Version: SMASH-2.2
scatteractionphoton.cc
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2016-2021
4  * SMASH Team
5  *
6  * GNU General Public License (GPLv3 or later)
7  *
8  */
9 
11 
12 #include <algorithm>
13 
14 #include "smash/angles.h"
15 #include "smash/constants.h"
17 #include "smash/cxx14compat.h"
19 #include "smash/outputinterface.h"
20 #include "smash/particletype.h"
21 #include "smash/pow.h"
22 #include "smash/random.h"
23 
24 namespace smash {
25 static constexpr int LScatterAction = LogArea::ScatterAction::id;
26 
28  const ParticleList &in, const double time, const int n_frac_photons,
29  const double hadronic_cross_section_input)
30  : ScatterAction(in[0], in[1], time),
31  reac_(photon_reaction_type(in)),
32  number_of_fractional_photons_(n_frac_photons),
33  hadron_out_t_(outgoing_hadron_type(in)),
34  hadron_out_mass_(sample_out_hadron_mass(hadron_out_t_)),
35  hadronic_cross_section_(hadronic_cross_section_input) {}
36 
38  const ParticleList &in) {
39  if (in.size() != 2) {
41  }
42 
43  PdgCode a = in[0].pdgcode();
44  PdgCode b = in[1].pdgcode();
45 
46  // swap so that pion is first and there are less cases to be listed
47  if (!a.is_pion()) {
48  std::swap(a, b);
49  }
50 
51  switch (pack(a.code(), b.code())) {
52  case (pack(pdg::pi_p, pdg::pi_z)):
53  case (pack(pdg::pi_z, pdg::pi_p)):
55 
56  case (pack(pdg::pi_m, pdg::pi_z)):
57  case (pack(pdg::pi_z, pdg::pi_m)):
59 
60  case (pack(pdg::pi_p, pdg::rho_z)):
62 
63  case (pack(pdg::pi_m, pdg::rho_z)):
65 
66  case (pack(pdg::pi_m, pdg::rho_p)):
68 
69  case (pack(pdg::pi_p, pdg::rho_m)):
71 
72  case (pack(pdg::pi_z, pdg::rho_p)):
74 
75  case (pack(pdg::pi_z, pdg::rho_m)):
77 
78  case (pack(pdg::pi_p, pdg::pi_m)):
79  case (pack(pdg::pi_m, pdg::pi_p)):
81 
82  case (pack(pdg::pi_z, pdg::rho_z)):
84 
85  default:
87  }
88 }
89 
90 void ScatterActionPhoton::perform_photons(const OutputsList &outputs) {
91  for (int i = 0; i < number_of_fractional_photons_; i++) {
93  for (const auto &output : outputs) {
94  if (output->is_photon_output()) {
95  // we do not care about the local density
96  output->at_interaction(*this, 0.0);
97  }
98  }
99  }
100 }
101 
103  const ReactionType reaction) {
104  static const ParticleTypePtr rho_z_particle_ptr =
106  static const ParticleTypePtr rho_p_particle_ptr =
108  static const ParticleTypePtr rho_m_particle_ptr =
110  static const ParticleTypePtr pi_z_particle_ptr =
112  static const ParticleTypePtr pi_p_particle_ptr =
114  static const ParticleTypePtr pi_m_particle_ptr =
116 
117  switch (reaction) {
119  return rho_p_particle_ptr;
120  break;
122  return rho_m_particle_ptr;
123  break;
125  return rho_z_particle_ptr;
126  break;
127 
130  return pi_p_particle_ptr;
131 
134  return pi_m_particle_ptr;
135 
139  return pi_z_particle_ptr;
140  break;
141  default:
142  // default constructor constructs p with invalid index
143  ParticleTypePtr p{};
144  return p;
145  }
146 }
147 
149  const ParticleList &in) {
150  auto reac = photon_reaction_type(in);
151  return outgoing_hadron_type(reac);
152 }
153 
155  const ParticleList &in) {
156  auto reac = photon_reaction_type(in);
157  auto hadron = outgoing_hadron_type(in);
158 
159  if (reac == ReactionType::no_reaction)
160  return false;
161 
164  return false;
165  }
166 
167  // C15 has only s-channel. Make sure that CM-energy is high
168  // enough to produce mediating omega meson
169  if ((reac == ReactionType::pi_m_rho_p_pi_z ||
172  if (s_sqrt < omega_mass) {
173  return false;
174  }
175  }
176 
177  // for all other processes: if cm-energy is not high enough to produce final
178  // state particle reject the collision.
179  if (hadron->is_stable() && s_sqrt < hadron->mass()) {
180  return false;
181  // Make sure energy is high enough to not only create final state particle,
182  // but to also assign momentum.
183  } else if (!hadron->is_stable() &&
184  s_sqrt < (hadron->min_mass_spectral() + really_small)) {
185  return false;
186  } else {
187  return true;
188  }
189 }
190 
192  // we have only one reaction per incoming particle pair
193  if (collision_processes_photons_.size() != 1) {
194  logg[LScatterAction].fatal()
195  << "Problem in ScatterActionPhoton::generate_final_state().\n";
196  throw std::runtime_error("");
197  }
198  auto *proc = collision_processes_photons_[0].get();
199 
200  outgoing_particles_ = proc->particle_list();
201  process_type_ = proc->get_type();
202 
203  FourVector middle_point = get_interaction_point();
204 
205  // t is defined to be the momentum exchanged between the rho meson and the
206  // photon in pi + rho -> pi + photon channel. Therefore,
207  // get_t_range needs to be called with m2 being the rho mass instead of the
208  // pion mass. So, particles 1 and 2 are swapped if necessary.
209 
210  if (!incoming_particles_[0].pdgcode().is_pion()) {
211  std::swap(incoming_particles_[0], incoming_particles_[1]);
212  }
213 
214  // 2->2 inelastic scattering
215  // Sample the particle momenta in CM system
216  const double m1 = incoming_particles_[0].effective_mass();
217  const double m2 = incoming_particles_[1].effective_mass();
218 
219  const double &m_out = hadron_out_mass_;
220 
221  const double s = mandelstam_s();
222  const double sqrts = sqrt_s();
223  std::array<double, 2> mandelstam_t = get_t_range(sqrts, m1, m2, m_out, 0.0);
224  const double t1 = mandelstam_t[1];
225  const double t2 = mandelstam_t[0];
226  const double pcm_in = cm_momentum();
227  const double pcm_out = pCM(sqrts, m_out, 0.0);
228 
229  const double t = random::uniform(t1, t2);
230 
231  double costheta = (t - pow_int(m2, 2) +
232  0.5 * (s + pow_int(m2, 2) - pow_int(m1, 2)) *
233  (s - pow_int(m_out, 2)) / s) /
234  (pcm_in * (s - pow_int(m_out, 2)) / sqrts);
235 
236  // on very rare occasions near the kinematic threshold numerical issues give
237  // unphysical angles.
238  if (costheta > 1 || costheta < -1) {
239  logg[LScatterAction].warn()
240  << "Cos(theta)of photon scattering out of physical bounds in "
241  "the following scattering: "
242  << incoming_particles_ << "Clamping to [-1,1].";
243  if (costheta > 1.0)
244  costheta = 1.0;
245  if (costheta < -1.0)
246  costheta = -1.0;
247  }
248  Angles phitheta(random::uniform(0.0, twopi), costheta);
249  outgoing_particles_[0].set_4momentum(hadron_out_mass_,
250  phitheta.threevec() * pcm_out);
251  outgoing_particles_[1].set_4momentum(0.0, -phitheta.threevec() * pcm_out);
252 
253  // Set positions & boost to computational frame.
254  for (ParticleData &new_particle : outgoing_particles_) {
255  new_particle.set_4position(middle_point);
256  new_particle.boost_momentum(
258  }
259 
260  const double E_Photon = outgoing_particles_[1].momentum()[0];
261 
262  // Weighing of the fractional photons
264  // if rho in final state take already sampled mass (same as m_out). If rho
265  // is incoming take the mass of the incoming particle
266  const double m_rho = rho_mass();
267 
268  // compute the differential cross section with form factor included
269  const double diff_xs = diff_cross_section_w_ff(t, m_rho, E_Photon);
270 
271  weight_ = diff_xs * (t2 - t1) /
273  } else {
274  // compute the total cross section with form factor included
275  const double total_xs = total_cross_section_w_ff(E_Photon);
276 
277  weight_ = total_xs / hadronic_cross_section();
278  }
279  // Scale weight by cross section scaling factor of incoming particles
280  weight_ *= incoming_particles_[0].xsec_scaling_factor() *
281  incoming_particles_[1].xsec_scaling_factor();
282 
283  // Photons are not really part of the normal processes, so we have to set a
284  // constant arbitrary number.
285  const auto id_process = ID_PROCESS_PHOTON;
286  Action::check_conservation(id_process);
287 }
288 
290  double reaction_cross_section) {
291  CollisionBranchPtr dummy_process = make_unique<CollisionBranch>(
292  incoming_particles_[0].type(), incoming_particles_[1].type(),
293  reaction_cross_section, ProcessType::TwoToTwo);
294  add_collision(std::move(dummy_process));
295 }
296 
298  const ParticleTypePtr out_t) {
299  double mass = out_t->mass();
300  const double cms_energy = sqrt_s();
301  if (cms_energy <= out_t->min_mass_kinematic()) {
303  "Problem in ScatterActionPhoton::sample_hadron_mass");
304  }
305 
306  if (!out_t->is_stable()) {
307  mass = out_t->sample_resonance_mass(0, cms_energy);
308  }
309 
310  return mass;
311 }
312 
314  assert(reac_ != ReactionType::no_reaction);
315  switch (reac_) {
316  // rho in final state. use already sampled mass
320  return hadron_out_mass_;
321  // rho in initial state, use its mass
329  return (incoming_particles_[0].is_rho())
330  ? incoming_particles_[0].effective_mass()
331  : incoming_particles_[1].effective_mass();
333  default:
334  throw std::runtime_error(
335  "Invalid ReactionType in ScatterActionPhoton::rho_mass()");
336  }
337 }
338 
340  CollisionBranchList process_list;
341 
342  static ParticleTypePtr photon_particle = &ParticleType::find(pdg::photon);
343  double xsection = total_cross_section();
344 
345  process_list.push_back(make_unique<CollisionBranch>(
346  *hadron_out_t_, *photon_particle, xsection, ProcessType::TwoToTwo));
348  return process_list;
349 }
350 
352  CollisionBranchList process_list;
354 
355  const double s = mandelstam_s();
356  // the mass of the mediating particle depends on the channel. For an incoming
357  // rho it is the mass of the incoming particle, for an outgoing rho it is the
358  // sampled mass
359  const double m_rho = rho_mass();
360  double xsection = 0.0;
361 
362  switch (reac_) {
364  xsection = xs_object.xs_pi_pi_rho0(s, m_rho);
365  break;
366 
369  xsection = xs_object.xs_pi_pi0_rho(s, m_rho);
370  break;
371 
374  xsection = xs_object.xs_pi_rho0_pi(s, m_rho);
375  break;
376 
379  if (mediator == MediatorType::SUM) {
380  xsection = xs_object.xs_pi_rho_pi0(s, m_rho);
381  break;
382  } else if (mediator == MediatorType::PION) {
383  xsection = xs_object.xs_pi_rho_pi0_rho_mediated(s, m_rho);
384  break;
385  } else if (mediator == MediatorType::OMEGA) {
386  xsection = xs_object.xs_pi_rho_pi0_omega_mediated(s, m_rho);
387  break;
388  } else {
389  throw std::runtime_error("");
390  }
393  if (mediator == MediatorType::SUM) {
394  xsection = xs_object.xs_pi0_rho_pi(s, m_rho);
395  break;
396  } else if (mediator == MediatorType::PION) {
397  xsection = xs_object.xs_pi0_rho_pi_rho_mediated(s, m_rho);
398  break;
399  } else if (mediator == MediatorType::OMEGA) {
400  xsection = xs_object.xs_pi0_rho_pi_omega_mediated(s, m_rho);
401  break;
402  } else {
403  throw std::runtime_error("");
404  }
405 
407  xsection = xs_object.xs_pi0_rho0_pi0(s, m_rho);
408  break;
409 
411  // never reached
412  break;
413  }
414 
415  if (xsection == 0.0) {
416  // Vanishing cross sections are problematic for the creation of a
417  // CollisionBranch. For infrastructure reasons it is however necessary to
418  // create such a collision branch whenever the underlying hadronic
419  // scattering is a candidate for a photon interaction. In these cases we
420  // need to manually set a dummy value for the cross section and produce the
421  // photon. This photon will however automatically be assigned a 0 weight
422  // because of the vanishing cross section and therefore not be of relevance
423  // for any analysis.
424  // In other cases, where the collision branch was already created, we
425  // do not want to overwrite the cross section, of course.
426  xsection = collision_branch_created_ ? 0.0 : 0.01;
427  } else if (xsection < 0) {
428  // Due to numerical reasons it can happen that the calculated cross sections
429  // are negative (approximately -1e-15) if sqrt(s) is close to the threshold
430  // energy. In those cases the cross section is manually set to 0.1 mb, which
431  // is a reasonable value for the processes we are looking at (C14,C15,C16).
432  xsection = 0.1;
433  logg[LScatterAction].warn(
434  "Calculated negative cross section.\nParticles ", incoming_particles_,
435  " mass rho particle: ", m_rho, ", sqrt_s: ", std::sqrt(s));
436  }
437  return xsection;
438 }
439 
440 double ScatterActionPhoton::total_cross_section_w_ff(const double E_photon) {
450  /* C12, C13, C15, C16 need special treatment. These processes have identical
451  incoming and outgoing particles, but diffrent mediating particles and
452  hence different form factors. If both channels are added up
453  (MediatorType::SUM), each contribution is corrected by the corresponding
454  form factor.
455  */
456  switch (reac_) {
462  std::pair<double, double> FF = form_factor_pair(E_photon);
463  std::pair<double, double> xs = total_cross_section_pair();
464  const double xs_ff =
465  pow_int(FF.first, 4) * xs.first + pow_int(FF.second, 4) * xs.second;
466  return cut_off(xs_ff);
467  } else if (default_mediator_ == MediatorType::PION) {
468  const double FF = form_factor_pion(E_photon);
469  const double xs = total_cross_section();
470  return cut_off(pow_int(FF, 4) * xs);
471  } else if (default_mediator_ == MediatorType::OMEGA) {
472  const double FF = form_factor_omega(E_photon);
473  const double xs = total_cross_section();
474  return cut_off(pow_int(FF, 4) * xs);
475  }
476  break;
477  }
483  const double FF = form_factor_pion(E_photon);
484  const double xs = total_cross_section();
485  const double xs_ff = pow_int(FF, 4) * xs;
486  return cut_off(xs_ff);
487  }
488 
490  const double FF = form_factor_omega(E_photon);
491  const double xs = total_cross_section();
492  const double xs_ff = pow_int(FF, 4) * xs;
493  return cut_off(xs_ff);
494  }
495 
497  default:
498  throw std::runtime_error("");
499  return 0;
500  }
501 }
502 
504  const double m_rho,
505  MediatorType mediator) const {
506  const double s = mandelstam_s();
507  double diff_xsection = 0.0;
508 
510 
511  switch (reac_) {
513  diff_xsection = xs_object.xs_diff_pi_pi_rho0(s, t, m_rho);
514  break;
515 
518  diff_xsection = xs_object.xs_diff_pi_pi0_rho(s, t, m_rho);
519  break;
520 
523  diff_xsection = xs_object.xs_diff_pi_rho0_pi(s, t, m_rho);
524  break;
525 
528  if (mediator == MediatorType::SUM) {
529  diff_xsection =
530  xs_object.xs_diff_pi_rho_pi0_rho_mediated(s, t, m_rho) +
531  xs_object.xs_diff_pi_rho_pi0_omega_mediated(s, t, m_rho);
532  } else if (mediator == MediatorType::OMEGA) {
533  diff_xsection =
534  xs_object.xs_diff_pi_rho_pi0_omega_mediated(s, t, m_rho);
535  } else if (mediator == MediatorType::PION) {
536  diff_xsection = xs_object.xs_diff_pi_rho_pi0_rho_mediated(s, t, m_rho);
537  }
538  break;
539 
542  if (mediator == MediatorType::SUM) {
543  diff_xsection =
544  xs_object.xs_diff_pi0_rho_pi_rho_mediated(s, t, m_rho) +
545  xs_object.xs_diff_pi0_rho_pi_omega_mediated(s, t, m_rho);
546  } else if (mediator == MediatorType::OMEGA) {
547  diff_xsection =
548  xs_object.xs_diff_pi0_rho_pi_omega_mediated(s, t, m_rho);
549  } else if (mediator == MediatorType::PION) {
550  diff_xsection = xs_object.xs_diff_pi0_rho_pi_rho_mediated(s, t, m_rho);
551  }
552  break;
553 
555  diff_xsection = xs_object.xs_diff_pi0_rho0_pi0(s, t, m_rho);
556  break;
558  // never reached
559  break;
560  }
561 
562  // Rarely, it can happen that the computed differential cross sections slip
563  // slightly below zero for numerical reasons. This is unphysical. We
564  // approximate them with dSigma/dt = 0.01 mb/GeV^2, which is a reasonable
565  // value in the kinetic regime where this occurs.
566  if (diff_xsection < 0) {
567  diff_xsection = 0.01;
568  }
569  return diff_xsection;
570 }
571 
573  const double m_rho,
574  const double E_photon) {
584  /* C12, C13, C15, C16 need special treatment. These processes have identical
585  incoming and outgoing particles, but diffrent mediating particles and
586  hence different form factors. If both channels are added up
587  (MediatorType::SUM), each contribution is corrected by the corresponding
588  form factor.
589  */
590  switch (reac_) {
596  std::pair<double, double> FF = form_factor_pair(E_photon);
597  std::pair<double, double> diff_xs = diff_cross_section_pair(t, m_rho);
598  const double xs_ff = pow_int(FF.first, 4) * diff_xs.first +
599  pow_int(FF.second, 4) * diff_xs.second;
600  return cut_off(xs_ff);
601  } else if (default_mediator_ == MediatorType::PION) {
602  const double FF = form_factor_pion(E_photon);
603  const double diff_xs = diff_cross_section(t, m_rho);
604  return cut_off(pow_int(FF, 4) * diff_xs);
605  } else if (default_mediator_ == MediatorType::OMEGA) {
606  const double FF = form_factor_omega(E_photon);
607  const double diff_xs = diff_cross_section(t, m_rho);
608  return cut_off(pow_int(FF, 4) * diff_xs);
609  }
610  break;
611  }
617  const double FF = form_factor_pion(E_photon);
618  const double xs = diff_cross_section(t, m_rho);
619  const double xs_ff = pow_int(FF, 4) * xs;
620  return cut_off(xs_ff);
621  }
622 
624  const double FF = form_factor_omega(E_photon);
625  const double xs = diff_cross_section(t, m_rho);
626  const double xs_ff = pow_int(FF, 4) * xs;
627  return cut_off(xs_ff);
628  }
629 
631  default:
632  throw std::runtime_error("");
633  return 0;
634  }
635 }
636 
637 double ScatterActionPhoton::form_factor_pion(const double E_photon) const {
638  const double Lambda = 1.0;
639  const double Lambda2 = Lambda * Lambda;
640 
641  const double t_ff = 34.5096 * std::pow(E_photon, 0.737) -
642  67.557 * std::pow(E_photon, 0.7584) +
643  32.858 * std::pow(E_photon, 0.7806);
644  const double ff = 2 * Lambda2 / (2 * Lambda2 - t_ff);
645 
646  return ff * ff;
647 }
648 
649 double ScatterActionPhoton::form_factor_omega(const double E_photon) const {
650  const double Lambda = 1.0;
651  const double Lambda2 = Lambda * Lambda;
652 
653  const double t_ff = -61.595 * std::pow(E_photon, 0.9979) +
654  28.592 * std::pow(E_photon, 1.1579) +
655  37.738 * std::pow(E_photon, 0.9317) -
656  5.282 * std::pow(E_photon, 1.3686);
657  const double ff = 2 * Lambda2 / (2 * Lambda2 - t_ff);
658 
659  return ff * ff;
660 }
661 
662 std::pair<double, double> ScatterActionPhoton::form_factor_pair(
663  const double E_photon) {
664  return std::pair<double, double>(form_factor_pion(E_photon),
665  form_factor_omega(E_photon));
666 }
667 
669  const double xs_pion = total_cross_section(MediatorType::PION);
670  const double xs_omega = total_cross_section(MediatorType::OMEGA);
671 
672  return std::pair<double, double>(xs_pion, xs_omega);
673 }
674 
676  const double t, const double m_rho) {
677  const double diff_xs_pion = diff_cross_section(t, m_rho, MediatorType::PION);
678  const double diff_xs_omega =
680 
681  return std::pair<double, double>(diff_xs_pion, diff_xs_omega);
682 }
683 
684 } // namespace smash
Thrown for example when ScatterAction is called to perform with a wrong number of final-state particl...
Definition: action.h:325
FourVector total_momentum_of_outgoing_particles() const
Calculate the total kinetic momentum of the outgoing particles.
Definition: action.cc:155
ParticleList outgoing_particles_
Initially this stores only the PDG codes of final-state particles.
Definition: action.h:348
double sqrt_s() const
Determine the total energy in the center-of-mass frame [GeV].
Definition: action.h:266
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:340
FourVector get_interaction_point() const
Get the interaction point.
Definition: action.cc:67
ProcessType process_type_
type of process
Definition: action.h:357
virtual void check_conservation(const uint32_t id_process) const
Check various conservation laws.
Definition: action.cc:472
Angles provides a common interface for generating directions: i.e., two angles that should be interpr...
Definition: angles.h:59
ThreeVector threevec() const
Definition: angles.h:268
Class to calculate the cross-section of a meson-meson to meson-photon process.
static double xs_diff_pi0_rho_pi_omega_mediated(const double s, const double t, const double m_rho)
Differential cross section for given photon process.
static double xs_diff_pi_rho0_pi(const double s, const double t, const double m_rho)
Differential cross section for given photon process.
static double xs_diff_pi0_rho_pi_rho_mediated(const double s, const double t, const double m_rho)
Differential cross section for given photon process.
static double xs_diff_pi_rho_pi0_omega_mediated(const double s, const double t, const double m_rho)
Differential cross section for given photon process.
static double xs_pi_rho_pi0(const double s, const double m_rho)
Total cross sections for given photon process:
static double xs_diff_pi_pi_rho0(const double s, const double t, const double m_rho)
Differential cross section for given photon process.
static double xs_pi_rho0_pi(const double s, const double m_rho)
Total cross sections for given photon process:
static double xs_pi_pi_rho0(const double s, const double m_rho)
Total cross sections for given photon process:
static double xs_diff_pi_pi0_rho(const double s, const double t, const double m_rho)
Differential cross section for given photon process.
static double xs_diff_pi_rho_pi0_rho_mediated(const double s, const double t, const double m_rho)
Differential cross section for given photon process.
static double xs_pi0_rho_pi(const double s, const double m_rho)
Total cross sections for given photon process:
static double xs_pi0_rho_pi_omega_mediated(const double s, const double m_rho)
Total cross sections for given photon process:
static double xs_pi0_rho0_pi0(const double s, const double m_rho)
Total cross sections for given photon process:
static double xs_diff_pi0_rho0_pi0(const double s, const double t, const double m_rho)
Differential cross section for given photon process.
static double xs_pi_pi0_rho(const double s, const double m_rho)
Total cross sections for given photon process:
static double xs_pi_rho_pi0_omega_mediated(const double s, const double m_rho)
Total cross sections for given photon process:
static double xs_pi_rho_pi0_rho_mediated(const double s, const double m_rho)
Total cross sections for given photon process:
static double xs_pi0_rho_pi_rho_mediated(const double s, const double m_rho)
Total cross sections for given photon process:
The FourVector class holds relevant values in Minkowski spacetime with (+, −, −, −) metric signature.
Definition: fourvector.h:33
ParticleData contains the dynamic information of a certain particle.
Definition: particledata.h:58
A pointer-like interface to global references to ParticleType objects.
Definition: particletype.h:671
double sample_resonance_mass(const double mass_stable, const double cms_energy, int L=0) const
Resonance mass sampling for 2-particle final state with one resonance (type given by 'this') and one ...
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
Definition: particletype.cc:99
bool is_stable() const
Definition: particletype.h:242
double mass() const
Definition: particletype.h:144
PdgCode stores a Particle Data Group Particle Numbering Scheme particle type number.
Definition: pdgcode.h:108
std::int32_t code() const
Definition: pdgcode.h:249
bool is_pion() const
Definition: pdgcode.h:384
std::pair< double, double > diff_cross_section_pair(const double t, const double m_rho)
For processes which can happen via (pi, a1, rho) and omega exchange, return the differential cross se...
double diff_cross_section(const double t, const double m_rho, MediatorType mediator=default_mediator_) const
Calculate the differential cross section of the photon process.
ScatterActionPhoton(const ParticleList &in, const double time, const int n_frac_photons, const double hadronic_cross_section_input)
Construct a ScatterActionPhoton object.
const int number_of_fractional_photons_
Number of photons created for each hadronic scattering, needed for correct weighting.
std::pair< double, double > total_cross_section_pair()
For processes which can happen via (pi, a1, rho) and omega exchange, return the total cross section f...
ReactionType
Enum for encoding the photon process.
double total_cross_section_w_ff(const double E_photon)
Compute the total cross corrected for form factors.
const ReactionType reac_
Photonic process as determined from incoming particles.
double form_factor_omega(const double E_photon) const
Compute the form factor for a process with a omega as the lightest exchange particle.
double diff_cross_section_w_ff(const double t, const double m_rho, const double E_photon)
Compute the differential cross section corrected for form factors.
MediatorType
Compile-time switch for setting the handling of processes which can happen via different mediating pa...
void perform_photons(const OutputsList &outputs)
Create the photon final state and write to output.
CollisionBranchList collision_processes_photons_
Holds the photon branch.
double total_cross_section(MediatorType mediator=default_mediator_) const
Calculate the total cross section of the photon process.
void generate_final_state() override
Generate the final-state for the photon scatter process.
bool collision_branch_created_
Was the collision branch already created?
double rho_mass() const
Find the mass of the participating rho-particle.
double form_factor_pion(const double E_photon) const
Compute the form factor for a process with a pion as the lightest exchange particle.
static ParticleTypePtr outgoing_hadron_type(const ParticleList &in)
Return ParticleTypePtr of hadron in the out channel, given the incoming particles.
double weight_
Weight of the produced photon.
CollisionBranchList create_collision_branch()
Creates a CollisionBranchList containing the photon processes.
std::pair< double, double > form_factor_pair(const double E_photon)
For processes which can happen via (pi, a1, rho) and omega exchange, return the form factor for the (...
static constexpr MediatorType default_mediator_
Value used for default exchange particle. See MediatorType.
const double hadron_out_mass_
Mass of outgoing hadron.
void add_dummy_hadronic_process(double reaction_cross_section)
Adds one hadronic process with a given cross-section.
static ReactionType photon_reaction_type(const ParticleList &in)
Determine photon process from incoming particles.
static bool is_kinematically_possible(const double s_sqrt, const ParticleList &in)
Check if CM-energy is sufficient to produce hadron in final state.
double hadronic_cross_section() const
Return the total cross section of the underlying hadronic scattering.
const ParticleTypePtr hadron_out_t_
ParticleTypePtr to the type of the outgoing hadron.
double sample_out_hadron_mass(const ParticleTypePtr out_type)
Sample the mass of the outgoing hadron.
ScatterAction is a special action which takes two incoming particles and performs a scattering,...
Definition: scatteraction.h:30
void add_collision(CollisionBranchPtr p)
Add a new collision channel.
double mandelstam_s() const
Determine the Mandelstam s variable,.
double cm_momentum() const
Get the momentum of the center of mass of the incoming particles in the calculation frame.
Collection of useful constants that are known at compile time.
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
constexpr int pi_p
π⁺.
constexpr int rho_p
ρ⁺.
constexpr int rho_m
ρ⁻.
constexpr int p
Proton.
constexpr int pi_z
π⁰.
constexpr int photon
Photon.
constexpr int rho_z
ρ⁰.
constexpr int Lambda
Λ.
constexpr int pi_m
π⁻.
T uniform(T min, T max)
Definition: random.h:88
Definition: action.h:24
T pCM(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:79
constexpr std::uint32_t ID_PROCESS_PHOTON
Process ID for any photon process.
Definition: constants.h:124
@ TwoToTwo
2->2 inelastic scattering
constexpr double twopi
.
Definition: constants.h:45
std::array< T, 2 > get_t_range(const T sqrts, const T m1, const T m2, const T m3, const T m4)
Get the range of Mandelstam-t values allowed in a particular 2->2 process, see PDG 2014 booklet,...
Definition: kinematics.h:109
constexpr T pow_int(const T base, unsigned const exponent)
Efficient template for calculating integer powers using squaring.
Definition: pow.h:23
constexpr uint64_t pack(int32_t x, int32_t y)
Pack two int32_t into an uint64_t.
constexpr double really_small
Numerical error tolerance.
Definition: constants.h:37
static constexpr int LScatterAction
double cut_off(const double sigma_mb)
Cross section after cut off.
constexpr double omega_mass
omega mass in GeV.
Definition: constants.h:79