  (*UB_lat_)[i] =
1972  flow_four_velocity_B * potentials_->skyrme_pot(baryon_density);
1973  (*FB_lat_)[i] = potentials_->skyrme_force(
1974  baryon_density, baryon_grad_rho, baryon_dj_dt, baryon_rot_j);
1975  }
1976  if (potentials_->use_symmetry() && jmu_I3_lat_ != nullptr) {
1977  auto jI3 = (*jmu_I3_lat_)[i];
1978  const FourVector flow_four_velocity_I3 =
1979  std::abs(jI3.density()) > really_small
1980  ? jI3.jmu_net() / jI3.density()
1981  : FourVector();
1982  (*UI3_lat_)[i] =
1983  flow_four_velocity_I3 *
1984  potentials_->symmetry_pot(jI3.density(), baryon_density);
1985  (*FI3_lat_)[i] = potentials_->symmetry_force(
1986  jI3.density(), jI3.grad_rho(), jI3.dj_dt(), jI3.rot_j(),
1987  baryon_density, baryon_grad_rho, baryon_dj_dt, baryon_rot_j);
1988  }
1989  }
1990  }
1991  }
1992 }
Here is the call graph for this function:

◆ compute_min_cell_length()

template<typename Modus>
double smash::Experiment< Modus >::compute_min_cell_length ( double  dt) const
inlineprivate

Calculate the minimal size for the grid cells such that the ScatterActionsFinder will find all collisions within the maximal transverse distance (which is determined by the maximal cross section).

Parameters
[in]dtThe current time step size [fm/c]
Returns
The minimal required size of cells

Definition at line 293 of file experiment.h.

293  {
294  return std::sqrt(4 * dt * dt + max_transverse_distance_sqr_);
295  }

◆ next_output_time()

template<typename Modus>
double smash::Experiment< Modus >::next_output_time ( ) const
inlineprivate

Shortcut for next output time.

Definition at line 298 of file experiment.h.

298  {
299  return parameters_.outputclock->next_time();
300  }

Friends And Related Function Documentation

◆ ExperimentBase

template<typename Modus>
friend class ExperimentBase
friend

Definition at line 168 of file experiment.h.

Member Data Documentation

◆ parameters_

template<typename Modus>
ExperimentParameters smash::Experiment< Modus >::parameters_
private

Struct of several member variables.

These variables are combined into a struct for efficient input to functions outside of this class.

Definition at line 307 of file experiment.h.

◆ density_param_

template<typename Modus>
DensityParameters smash::Experiment< Modus >::density_param_
private

Structure to precalculate and hold parameters for density computations.

Definition at line 310 of file experiment.h.

◆ modus_

template<typename Modus>
Modus smash::Experiment< Modus >::modus_
private

Instance of the Modus template parameter.

May store modus-specific data and contains modus-specific function implementations.

Definition at line 316 of file experiment.h.

◆ particles_

template<typename Modus>
Particles smash::Experiment< Modus >::particles_
private

Complete particle list.

Definition at line 319 of file experiment.h.

◆ potentials_

template<typename Modus>
std::unique_ptr<Potentials> smash::Experiment< Modus >::potentials_
private

An instance of potentials class, that stores parameters of potentials, calculates them and their gradients.

Definition at line 325 of file experiment.h.

◆ pauli_blocker_

template<typename Modus>
std::unique_ptr<PauliBlocker> smash::Experiment< Modus >::pauli_blocker_
private

An instance of PauliBlocker class that stores parameters needed for Pauli blocking calculations and computes phase-space density.

Definition at line 331 of file experiment.h.

◆ outputs_

template<typename Modus>
OutputsList smash::Experiment< Modus >::outputs_
private

A list of output formaters.

They will be called to write the state of the particles to file.

Definition at line 337 of file experiment.h.

◆ dilepton_output_

template<typename Modus>
OutputPtr smash::Experiment< Modus >::dilepton_output_
private

The Dilepton output.

Definition at line 340 of file experiment.h.

◆ photon_output_

template<typename Modus>
OutputPtr smash::Experiment< Modus >::photon_output_
private

The Photon output.

Definition at line 343 of file experiment.h.

◆ nucleon_has_interacted_

template<typename Modus>
std::vector<bool> smash::Experiment< Modus >::nucleon_has_interacted_ = {}
private

nucleon_has_interacted_ labels whether the particles in the nuclei have experienced any collisions or not.

It's only valid in the ColliderModus, so is set as an empty vector by default.

Definition at line 350 of file experiment.h.

◆ projectile_target_interact_

template<typename Modus>
bool smash::Experiment< Modus >::projectile_target_interact_ = false
private

Whether the projectile and the target collided.

Definition at line 354 of file experiment.h.

◆ beam_momentum_

template<typename Modus>
std::vector<FourVector> smash::Experiment< Modus >::beam_momentum_ = {}
private

The initial nucleons in the ColliderModus propagate with beam_momentum_, if Fermi motion is frozen.

It's only valid in the ColliderModus, so is set as an empty vector by default.

Definition at line 361 of file experiment.h.

◆ action_finders_

template<typename Modus>
std::vector<std::unique_ptr<ActionFinderInterface> > smash::Experiment< Modus >::action_finders_
private

The Action finder objects.

Definition at line 364 of file experiment.h.

◆ dilepton_finder_

template<typename Modus>
std::unique_ptr<DecayActionsFinderDilepton> smash::Experiment< Modus >::dilepton_finder_
private

The Dilepton Action Finder.

Definition at line 367 of file experiment.h.

◆ photon_finder_

template<typename Modus>
std::unique_ptr<ActionFinderInterface> smash::Experiment< Modus >::photon_finder_
private

The (Scatter) Actions Finder for Direct Photons.

Definition at line 370 of file experiment.h.

◆ n_fractional_photons_

template<typename Modus>
int smash::Experiment< Modus >::n_fractional_photons_
private

Number of fractional photons produced per single reaction.

Definition at line 373 of file experiment.h.

◆ jmu_B_lat_

template<typename Modus>
std::unique_ptr<DensityLattice> smash::Experiment< Modus >::jmu_B_lat_
private

Baryon density on the lattices.

Definition at line 376 of file experiment.h.

◆ jmu_I3_lat_

template<typename Modus>
std::unique_ptr<DensityLattice> smash::Experiment< Modus >::jmu_I3_lat_
private

Isospin projection density on the lattices.

Definition at line 379 of file experiment.h.

◆ jmu_custom_lat_

template<typename Modus>
std::unique_ptr<DensityLattice> smash::Experiment< Modus >::jmu_custom_lat_
private

Custom density on the lattices.

In the config user asks for some kind of density for printout. Baryon and isospin projection density are anyway needed for potentials. If user asks for some other density type for printout, it will be handled using jmu_custom variable.

Definition at line 388 of file experiment.h.

◆ dens_type_lattice_printout_

template<typename Modus>
DensityType smash::Experiment< Modus >::dens_type_lattice_printout_ = DensityType::None
private

Type of density for lattice printout.

Definition at line 391 of file experiment.h.

◆ UB_lat_

template<typename Modus>
std::unique_ptr<RectangularLattice<FourVector> > smash::Experiment< Modus >::UB_lat_ = nullptr
private

Lattices for Skyrme potentials (evaluated in the local rest frame) times the baryon flow 4-velocity.

Definition at line 397 of file experiment.h.

◆ UI3_lat_

template<typename Modus>
std::unique_ptr<RectangularLattice<FourVector> > smash::Experiment< Modus >::UI3_lat_ = nullptr
private

Lattices for symmetry potentials (evaluated in the local rest frame) times the isospin flow 4-velocity.

Definition at line 403 of file experiment.h.

◆ FB_lat_

template<typename Modus>
std::unique_ptr<RectangularLattice<std::pair<ThreeVector, ThreeVector> > > smash::Experiment< Modus >::FB_lat_
private

Lattices for the electric and magnetic components of the Skyrme force.

Definition at line 407 of file experiment.h.

◆ FI3_lat_

template<typename Modus>
std::unique_ptr<RectangularLattice<std::pair<ThreeVector, ThreeVector> > > smash::Experiment< Modus >::FI3_lat_
private

Lattices for the electric and magnetic component of the symmetry force.

Definition at line 411 of file experiment.h.

◆ Tmn_

template<typename Modus>
std::unique_ptr<RectangularLattice<EnergyMomentumTensor> > smash::Experiment< Modus >::Tmn_
private

Lattices of energy-momentum tensors for printout.

Definition at line 414 of file experiment.h.

◆ printout_tmn_

template<typename Modus>
bool smash::Experiment< Modus >::printout_tmn_ = false
private

Whether to print the energy-momentum tensor.

Definition at line 417 of file experiment.h.

◆ printout_tmn_landau_

template<typename Modus>
bool smash::Experiment< Modus >::printout_tmn_landau_ = false
private

Whether to print the energy-momentum tensor in Landau frame.

Definition at line 420 of file experiment.h.

◆ printout_v_landau_

template<typename Modus>
bool smash::Experiment< Modus >::printout_v_landau_ = false
private

Whether to print the 4-velocity in Landau fram.

Definition at line 423 of file experiment.h.

◆ printout_lattice_td_

template<typename Modus>
bool smash::Experiment< Modus >::printout_lattice_td_ = false
private

Whether to print the thermodynamics quantities evaluated on the lattices.

Definition at line 426 of file experiment.h.

◆ thermalizer_

template<typename Modus>
std::unique_ptr<GrandCanThermalizer> smash::Experiment< Modus >::thermalizer_
private

Instance of class used for forced thermalization.

Definition at line 429 of file experiment.h.

◆ process_string_ptr_

template<typename Modus>
StringProcess* smash::Experiment< Modus >::process_string_ptr_
private

Pointer to the string process class object, which is used to set the random seed for PYTHIA objects in each event.

Definition at line 435 of file experiment.h.

◆ nevents_

template<typename Modus>
const int smash::Experiment< Modus >::nevents_
private

Number of events.

Event is a single simulation of a physical phenomenon: elementary particle or nucleus-nucleus collision. Result of a single SMASH event is random (by construction) as well as result of one collision in nature. To compare simulation with experiment one has to take ensemble averages, i.e. perform simulation and real experiment many times and compare average results.

nevents_ is number of times single phenomenon (particle or nucleus-nucleus collision) will be simulated.

Definition at line 451 of file experiment.h.

◆ end_time_

template<typename Modus>
const double smash::Experiment< Modus >::end_time_
private

simulation time at which the evolution is stopped.

Definition at line 454 of file experiment.h.

◆ delta_time_startup_

template<typename Modus>
const double smash::Experiment< Modus >::delta_time_startup_
private

The clock's timestep size at start up.

Stored here so that the next event will remember this.

Definition at line 461 of file experiment.h.

◆ force_decays_

template<typename Modus>
const bool smash::Experiment< Modus >::force_decays_
private

This indicates whether we force all resonances to decay in the last timestep.

Definition at line 467 of file experiment.h.

◆ use_grid_

template<typename Modus>
const bool smash::Experiment< Modus >::use_grid_
private

This indicates whether to use the grid.

Definition at line 470 of file experiment.h.

◆ metric_

template<typename Modus>
const ExpansionProperties smash::Experiment< Modus >::metric_
private

This struct contains information on the metric to be used.

Definition at line 473 of file experiment.h.

◆ dileptons_switch_

template<typename Modus>
const bool smash::Experiment< Modus >::dileptons_switch_
private

This indicates whether dileptons are switched on.

Definition at line 476 of file experiment.h.

◆ photons_switch_

template<typename Modus>
const bool smash::Experiment< Modus >::photons_switch_
private

This indicates whether photons are switched on.

Definition at line 479 of file experiment.h.

◆ bremsstrahlung_switch_

template<typename Modus>
const bool smash::Experiment< Modus >::bremsstrahlung_switch_
private

This indicates whether bremsstrahlung is switched on.

Definition at line 482 of file experiment.h.

◆ IC_output_switch_

template<typename Modus>
const bool smash::Experiment< Modus >::IC_output_switch_
private

This indicates whether the IC output is enabled.

Definition at line 485 of file experiment.h.

◆ time_step_mode_

template<typename Modus>
const TimeStepMode smash::Experiment< Modus >::time_step_mode_
private

This indicates whether to use time steps.

Definition at line 488 of file experiment.h.

◆ max_transverse_distance_sqr_

template<typename Modus>
double smash::Experiment< Modus >::max_transverse_distance_sqr_ = std::numeric_limits<double>::max()
private

Maximal distance at which particles can interact, squared.

Definition at line 491 of file experiment.h.

◆ conserved_initial_

template<typename Modus>
QuantumNumbers smash::Experiment< Modus >::conserved_initial_
private

The conserved quantities of the system.

This struct carries the sums of the single particle's various quantities as measured at the beginning of the evolution and can be used to regularly check if they are still good.

Definition at line 500 of file experiment.h.

◆ initial_mean_field_energy_

template<typename Modus>
double smash::Experiment< Modus >::initial_mean_field_energy_
private

The initial total mean field energy in the system.

Note: will only be calculated if lattice is on.

Definition at line 506 of file experiment.h.

◆ time_start_

template<typename Modus>
SystemTimePoint smash::Experiment< Modus >::time_start_ = SystemClock::now()
private

system starting time of the simulation

Definition at line 509 of file experiment.h.

◆ dens_type_

template<typename Modus>
DensityType smash::Experiment< Modus >::dens_type_ = DensityType::None
private

Type of density to be written to collision headers.

Definition at line 512 of file experiment.h.

◆ interactions_total_

template<typename Modus>
uint64_t smash::Experiment< Modus >::interactions_total_ = 0
private

Total number of interactions for current timestep.

For timestepless mode the whole run time is considered as one timestep.

Definition at line 518 of file experiment.h.

◆ previous_interactions_total_

template<typename Modus>
uint64_t smash::Experiment< Modus >::previous_interactions_total_ = 0
private

Total number of interactions for previous timestep.

For timestepless mode the whole run time is considered as one timestep.

Definition at line 524 of file experiment.h.

◆ wall_actions_total_

template<typename Modus>
uint64_t smash::Experiment< Modus >::wall_actions_total_ = 0
private

Total number of wall-crossings for current timestep.

For timestepless mode the whole run time is considered as one timestep.

Definition at line 530 of file experiment.h.

◆ previous_wall_actions_total_

template<typename Modus>
uint64_t smash::Experiment< Modus >::previous_wall_actions_total_ = 0
private

Total number of wall-crossings for previous timestep.

For timestepless mode the whole run time is considered as one timestep.

Definition at line 536 of file experiment.h.

◆ total_pauli_blocked_

template<typename Modus>
uint64_t smash::Experiment< Modus >::total_pauli_blocked_ = 0
private

Total number of Pauli-blockings for current timestep.

For timestepless mode the whole run time is considered as one timestep.

Definition at line 542 of file experiment.h.

◆ total_hypersurface_crossing_actions_

template<typename Modus>
uint64_t smash::Experiment< Modus >::total_hypersurface_crossing_actions_ = 0
private

Total number of particles removed from the evolution in hypersurface crossing actions.

Definition at line 548 of file experiment.h.

◆ total_energy_removed_

template<typename Modus>
double smash::Experiment< Modus >::total_energy_removed_ = 0.0
private

Total energy removed from the system in hypersurface crossing actions.

Definition at line 554 of file experiment.h.

◆ seed_

template<typename Modus>
int64_t smash::Experiment< Modus >::seed_ = -1
private

random seed for the next event.

Definition at line 557 of file experiment.h.


The documentation for this class was generated from the following file:
smash::LatticeUpdate
LatticeUpdate
Enumerator option for lattice updates.
Definition: lattice.h:36
smash::Experiment::jmu_I3_lat_
std::unique_ptr< DensityLattice > jmu_I3_lat_
Isospin projection density on the lattices.
Definition: experiment.h:379
smash::Experiment::time_step_mode_
const TimeStepMode time_step_mode_
This indicates whether to use time steps.
Definition: experiment.h:488
smash::Experiment::jmu_B_lat_
std::unique_ptr< DensityLattice > jmu_B_lat_
Baryon density on the lattices.
Definition: experiment.h:376
smash::Experiment::run_time_evolution
void run_time_evolution()
Runs the time evolution of an event with fixed-sized time steps or without timesteps,...
Definition: experiment.h:1628
smash::Experiment::printout_tmn_
bool printout_tmn_
Whether to print the energy-momentum tensor.
Definition: experiment.h:417
smash::QuantumNumbers::momentum
FourVector momentum() const
Definition: quantumnumbers.h:131
ThermodynamicQuantity::TmnLandau
smash::Experiment::Tmn_
std::unique_ptr< RectangularLattice< EnergyMomentumTensor > > Tmn_
Lattices of energy-momentum tensors for printout.
Definition: experiment.h:414
smash::Experiment::action_finders_
std::vector< std::unique_ptr< ActionFinderInterface > > action_finders_
The Action finder objects.
Definition: experiment.h:364
smash::expand_space_time
void expand_space_time(Particles *particles, const ExperimentParameters &parameters, const ExpansionProperties &metric)
Modifies positions and momentum of all particles to account for space-time deformation.
Definition: propagation.cc:86
smash::Experiment::total_energy_removed_
double total_energy_removed_
Total energy removed from the system in hypersurface crossing actions.
Definition: experiment.h:554
ThermodynamicQuantity::LandauVelocity
smash::Experiment::previous_wall_actions_total_
uint64_t previous_wall_actions_total_
Total number of wall-crossings for previous timestep.
Definition: experiment.h:536
smash::StringProcess::init_pythia_hadron_rndm
void init_pythia_hadron_rndm()
Set PYTHIA random seeds to be desired values.
Definition: processstring.h:277
smash::Experiment::beam_momentum_
std::vector< FourVector > beam_momentum_
The initial nucleons in the ColliderModus propagate with beam_momentum_, if Fermi motion is frozen.
Definition: experiment.h:361
smash::Experiment::next_output_time
double next_output_time() const
Shortcut for next output time.
Definition: experiment.h:298
smash::Experiment::compute_min_cell_length
double compute_min_cell_length(double dt) const
Calculate the minimal size for the grid cells such that the ScatterActionsFinder will find all collis...
Definition: experiment.h:293
smash::Particles::size
size_t size() const
Definition: particles.h:87
smash::Particles::reset
void reset()
Reset the state of the Particles object to an empty list and a new id counter.
Definition: particles.cc:139
smash::LatticeUpdate::AtOutput
smash::Experiment::wall_actions_total_
uint64_t wall_actions_total_
Total number of wall-crossings for current timestep.
Definition: experiment.h:530
smash::Experiment::final_output
void final_output(const int evt_num)
Output at the end of an event.
Definition: experiment.h:2031
smash::check_interactions_total
void check_interactions_total(uint64_t interactions_total)
Make sure interactions_total can be represented as a 32-bit integer.
Definition: experiment.h:1743
smash::Experiment::UB_lat_
std::unique_ptr< RectangularLattice< FourVector > > UB_lat_
Lattices for Skyrme potentials (evaluated in the local rest frame) times the baryon flow 4-velocity.
Definition: experiment.h:397
smash::LExperiment
static constexpr int LExperiment
Definition: outputparameters.h:19
smash::Experiment::pauli_blocker_
std::unique_ptr< PauliBlocker > pauli_blocker_
An instance of PauliBlocker class that stores parameters needed for Pauli blocking calculations and c...
Definition: experiment.h:331
smash::DensityType::BaryonicIsospin
ExpansionMode::NoExpansion
smash::Experiment::modus_
Modus modus_
Instance of the Modus template parameter.
Definition: experiment.h:316
smash::Experiment::initialize_new_event
void initialize_new_event()
This is called in the beginning of each event.
Definition: experiment.h:1376
smash::hline
const std::string hline(113, '-')
String representing a horizontal line.
smash::format_measurements
std::string format_measurements(const Particles &particles, uint64_t scatterings_this_interval, const QuantumNumbers &conserved_initial, SystemTimePoint time_start, double time, double E_mean_field, double E_mean_field_initial)
Generate the tabulated string which will be printed to the screen when SMASH is running.
Definition: experiment.cc:449
smash::Experiment::projectile_target_interact_
bool projectile_target_interact_
Whether the projectile and the target collided.
Definition: experiment.h:354
smash::Experiment::jmu_custom_lat_
std::unique_ptr< DensityLattice > jmu_custom_lat_
Custom density on the lattices.
Definition: experiment.h:388
smash::Experiment::run_time_evolution_timestepless
void run_time_evolution_timestepless(Actions &actions)
Performs all the propagations and actions during a certain time interval neglecting the influence of ...
Definition: experiment.h:1751
smash::random::set_seed
void set_seed(T &&seed)
Sets the seed of the random number engine.
Definition: random.h:71
smash::Experiment::particles_
Particles particles_
Complete particle list.
Definition: experiment.h:319
smash::LatticeUpdate::EveryTimestep
smash::LMain
static constexpr int LMain
Definition: experiment.h:77
smash::Experiment::force_decays_
const bool force_decays_
This indicates whether we force all resonances to decay in the last timestep.
Definition: experiment.h:467
smash::Experiment::total_pauli_blocked_
uint64_t total_pauli_blocked_
Total number of Pauli-blockings for current timestep.
Definition: experiment.h:542
FermiMotion::Frozen
Use fermi motion without potentials.
smash::logg
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
smash::Experiment::thermalizer_
std::unique_ptr< GrandCanThermalizer > thermalizer_
Instance of class used for forced thermalization.
Definition: experiment.h:429
smash::really_small
constexpr double really_small
Numerical error tolerance.
Definition: constants.h:37
smash::ExpansionProperties::mode_
ExpansionMode mode_
Type of metric used.
Definition: propagation.h:27
smash::Experiment::density_param_
DensityParameters density_param_
Structure to precalculate and hold parameters for density computations.
Definition: experiment.h:310
smash::Experiment::nevents_
const int nevents_
Number of events.
Definition: experiment.h:451
smash::Experiment::seed_
int64_t seed_
random seed for the next event.
Definition: experiment.h:557
smash::format
FormattingHelper< T > format(const T &value, const char *unit, int width=-1, int precision=-1)
Acts as a stream modifier for std::ostream to output an object with an optional suffix string and wit...
Definition: logging.h:304
einhard::Color
A stream modifier that allows to colorize the log output.
Definition: einhard.hpp:142
smash::create_oscar_output
std::unique_ptr< OutputInterface > create_oscar_output(const std::string &format, const std::string &content, const bf::path &path, const OutputParameters &out_par)
Definition: oscaroutput.cc:768
smash::Experiment::metric_
const ExpansionProperties metric_
This struct contains information on the metric to be used.
Definition: experiment.h:473
smash::Particles::copy_to_vector
ParticleList copy_to_vector() const
Definition: particles.h:44
smash::Experiment::printout_tmn_landau_
bool printout_tmn_landau_
Whether to print the energy-momentum tensor in Landau frame.
Definition: experiment.h:420
smash::Experiment::FI3_lat_
std::unique_ptr< RectangularLattice< std::pair< ThreeVector, ThreeVector > > > FI3_lat_
Lattices for the electric and magnetic component of the symmetry force.
Definition: experiment.h:411
smash::FourVector::x0
double x0() const
Definition: fourvector.h:303
smash::Experiment::do_final_decays
void do_final_decays()
Performs the final decays of an event.
Definition: experiment.h:1995
smash::update_lattice
void update_lattice(RectangularLattice< T > *lat, const LatticeUpdate update, const DensityType dens_type, const DensityParameters &par, const Particles &particles, const bool compute_gradient=false)
Updates the contents on the lattice.
Definition: density.h:401
smash::QuantumNumbers::report_deviations
std::string report_deviations(const Particles &particles) const
Checks if the current particle list has still the same values and reports about differences.
Definition: quantumnumbers.h:248
ThermodynamicQuantity::Tmn
smash::Experiment::use_grid_
const bool use_grid_
This indicates whether to use the grid.
Definition: experiment.h:470
smash::Experiment::interactions_total_
uint64_t interactions_total_
Total number of interactions for current timestep.
Definition: experiment.h:518
smash::Experiment::intermediate_output
void intermediate_output()
Intermediate output during an event.
Definition: experiment.h:1836
smash::Experiment::propagate_and_shine
void propagate_and_shine(double to_time)
Propagate all particles until time to_time without any interactions and shine dileptons.
Definition: experiment.h:1726
smash::Experiment::delta_time_startup_
const double delta_time_startup_
The clock's timestep size at start up.
Definition: experiment.h:461
smash::Experiment::IC_output_switch_
const bool IC_output_switch_
This indicates whether the IC output is enabled.
Definition: experiment.h:485
smash::CellSizeStrategy::Largest
Make cells as large as possible.
ThermodynamicQuantity::EckartDensity
smash::ExperimentParameters::strings_switch
bool strings_switch
This indicates whether string fragmentation is switched on.
Definition: experimentparameters.h:46
smash::Experiment::previous_interactions_total_
uint64_t previous_interactions_total_
Total number of interactions for previous timestep.
Definition: experiment.h:524
smash::ExperimentParameters::labclock
std::unique_ptr< Clock > labclock
System clock (for simulation time keeping in the computational frame)
Definition: experimentparameters.h:25
smash::Experiment::perform_action
bool perform_action(Action &action, const Container &particles_before_actions)
Perform the given action.
smash::Experiment::update_potentials
void update_potentials()
Recompute potentials on lattices if necessary.
Definition: experiment.h:1948
smash::random::advance
Engine::result_type advance()
Advance the engine's state and return the generated value.
Definition: random.h:78
smash::Experiment::FB_lat_
std::unique_ptr< RectangularLattice< std::pair< ThreeVector, ThreeVector > > > FB_lat_
Lattices for the electric and magnetic components of the Skyrme force.
Definition: experiment.h:407
smash::ExperimentParameters::outputclock
std::unique_ptr< Clock > outputclock
Output clock to keep track of the next output time.
Definition: experimentparameters.h:28
smash::Experiment::dens_type_lattice_printout_
DensityType dens_type_lattice_printout_
Type of density for lattice printout.
Definition: experiment.h:391
smash::Experiment::dilepton_finder_
std::unique_ptr< DecayActionsFinderDilepton > dilepton_finder_
The Dilepton Action Finder.
Definition: experiment.h:367
smash::Experiment::printout_lattice_td_
bool printout_lattice_td_
Whether to print the thermodynamics quantities evaluated on the lattices.
Definition: experiment.h:426
smash::calculate_mean_field_energy
double calculate_mean_field_energy(const Potentials &potentials, RectangularLattice< smash::DensityOnLattice > &jmu_B_lat, const ExperimentParameters &parameters)
Calculate the total mean field energy of the system; this will be printed to the screen when SMASH is...
Definition: experiment.cc:496
smash::Experiment::parameters_
ExperimentParameters parameters_
Struct of several member variables.
Definition: experiment.h:307
smash::DensityType::None
smash::Experiment::end_time_
const double end_time_
simulation time at which the evolution is stopped.
Definition: experiment.h:454
smash::Experiment::nucleon_has_interacted_
std::vector< bool > nucleon_has_interacted_
nucleon_has_interacted_ labels whether the particles in the nuclei have experienced any collisions or...
Definition: experiment.h:350
smash::Experiment::process_string_ptr_
StringProcess * process_string_ptr_
Pointer to the string process class object, which is used to set the random seed for PYTHIA objects i...
Definition: experiment.h:435
smash::propagate_straight_line
double propagate_straight_line(Particles *particles, double to_time, const std::vector< FourVector > &beam_momentum)
Propagates the positions of all particles on a straight line to a given moment.
Definition: propagation.cc:44
smash::Experiment::potentials_
std::unique_ptr< Potentials > potentials_
An instance of potentials class, that stores parameters of potentials, calculates them and their grad...
Definition: experiment.h:325
likely
#define likely(x)
Tell the branch predictor that this expression is likely true.
Definition: macros.h:14
smash::Experiment::initial_mean_field_energy_
double initial_mean_field_energy_
The initial total mean field energy in the system.
Definition: experiment.h:506
smash::Experiment::outputs_
OutputsList outputs_
A list of output formaters.
Definition: experiment.h:337
smash::Experiment::total_hypersurface_crossing_actions_
uint64_t total_hypersurface_crossing_actions_
Total number of particles removed from the evolution in hypersurface crossing actions.
Definition: experiment.h:548
smash::DensityType::Baryon
smash::ExperimentParameters::testparticles
int testparticles
Number of test particle.
Definition: experimentparameters.h:31
smash::Experiment::printout_v_landau_
bool printout_v_landau_
Whether to print the 4-velocity in Landau fram.
Definition: experiment.h:423
smash::Experiment::time_start_
SystemTimePoint time_start_
system starting time of the simulation
Definition: experiment.h:509
smash::Experiment::UI3_lat_
std::unique_ptr< RectangularLattice< FourVector > > UI3_lat_
Lattices for symmetry potentials (evaluated in the local rest frame) times the isospin flow 4-velocit...
Definition: experiment.h:403
TimeStepMode::Fixed
Use fixed time step.
smash::update_momenta
void update_momenta(Particles *particles, double dt, const Potentials &pot, RectangularLattice< std::pair< ThreeVector, ThreeVector >> *FB_lat, RectangularLattice< std::pair< ThreeVector, ThreeVector >> *FI3_lat)
Updates the momenta of all particles at the current time step according to the equations of motion:
Definition: propagation.cc:111
smash::Experiment::conserved_initial_
QuantumNumbers conserved_initial_
The conserved quantities of the system.
Definition: experiment.h:500
smash::Experiment::max_transverse_distance_sqr_
double max_transverse_distance_sqr_
Maximal distance at which particles can interact, squared.
Definition: experiment.h:491