Version: SMASH-1.8
vtkoutput.cc
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2014-2020
4  * SMASH Team
5  *
6  * GNU General Public License (GPLv3 or later)
7  *
8  */
9 
10 #include <fstream>
11 #include <memory>
12 
13 #include "smash/clock.h"
14 #include "smash/config.h"
15 #include "smash/file.h"
17 #include "smash/particles.h"
18 #include "smash/vtkoutput.h"
19 
20 namespace smash {
21 static constexpr int LOutput = LogArea::Output::id;
22 
23 VtkOutput::VtkOutput(const bf::path &path, const std::string &name,
24  const OutputParameters &out_par)
25  : OutputInterface(name),
26  base_path_(std::move(path)),
27  is_thermodynamics_output_(name == "Thermodynamics") {
28  if (out_par.part_extended) {
29  logg[LOutput].warn()
30  << "Creating VTK output: There is no extended VTK format.";
31  }
32 }
33 
35 
60 void VtkOutput::at_eventstart(const Particles &particles,
61  const int event_number) {
68 
69  current_event_ = event_number;
71  write(particles);
73  }
74 }
75 
76 void VtkOutput::at_eventend(const Particles & /*particles*/,
77  const int /*event_number*/,
78  double /*impact_parameter*/, bool /*empty_event*/) {
79 }
80 
82  const std::unique_ptr<Clock> &,
83  const DensityParameters &) {
85  write(particles);
87  }
88 }
89 
90 void VtkOutput::write(const Particles &particles) {
91  char filename[32];
92  snprintf(filename, sizeof(filename), "pos_ev%05i_tstep%05i.vtk",
94  FilePtr file_{std::fopen((base_path_ / filename).native().c_str(), "w")};
95 
96  /* Legacy VTK file format */
97  std::fprintf(file_.get(), "# vtk DataFile Version 2.0\n");
98  std::fprintf(file_.get(), "Generated from molecular-offset data %s\n",
99  VERSION_MAJOR);
100  std::fprintf(file_.get(), "ASCII\n");
101 
102  /* Unstructured data sets are composed of points, lines, polygons, .. */
103  std::fprintf(file_.get(), "DATASET UNSTRUCTURED_GRID\n");
104  std::fprintf(file_.get(), "POINTS %zu double\n", particles.size());
105  for (const auto &p : particles) {
106  std::fprintf(file_.get(), "%g %g %g\n", p.position().x1(),
107  p.position().x2(), p.position().x3());
108  }
109  std::fprintf(file_.get(), "CELLS %zu %zu\n", particles.size(),
110  particles.size() * 2);
111  for (size_t point_index = 0; point_index < particles.size(); point_index++) {
112  std::fprintf(file_.get(), "1 %zu\n", point_index);
113  }
114  std::fprintf(file_.get(), "CELL_TYPES %zu\n", particles.size());
115  for (size_t point_index = 0; point_index < particles.size(); point_index++) {
116  std::fprintf(file_.get(), "1\n");
117  }
118  std::fprintf(file_.get(), "POINT_DATA %zu\n", particles.size());
119  std::fprintf(file_.get(), "SCALARS pdg_codes int 1\n");
120  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
121  for (const auto &p : particles) {
122  std::fprintf(file_.get(), "%s\n", p.pdgcode().string().c_str());
123  }
124  std::fprintf(file_.get(), "SCALARS is_formed int 1\n");
125  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
126  double current_time = particles.time();
127  for (const auto &p : particles) {
128  std::fprintf(file_.get(), "%s\n",
129  (p.formation_time() > current_time) ? "0" : "1");
130  }
131  std::fprintf(file_.get(), "SCALARS cross_section_scaling_factor double 1\n");
132  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
133  for (const auto &p : particles) {
134  std::fprintf(file_.get(), "%g\n", p.xsec_scaling_factor());
135  }
136  std::fprintf(file_.get(), "SCALARS mass double 1\n");
137  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
138  for (const auto &p : particles) {
139  std::fprintf(file_.get(), "%g\n", p.effective_mass());
140  }
141  std::fprintf(file_.get(), "SCALARS N_coll int 1\n");
142  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
143  for (const auto &p : particles) {
144  std::fprintf(file_.get(), "%i\n", p.get_history().collisions_per_particle);
145  }
146  std::fprintf(file_.get(), "SCALARS particle_ID int 1\n");
147  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
148  for (const auto &p : particles) {
149  std::fprintf(file_.get(), "%i\n", p.id());
150  }
151  std::fprintf(file_.get(), "SCALARS baryon_number int 1\n");
152  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
153  for (const auto &p : particles) {
154  std::fprintf(file_.get(), "%i\n", p.pdgcode().baryon_number());
155  }
156  std::fprintf(file_.get(), "SCALARS strangeness int 1\n");
157  std::fprintf(file_.get(), "LOOKUP_TABLE default\n");
158  for (const auto &p : particles) {
159  std::fprintf(file_.get(), "%i\n", p.pdgcode().strangeness());
160  }
161  std::fprintf(file_.get(), "VECTORS momentum double\n");
162  for (const auto &p : particles) {
163  std::fprintf(file_.get(), "%g %g %g\n", p.momentum().x1(),
164  p.momentum().x2(), p.momentum().x3());
165  }
166 }
167 
177 template <typename T>
178 void VtkOutput::write_vtk_header(std::ofstream &file,
179  RectangularLattice<T> &lattice,
180  const std::string &description) {
181  const auto dim = lattice.dimensions();
182  const auto cs = lattice.cell_sizes();
183  const auto orig = lattice.origin();
184  file << "# vtk DataFile Version 2.0\n"
185  << description << "\n"
186  << "ASCII\n"
187  << "DATASET STRUCTURED_POINTS\n"
188  << "DIMENSIONS " << dim[0] << " " << dim[1] << " " << dim[2] << "\n"
189  << "SPACING " << cs[0] << " " << cs[1] << " " << cs[2] << "\n"
190  << "ORIGIN " << orig[0] << " " << orig[1] << " " << orig[2] << "\n"
191  << "POINT_DATA " << lattice.size() << "\n";
192 }
193 
194 template <typename T, typename F>
195 void VtkOutput::write_vtk_scalar(std::ofstream &file,
196  RectangularLattice<T> &lattice,
197  const std::string &varname, F &&get_quantity) {
198  file << "SCALARS " << varname << " double 1\n"
199  << "LOOKUP_TABLE default\n";
200  file << std::setprecision(3);
201  file << std::fixed;
202  const auto dim = lattice.dimensions();
203  lattice.iterate_sublattice({0, 0, 0}, dim, [&](T &node, int ix, int, int) {
204  const double f_from_node = get_quantity(node);
205  file << f_from_node << " ";
206  if (ix == dim[0] - 1) {
207  file << "\n";
208  }
209  });
210 }
211 
212 template <typename T, typename F>
213 void VtkOutput::write_vtk_vector(std::ofstream &file,
214  RectangularLattice<T> &lattice,
215  const std::string &varname, F &&get_quantity) {
216  file << "VECTORS " << varname << " double\n";
217  file << std::setprecision(3);
218  file << std::fixed;
219  const auto dim = lattice.dimensions();
220  lattice.iterate_sublattice({0, 0, 0}, dim, [&](T &node, int, int, int) {
221  const ThreeVector v = get_quantity(node);
222  file << v.x1() << " " << v.x2() << " " << v.x3() << "\n";
223  });
224 }
225 
226 std::string VtkOutput::make_filename(const std::string &descr, int counter) {
227  char suffix[22];
228  snprintf(suffix, sizeof(suffix), "_%05i_tstep%05i.vtk", current_event_,
229  counter);
230  return base_path_.string() + std::string("/") + descr + std::string(suffix);
231 }
232 
234  const DensityType dens_type) {
235  return std::string(to_string(dens_type)) + std::string("_") +
236  std::string(to_string(tq));
237 }
238 
240  const ThermodynamicQuantity tq, const DensityType dens_type,
243  return;
244  }
245  std::ofstream file;
246  const std::string varname = make_varname(tq, dens_type);
247  file.open(make_filename(varname, vtk_density_output_counter_), std::ios::out);
248  write_vtk_header(file, lattice, varname);
249  write_vtk_scalar(file, lattice, varname,
250  [&](DensityOnLattice &node) { return node.density(); });
252 }
253 
271  const ThermodynamicQuantity tq, const DensityType dens_type,
274  return;
275  }
276  std::ofstream file;
277  const std::string varname = make_varname(tq, dens_type);
278 
279  if (tq == ThermodynamicQuantity::Tmn) {
280  file.open(make_filename(varname, vtk_tmn_output_counter_++), std::ios::out);
281  write_vtk_header(file, Tmn_lattice, varname);
282  for (int i = 0; i < 4; i++) {
283  for (int j = i; j < 4; j++) {
284  write_vtk_scalar(file, Tmn_lattice,
285  varname + std::to_string(i) + std::to_string(j),
286  [&](EnergyMomentumTensor &node) {
287  return node[EnergyMomentumTensor::tmn_index(i, j)];
288  });
289  }
290  }
291  } else if (tq == ThermodynamicQuantity::TmnLandau) {
292  file.open(make_filename(varname, vtk_tmn_landau_output_counter_++),
293  std::ios::out);
294  write_vtk_header(file, Tmn_lattice, varname);
295  for (int i = 0; i < 4; i++) {
296  for (int j = i; j < 4; j++) {
297  write_vtk_scalar(file, Tmn_lattice,
298  varname + std::to_string(i) + std::to_string(j),
299  [&](EnergyMomentumTensor &node) {
300  const FourVector u = node.landau_frame_4velocity();
301  const EnergyMomentumTensor Tmn_L = node.boosted(u);
302  return Tmn_L[EnergyMomentumTensor::tmn_index(i, j)];
303  });
304  }
305  }
306  } else {
307  file.open(make_filename(varname, vtk_v_landau_output_counter_++),
308  std::ios::out);
309  write_vtk_header(file, Tmn_lattice, varname);
310  write_vtk_vector(file, Tmn_lattice, varname,
311  [&](EnergyMomentumTensor &node) {
312  const FourVector u = node.landau_frame_4velocity();
313  return -u.velocity();
314  });
315  }
316 }
317 
320  return;
321  }
322  std::ofstream file;
323  file.open(make_filename("fluidization_td", vtk_fluidization_counter_++),
324  std::ios::out);
325  write_vtk_header(file, gct.lattice(), "fluidization_td");
326  write_vtk_scalar(file, gct.lattice(), "e",
327  [&](ThermLatticeNode &node) { return node.e(); });
328  write_vtk_scalar(file, gct.lattice(), "p",
329  [&](ThermLatticeNode &node) { return node.p(); });
330  write_vtk_vector(file, gct.lattice(), "v",
331  [&](ThermLatticeNode &node) { return node.v(); });
332  write_vtk_scalar(file, gct.lattice(), "T",
333  [&](ThermLatticeNode &node) { return node.T(); });
334  write_vtk_scalar(file, gct.lattice(), "mub",
335  [&](ThermLatticeNode &node) { return node.mub(); });
336  write_vtk_scalar(file, gct.lattice(), "mus",
337  [&](ThermLatticeNode &node) { return node.mus(); });
338 }
339 
340 } // namespace smash
smash
Definition: action.h:24
smash::FilePtr
std::unique_ptr< std::FILE, FileDeleter > FilePtr
A RAII type to replace std::FILE *.
Definition: file.h:63
ThermodynamicQuantity::TmnLandau
smash::VtkOutput::vtk_v_landau_output_counter_
int vtk_v_landau_output_counter_
Number of Landau rest frame velocity vtk output in current event.
Definition: vtkoutput.h:183
smash::VtkOutput::thermodynamics_output
void thermodynamics_output(const ThermodynamicQuantity tq, const DensityType dt, RectangularLattice< DensityOnLattice > &lattice) override
Prints the density lattice in VTK format on a grid.
Definition: vtkoutput.cc:239
smash::LOutput
static constexpr int LOutput
Definition: oscaroutput.cc:25
smash::DensityParameters
A class to pre-calculate and store parameters relevant for density calculation.
Definition: density.h:107
smash::fopen
FilePtr fopen(const bf::path &filename, const std::string &mode)
Open a file with given mode.
Definition: file.cc:14
smash::Particles::size
size_t size() const
Definition: particles.h:87
smash::VtkOutput::make_varname
std::string make_varname(const ThermodynamicQuantity tq, const DensityType dens_type)
Make a variable name given quantity and density type.
Definition: vtkoutput.cc:233
smash::OutputInterface::to_string
const char * to_string(const ThermodynamicQuantity tq)
Convert thermodynamic quantities to strings.
Definition: outputinterface.h:153
smash::ThreeVector::x3
double x3() const
Definition: threevector.h:173
smash::VtkOutput::write_vtk_vector
void write_vtk_vector(std::ofstream &file, RectangularLattice< T > &lat, const std::string &varname, F &&function)
Write a VTK vector.
Definition: vtkoutput.cc:213
smash::EnergyMomentumTensor::tmn_index
static std::int8_t tmn_index(std::int8_t mu, std::int8_t nu)
Access the index of component .
Definition: energymomentumtensor.h:54
smash::EnergyMomentumTensor::boosted
EnergyMomentumTensor boosted(const FourVector &u) const
Boost to a given 4-velocity.
Definition: energymomentumtensor.cc:98
smash::VtkOutput::write_vtk_scalar
void write_vtk_scalar(std::ofstream &file, RectangularLattice< T > &lat, const std::string &varname, F &&function)
Write a VTK scalar.
Definition: vtkoutput.cc:195
smash::VtkOutput::base_path_
const bf::path base_path_
filesystem path for output
Definition: vtkoutput.h:169
smash::logg
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
smash::DensityOnLattice
A class for time-efficient (time-memory trade-off) calculation of density on the lattice.
Definition: density.h:257
clock.h
smash::VtkOutput::vtk_density_output_counter_
int vtk_density_output_counter_
Number of density lattice vtk output in current event.
Definition: vtkoutput.h:177
smash::VtkOutput::is_thermodynamics_output_
bool is_thermodynamics_output_
Is the VTK output a thermodynamics output.
Definition: vtkoutput.h:187
smash::VtkOutput::vtk_tmn_output_counter_
int vtk_tmn_output_counter_
Number of energy-momentum tensor lattice vtk output in current event.
Definition: vtkoutput.h:179
smash::ThermLatticeNode
The ThermLatticeNode class is intended to compute thermodynamical quantities in a cell given a set of...
Definition: grandcan_thermalizer.h:48
smash::VtkOutput::VtkOutput
VtkOutput(const bf::path &path, const std::string &name, const OutputParameters &out_par)
Create a new VTK output.
Definition: vtkoutput.cc:23
smash::VtkOutput::write_vtk_header
void write_vtk_header(std::ofstream &file, RectangularLattice< T > &lat, const std::string &description)
Write the VTK header.
Definition: vtkoutput.cc:178
forwarddeclarations.h
smash::ThreeVector
Definition: threevector.h:31
smash::OutputParameters::part_extended
bool part_extended
Extended format for particles output.
Definition: outputparameters.h:142
smash::OutputParameters
Helper structure for Experiment to hold output options and parameters.
Definition: outputparameters.h:25
smash::VtkOutput::~VtkOutput
~VtkOutput()
Definition: vtkoutput.cc:34
smash::RectangularLattice
A container class to hold all the arrays on the lattice and access them.
Definition: lattice.h:47
smash::VtkOutput::vtk_fluidization_counter_
int vtk_fluidization_counter_
Number of fluidization output.
Definition: vtkoutput.h:185
ThermodynamicQuantity::Tmn
smash::OutputInterface
Abstraction of generic output.
Definition: outputinterface.h:35
smash::ThreeVector::x1
double x1() const
Definition: threevector.h:165
smash::VtkOutput::vtk_tmn_landau_output_counter_
int vtk_tmn_landau_output_counter_
Number of Landau frame energy-momentum tensor vtk output in current event.
Definition: vtkoutput.h:181
smash::FourVector::velocity
ThreeVector velocity() const
Get the velocity (3-vector divided by zero component).
Definition: fourvector.h:323
vtkoutput.h
smash::VtkOutput::vtk_output_counter_
int vtk_output_counter_
Number of vtk output in current event.
Definition: vtkoutput.h:174
smash::VtkOutput::write
void write(const Particles &particles)
Write the given particles to the output.
Definition: vtkoutput.cc:90
particles.h
smash::EnergyMomentumTensor
Definition: energymomentumtensor.h:29
smash::DensityOnLattice::density
double density(const double norm_factor=1.0)
Compute the net Eckart density on the local lattice.
Definition: density.h:325
smash::VtkOutput::at_eventend
void at_eventend(const Particles &particles, const int event_number, double impact_parameter, bool empty_event) override
Writes the final particle information list of an event to the VTK output.
Definition: vtkoutput.cc:76
smash::Particles
Definition: particles.h:33
smash::DensityType
DensityType
Allows to choose which kind of density to calculate.
Definition: density.h:35
smash::RectangularLattice::cell_sizes
const std::array< double, 3 > & cell_sizes() const
Definition: lattice.h:148
smash::VtkOutput::make_filename
std::string make_filename(const std::string &description, int counter)
Make a file name given a description and a counter.
Definition: vtkoutput.cc:226
smash::RectangularLattice::dimensions
const std::array< int, 3 > & dimensions() const
Definition: lattice.h:145
smash::VtkOutput::current_event_
int current_event_
Event number.
Definition: vtkoutput.h:172
smash::VtkOutput::at_eventstart
void at_eventstart(const Particles &particles, const int event_number) override
Writes the initial particle information list of an event to the VTK output.
Definition: vtkoutput.cc:60
smash::EnergyMomentumTensor::landau_frame_4velocity
FourVector landau_frame_4velocity() const
Find the Landau frame 4-velocity from energy-momentum tensor.
Definition: energymomentumtensor.cc:23
ThermodynamicQuantity
ThermodynamicQuantity
Represents thermodynamic quantities that can be printed out.
Definition: forwarddeclarations.h:183
smash::FourVector
Definition: fourvector.h:33
smash::RectangularLattice::size
std::size_t size() const
Definition: lattice.h:176
smash::GrandCanThermalizer::lattice
RectangularLattice< ThermLatticeNode > & lattice() const
Getter function for the lattice.
Definition: grandcan_thermalizer.h:432
smash::pdg::p
constexpr int p
Proton.
Definition: pdgcode_constants.h:28
file.h
smash::GrandCanThermalizer
The GrandCanThermalizer class implements the following functionality:
Definition: grandcan_thermalizer.h:217
smash::RectangularLattice::origin
const std::array< double, 3 > & origin() const
Definition: lattice.h:151
smash::VtkOutput::at_intermediate_time
void at_intermediate_time(const Particles &particles, const std::unique_ptr< Clock > &clock, const DensityParameters &dens_param) override
Writes out all current particles.
Definition: vtkoutput.cc:81
smash::RectangularLattice::iterate_sublattice
void iterate_sublattice(const std::array< int, 3 > &lower_bounds, const std::array< int, 3 > &upper_bounds, F &&func)
A sub-lattice iterator, which iterates in a 3D-structured manner and calls a function on every cell.
Definition: lattice.h:233
smash::ThreeVector::x2
double x2() const
Definition: threevector.h:169