Version: SMASH-3.2
smash::CrossSections Class Reference

#include <crosssections.h>

The cross section class assembels everything that is needed to calculate the cross section and returns a list of all possible reactions for the incoming particles at the given energy with the calculated cross sections.

Definition at line 31 of file crosssections.h.

Public Member Functions

 CrossSections (const ParticleList &incoming_particles, double sqrt_s, const std::pair< FourVector, FourVector > potentials)
 Construct CrossSections instance. More...
 
CollisionBranchList generate_collision_list (const ScatterActionsFinderParameters &finder_parameters, StringProcess *string_process) const
 Generate a list of all possible collisions between the incoming particles with the given c.m. More...
 
double parametrized_total (const ScatterActionsFinderParameters &finder_parameters) const
 Select the parametrization for the total cross section, given the types of incoming particles. More...
 
CollisionBranchPtr elastic (const ScatterActionsFinderParameters &finder_parameters) const
 Determine the elastic cross section for this collision. More...
 
CollisionBranchList two_to_one () const
 Find all resonances that can be produced in a 2->1 collision of the two input particles and the production cross sections of these resonances. More...
 
double formation (const ParticleType &type_resonance, double cm_momentum_sqr) const
 Return the 2-to-1 resonance production cross section for a given resonance. More...
 
CollisionBranchList rare_two_to_two () const
 Find all 2->2 processes which are suppressed at high energies when strings are turned on with probabilites, but important for the production of rare species such as strange particles. More...
 
CollisionBranchList two_to_two (const ReactionsBitSet &included_2to2, double KN_offset) const
 Find all inelastic 2->2 processes for the given scattering. More...
 
CollisionBranchList two_to_three () const
 Find all 2->3 processes for the given scattering. More...
 
CollisionBranchList two_to_four () const
 Find all 2->4 processes for the given scattering. More...
 
CollisionBranchList string_excitation (double total_string_xs, StringProcess *string_process, const ScatterActionsFinderParameters &finder_parameters) const
 Determine the cross section for string excitations, which is given by the difference between the parametrized total cross section and all the explicitly implemented channels at low energy (elastic, resonance excitation, etc). More...
 
CollisionBranchPtr NNbar_annihilation (double current_xs, double scale_xs) const
 Determine the cross section for NNbar annihilation, which is given by the difference between the parametrized total cross section and all the explicitly implemented channels at low energy (in this case only elastic). More...
 
CollisionBranchList NNbar_creation () const
 Determine the cross section for NNbar creation, which is given by detailed balance from the reverse reaction. More...
 
CollisionBranchPtr NNbar_to_5pi (double scale_xs) const
 Create collision branch for NNbar annihilation going directly into 5 pions. More...
 
double high_energy (const ScatterActionsFinderParameters &finder_parameters) const
 Determine the parametrized total cross section at high energies for the given collision, which is non-zero for Baryon-Baryon and Nucleon-Pion scatterings currently. More...
 
double string_probability (const ScatterActionsFinderParameters &finder_parameters) const
 
double probability_transit_high (double region_lower, double region_upper) const
 

Static Public Member Functions

static double sum_xs_of (const CollisionBranchList &list)
 Helper function: Sum all cross sections of the given process list. More...
 
static double d_pi_inelastic_xs (double pion_kinetic_energy)
 Parametrization of deuteron-pion inelastic cross section. More...
 
static double d_N_inelastic_xs (double N_kinetic_energy)
 Parametrization of deuteron-nucleon inelastic cross section. More...
 
static double d_aN_inelastic_xs (double aN_kinetic_energy)
 Parametrization of deuteron-antinucleon inelastic cross section. More...
 
static double two_to_three_xs (const ParticleType &type_in1, const ParticleType &type_in2, double sqrts)
 Determine 2->3 cross section for the scattering of the given particle types. More...
 
static double two_to_four_xs (const ParticleType &type_in1, const ParticleType &type_in2, double sqrts)
 Determine 2->4 cross section for the scattering of the given particle types. More...
 

Private Member Functions

double elastic_parametrization (const ScatterActionsFinderParameters &finder_parameters) const
 Choose the appropriate parametrizations for given incoming particles and return the (parametrized) elastic cross section. More...
 
double nn_el () const
 Determine the (parametrized) elastic cross section for a nucleon-nucleon (NN) collision. More...
 
double npi_el () const
 Determine the elastic cross section for a nucleon-pion (Npi) collision. More...
 
double nk_el () const
 Determine the elastic cross section for a nucleon-kaon (NK) collision. More...
 
CollisionBranchList npi_yk () const
 Find all processes for Nucleon-Pion to Hyperon-Kaon Scattering. More...
 
CollisionBranchList bb_xx_except_nn (const ReactionsBitSet &included_2to2) const
 Find all inelastic 2->2 processes for Baryon-Baryon (BB) Scattering except the more specific Nucleon-Nucleon Scattering. More...
 
CollisionBranchList nn_xx (const ReactionsBitSet &included_2to2) const
 Find all inelastic 2->2 processes for Nucelon-Nucelon Scattering. More...
 
CollisionBranchList nk_xx (const ReactionsBitSet &included_2to2, double KN_offset) const
 Find all inelastic 2->2 background processes for Nucleon-Kaon (NK) Scattering. More...
 
CollisionBranchList deltak_xx (const ReactionsBitSet &included_2to2) const
 Find all inelastic 2->2 processes for Delta-Kaon (DeltaK) Scattering. More...
 
CollisionBranchList ypi_xx (const ReactionsBitSet &included_2to2) const
 Find all inelastic 2->2 processes for Hyperon-Pion (Ypi) Scattering. More...
 
CollisionBranchList dpi_xx (const ReactionsBitSet &included_2to2) const
 Find all inelastic 2->2 processes involving Pion and (anti-) Deuteron (dpi), specifically dπ→ NN, d̅π→ N̅N̅; πd→ πd' (mockup for πd→ πnp), πd̅→ πd̅' and reverse. More...
 
CollisionBranchList dn_xx (const ReactionsBitSet &included_2to2) const
 Find all inelastic 2->2 processes involving Nucleon and (anti-) Deuteron (dN), specifically Nd → Nd', N̅d → N̅d', N̅d̅→ N̅d̅', Nd̅→ Nd̅' and reverse (e.g. More...
 
double string_hard_cross_section () const
 Determine the (parametrized) hard non-diffractive string cross section for this collision. More...
 
CollisionBranchList bar_bar_to_nuc_nuc (const bool is_anti_particles) const
 Calculate cross sections for resonance absorption (i.e. More...
 
template<class IntegrationMethod >
CollisionBranchList find_nn_xsection_from_type (const ParticleTypePtrList &type_res_1, const ParticleTypePtrList &type_res_2, const IntegrationMethod integrator) const
 Utility function to avoid code replication in nn_xx(). More...
 
double cm_momentum () const
 Determine the momenta of the incoming particles in the center-of-mass system. More...
 
template<typename F >
void add_channel (CollisionBranchList &process_list, F &&get_xsection, double sqrts, const ParticleType &type_a, const ParticleType &type_b) const
 Helper function: Add a 2-to-2 channel to a collision branch list given a cross section. More...
 

Static Private Member Functions

static double xs_dpi_dprimepi (double sqrts, double cm_mom, ParticleTypePtr produced_nucleus, const ParticleType &type_pi)
 Parametrized cross section for πd→ πd' (mockup for πd→ πnp), πd̅→ πd̅' and reverse, see Oliinychenko:2018ugs [45] for details. More...
 
static double xs_dn_dprimen (double sqrts, double cm_mom, ParticleTypePtr produced_nucleus, const ParticleType &type_nucleus, const ParticleType &type_N)
 Parametrized cross section for Nd → Nd', N̅d → N̅d', N̅d̅→ N̅d̅', Nd̅→ Nd̅' and reverse (e.g. More...
 
static double nn_to_resonance_matrix_element (double sqrts, const ParticleType &type_a, const ParticleType &type_b, const int twoI)
 Scattering matrix amplitude squared (divided by 16π) for resonance production processes like NN → NR and NN → ΔR, where R is a baryon resonance (Δ, N*, Δ*). More...
 

Private Attributes

const ParticleList incoming_particles_
 List with data of scattering particles. More...
 
const double sqrt_s_
 Total energy in the center-of-mass frame. More...
 
const std::pair< FourVector, FourVectorpotentials_
 Potentials at the interacting point. More...
 
const bool is_BBbar_pair_
 Whether incoming particles are a pair of a baryon and an antibaryon (could be different baryon types) More...
 
const bool is_NNbar_pair_
 Whether incoming particles are a nulecon-antinucleon pair (same isospin) More...
 

Constructor & Destructor Documentation

◆ CrossSections()

smash::CrossSections::CrossSections ( const ParticleList &  incoming_particles,
double  sqrt_s,
const std::pair< FourVector, FourVector potentials 
)

Construct CrossSections instance.

Parameters
[in]incoming_particlesParticles that are reacting.
[in]sqrt_sCenter-of-mass energy of the reaction.
[in]potentialsPotentials at the interacting point. they are used to calculate the corrections on the thresholds.

Definition at line 100 of file crosssections.cc.

103  : incoming_particles_(incoming_particles),
104  sqrt_s_(sqrt_s),
105  potentials_(potentials),
106  is_BBbar_pair_(incoming_particles_[0].type().is_baryon() &&
107  incoming_particles_[1].type().is_baryon() &&
108  incoming_particles_[0].type().antiparticle_sign() ==
109  -incoming_particles_[1].type().antiparticle_sign()),
111  incoming_particles_[0].type().is_nucleon() &&
112  incoming_particles_[1].pdgcode() ==
113  incoming_particles_[0].type().get_antiparticle()->pdgcode()) {}
const double sqrt_s_
Total energy in the center-of-mass frame.
const std::pair< FourVector, FourVector > potentials_
Potentials at the interacting point.
const ParticleList incoming_particles_
List with data of scattering particles.
const bool is_BBbar_pair_
Whether incoming particles are a pair of a baryon and an antibaryon (could be different baryon types)
const bool is_NNbar_pair_
Whether incoming particles are a nulecon-antinucleon pair (same isospin)

Member Function Documentation

◆ generate_collision_list()

CollisionBranchList smash::CrossSections::generate_collision_list ( const ScatterActionsFinderParameters finder_parameters,
StringProcess string_process 
) const

Generate a list of all possible collisions between the incoming particles with the given c.m.

energy and the calculated cross sections. The string processes are not added at this step if it's not triggerd according to the probability. It will then be added in add_all_scatterings in scatteraction.cc

Parameters
[in]finder_parametersparameters for collision finding.
[in]string_processa pointer to the StringProcess object, which is used for string excitation and fragmentation.
Returns
List of all possible collisions.

Definition at line 115 of file crosssections.cc.

117  {
118  CollisionBranchList process_list;
119  const ParticleType& t1 = incoming_particles_[0].type();
120  const ParticleType& t2 = incoming_particles_[1].type();
121 
122  double p_pythia = 0.;
123  if (finder_parameters.strings_with_probability) {
124  p_pythia = string_probability(finder_parameters);
125  }
126 
127  /* Elastic collisions between two nucleons with sqrt_s below
128  * low_snn_cut can not happen. */
129  const bool reject_by_nucleon_elastic_cutoff =
130  t1.is_nucleon() && t2.is_nucleon() &&
131  t1.antiparticle_sign() == t2.antiparticle_sign() &&
132  sqrt_s_ < finder_parameters.low_snn_cut;
133  bool incl_elastic =
134  finder_parameters.included_2to2[IncludedReactions::Elastic];
135  if (incl_elastic && !reject_by_nucleon_elastic_cutoff) {
136  process_list.emplace_back(elastic(finder_parameters));
137  }
138  if (p_pythia > 0.) {
139  /* String-excitation cross section =
140  * Parametrized total cross - the contributions
141  * from all other present channels. */
142  const double sig_current = sum_xs_of(process_list);
143  const double sig_string = std::max(
144  0., finder_parameters.scale_xs * high_energy(finder_parameters) -
145  sig_current);
146  append_list(
147  process_list,
148  string_excitation(sig_string, string_process, finder_parameters),
149  p_pythia);
150  append_list(process_list, rare_two_to_two(),
151  p_pythia * finder_parameters.scale_xs);
152  }
153  if (p_pythia < 1.) {
154  if (finder_parameters.two_to_one) {
155  // resonance formation (2->1)
156  append_list(process_list, two_to_one(),
157  (1. - p_pythia) * finder_parameters.scale_xs);
158  }
159  if (finder_parameters.included_2to2.any()) {
160  // 2->2 (inelastic)
161  append_list(
162  process_list,
163  two_to_two(finder_parameters.included_2to2,
164  finder_parameters.transition_high_energy.KN_offset),
165  (1. - p_pythia) * finder_parameters.scale_xs);
166  }
167  if (finder_parameters
169  1) {
170  // 2->3 (deuterons only 2-to-3 reaction at the moment)
171  append_list(process_list, two_to_three(),
172  (1. - p_pythia) * finder_parameters.scale_xs);
173  }
174  if (finder_parameters
176  1) {
177  // 2->4
178  append_list(process_list, two_to_four(),
179  (1. - p_pythia) * finder_parameters.scale_xs);
180  }
181  }
182  if (finder_parameters.nnbar_treatment == NNbarTreatment::TwoToFive &&
183  is_NNbar_pair_) {
184  // NNbar directly to 5 pions (2-to-5)
185  process_list.emplace_back(NNbar_to_5pi(finder_parameters.scale_xs));
186  }
187 
188  /* NNbar annihilation thru NNbar → ρh₁(1170); combined with the decays
189  * ρ → ππ and h₁(1170) → πρ, this gives a final state of 5 pions.
190  * Only use in cases when detailed balance MUST happen, i.e. in a box! */
191  if (finder_parameters.nnbar_treatment == NNbarTreatment::Resonances) {
192  if (is_NNbar_pair_) {
193  /* Has to be called after the other processes are already determined,
194  * so that the sum of the cross sections includes all other processes. */
195  process_list.emplace_back(NNbar_annihilation(sum_xs_of(process_list),
196  finder_parameters.scale_xs));
197  } else {
198  append_list(process_list, NNbar_creation(), finder_parameters.scale_xs);
199  }
200  }
201  return process_list;
202 }
CollisionBranchList two_to_two(const ReactionsBitSet &included_2to2, double KN_offset) const
Find all inelastic 2->2 processes for the given scattering.
CollisionBranchPtr NNbar_to_5pi(double scale_xs) const
Create collision branch for NNbar annihilation going directly into 5 pions.
CollisionBranchList NNbar_creation() const
Determine the cross section for NNbar creation, which is given by detailed balance from the reverse r...
double high_energy(const ScatterActionsFinderParameters &finder_parameters) const
Determine the parametrized total cross section at high energies for the given collision,...
double string_probability(const ScatterActionsFinderParameters &finder_parameters) const
CollisionBranchList two_to_four() const
Find all 2->4 processes for the given scattering.
CollisionBranchPtr elastic(const ScatterActionsFinderParameters &finder_parameters) const
Determine the elastic cross section for this collision.
CollisionBranchList two_to_one() const
Find all resonances that can be produced in a 2->1 collision of the two input particles and the produ...
CollisionBranchList string_excitation(double total_string_xs, StringProcess *string_process, const ScatterActionsFinderParameters &finder_parameters) const
Determine the cross section for string excitations, which is given by the difference between the para...
CollisionBranchList rare_two_to_two() const
Find all 2->2 processes which are suppressed at high energies when strings are turned on with probabi...
static double sum_xs_of(const CollisionBranchList &list)
Helper function: Sum all cross sections of the given process list.
Definition: crosssections.h:76
CollisionBranchList two_to_three() const
Find all 2->3 processes for the given scattering.
CollisionBranchPtr NNbar_annihilation(double current_xs, double scale_xs) const
Determine the cross section for NNbar annihilation, which is given by the difference between the para...
@ TwoToFive
Directly create 5 pions, use with multi-particle reactions.
@ Resonances
Use intermediate Resonances.
@ A3_Nuclei_4to2
@ Deuteron_3to2
static void append_list(CollisionBranchList &main_list, CollisionBranchList in_list, double weight=1.)
Helper function: Append a list of processes to another (main) list of processes.

◆ parametrized_total()

double smash::CrossSections::parametrized_total ( const ScatterActionsFinderParameters finder_parameters) const

Select the parametrization for the total cross section, given the types of incoming particles.

Parameters
[in]finder_parametersParameters for collision finding, containing cut for low energy NN interactions.
Returns
The appropriate total cross section value.

Definition at line 204 of file crosssections.cc.

205  {
206  const PdgCode& pdg_a = incoming_particles_[0].type().pdgcode();
207  const PdgCode& pdg_b = incoming_particles_[1].type().pdgcode();
208  double total_xs = 0.;
209  if (pdg_a.is_baryon() && pdg_b.is_baryon() &&
210  sqrt_s_ > finder_parameters.low_snn_cut) {
211  if (pdg_a.antiparticle_sign() == pdg_b.antiparticle_sign()) {
212  // NN
213  total_xs = (pdg_a == pdg_b) ? pp_total(sqrt_s_ * sqrt_s_)
214  : np_total(sqrt_s_ * sqrt_s_);
215  } else {
216  // NNbar
217  total_xs = ppbar_total(sqrt_s_ * sqrt_s_);
218  }
219  total_xs *= finder_parameters.AQM_scaling_factor(pdg_a) *
220  finder_parameters.AQM_scaling_factor(pdg_b);
221  } else if ((pdg_a.is_baryon() && pdg_b.is_meson()) ||
222  (pdg_a.is_meson() && pdg_b.is_baryon())) {
223  const PdgCode& meson = pdg_a.is_meson() ? pdg_a : pdg_b;
224  const PdgCode& baryon = pdg_a.is_meson() ? pdg_b : pdg_a;
225  if (meson.is_kaon() && baryon.is_nucleon()) {
226  if ((meson.code() == pdg::K_p && baryon.code() == pdg::p) ||
227  (meson.code() == pdg::K_z && baryon.code() == pdg::n) ||
228  (meson.code() == pdg::K_m && baryon.code() == -pdg::p) ||
229  (meson.code() == pdg::Kbar_z && baryon.code() == -pdg::n)) {
230  // K⁺p, K⁰n, and anti-processes
231  total_xs = kplusp_total(sqrt_s_ * sqrt_s_);
232  } else if ((meson.code() == pdg::K_p && baryon.code() == -pdg::p) ||
233  (meson.code() == pdg::K_z && baryon.code() == -pdg::n) ||
234  (meson.code() == pdg::K_m && baryon.code() == pdg::p) ||
235  (meson.code() == pdg::Kbar_z && baryon.code() == pdg::n)) {
236  // K⁻p, K̅⁰n, and anti-processes
237  total_xs = kminusp_total(sqrt_s_ * sqrt_s_);
238  } else if ((meson.code() == pdg::K_p && baryon.code() == pdg::n) ||
239  (meson.code() == pdg::K_z && baryon.code() == pdg::p) ||
240  (meson.code() == pdg::K_m && baryon.code() == -pdg::n) ||
241  (meson.code() == pdg::Kbar_z && baryon.code() == -pdg::p)) {
242  // K⁺n, K⁰p, and anti-processes
243  total_xs = kplusn_total(sqrt_s_ * sqrt_s_);
244  } else if ((meson.code() == pdg::K_p && baryon.code() == -pdg::n) ||
245  (meson.code() == pdg::K_z && baryon.code() == -pdg::p) ||
246  (meson.code() == pdg::K_m && baryon.code() == pdg::n) ||
247  (meson.code() == pdg::Kbar_z && baryon.code() == pdg::p)) {
248  // K⁻n, K̅⁰p and anti-processes
249  total_xs = kminusn_total(sqrt_s_ * sqrt_s_);
250  }
251  } else if (meson.is_pion() && baryon.is_nucleon()) {
252  // π⁺(p,nbar), π⁻(n,pbar)
253  if ((meson.code() == pdg::pi_p &&
254  (baryon.code() == pdg::p || baryon.code() == -pdg::n)) ||
255  (meson.code() == pdg::pi_m &&
256  (baryon.code() == pdg::n || baryon.code() == -pdg::p))) {
257  total_xs = piplusp_total(sqrt_s_);
258  } else if (meson.code() == pdg::pi_z) {
259  // π⁰N
260  total_xs = 0.5 * (piplusp_total(sqrt_s_) + piminusp_total(sqrt_s_));
261  } else {
262  // π⁻(p,nbar), π⁺(n,pbar)
263  total_xs = piminusp_total(sqrt_s_);
264  }
265  } else {
266  // M*+B* goes to AQM high energy π⁻p
267  total_xs = piminusp_high_energy(sqrt_s_ * sqrt_s_) *
268  finder_parameters.AQM_scaling_factor(pdg_a) *
269  finder_parameters.AQM_scaling_factor(pdg_b);
270  }
271  } else if (pdg_a.is_meson() && pdg_b.is_meson()) {
272  if (pdg_a.is_pion() && pdg_b.is_pion()) {
273  switch (pdg_a.isospin3() * pdg_b.isospin3() / 4) {
274  // π⁺π⁻
275  case -1:
276  total_xs = pipluspiminus_total(sqrt_s_);
277  break;
278  case 0:
279  // π⁰π⁰
280  if (pdg_a.isospin3() + pdg_b.isospin3() == 0) {
281  total_xs = pizeropizero_total(sqrt_s_);
282  } else {
283  // π⁺π⁰: similar to π⁺π⁻
284  total_xs = pipluspiminus_total(sqrt_s_);
285  }
286  break;
287  // π⁺π⁺ goes to π⁻p AQM
288  case 1:
289  total_xs = (2. / 3.) * piminusp_high_energy(sqrt_s_ * sqrt_s_);
290  break;
291  default:
292  throw std::runtime_error("wrong isospin in ππ scattering");
293  }
294  } else {
295  // M*+M* goes to AQM high energy π⁻p
296  total_xs = (2. / 3.) * piminusp_high_energy(sqrt_s_ * sqrt_s_) *
297  finder_parameters.AQM_scaling_factor(pdg_a) *
298  finder_parameters.AQM_scaling_factor(pdg_b);
299  }
300  }
301  return (total_xs + finder_parameters.additional_el_xs) *
302  finder_parameters.scale_xs;
303 }
constexpr int pi_p
π⁺.
constexpr int K_p
K⁺.
constexpr int K_z
K⁰.
constexpr int p
Proton.
constexpr int K_m
K̄⁻.
constexpr int pi_z
π⁰.
constexpr int n
Neutron.
constexpr int pi_m
π⁻.
constexpr int Kbar_z
K̄⁰.
double kplusp_total(double mandelstam_s)
K+ p total cross section parametrization.
double pizeropizero_total(double sqrts)
pi0 pi0 total cross section parametrized from PDG2018, smoothed using the LOWESS algorithm.
double pipluspiminus_total(double sqrts)
pi+ pi- total cross section parametrized from PDG2018, smoothed using the LOWESS algorithm.
double ppbar_total(double mandelstam_s)
ppbar total cross section parametrization Source: Bass:1998ca
double np_total(double mandelstam_s)
np total cross section parametrization Sources: low-p: Cugnon:1996kh highest-p: Buss:2011mx
double piminusp_total(double sqrts)
pi- p total cross section parametrized from PDG2018, smoothed using the LOWESS algorithm.
double pp_total(double mandelstam_s)
pp total cross section parametrization Sources: low-p: Cugnon:1996kh highest-p: Buss:2011mx
double kplusn_total(double mandelstam_s)
K+ n total cross section parametrization.
double kminusp_total(double mandelstam_s)
K- p total cross section parametrization.
double piplusp_total(double sqrts)
pi+ p total cross section parametrized from PDG2018, smoothed using the LOWESS algorithm.
double piminusp_high_energy(double mandelstam_s)
pi-p total cross section at high energies
double kminusn_total(double mandelstam_s)
K- n total cross section parametrization.

◆ sum_xs_of()

static double smash::CrossSections::sum_xs_of ( const CollisionBranchList &  list)
inlinestatic

Helper function: Sum all cross sections of the given process list.

Definition at line 76 of file crosssections.h.

76  {
77  double xs_sum = 0.0;
78  for (auto& proc : list) {
79  xs_sum += proc->weight();
80  }
81  return xs_sum;
82  }

◆ elastic()

CollisionBranchPtr smash::CrossSections::elastic ( const ScatterActionsFinderParameters finder_parameters) const

Determine the elastic cross section for this collision.

If elastic_par is given (and positive), we just use a constant cross section of that size, otherwise a parametrization of the elastic cross section is used (if available). Optional a constant additional elastic cross section is added

Parameters
[in]finder_parametersparameters for collision finding, including cross section modifications from config file.
Note
The additional constant elastic cross section contribution is added after the scaling of the cross section.
Returns
A ProcessBranch object containing the cross section and final-state IDs.

Definition at line 305 of file crosssections.cc.

306  {
307  double elastic_xs = 0.;
308 
309  if (finder_parameters.elastic_parameter >= 0.) {
310  // use constant elastic cross section from config file
311  elastic_xs = finder_parameters.elastic_parameter;
312  } else {
313  // use parametrization
314  elastic_xs = elastic_parametrization(finder_parameters);
315  }
316  /* when using a factor to scale the cross section and an additional
317  * contribution to the elastic cross section, the contribution is added first
318  * and then everything is scaled */
319  return std::make_unique<CollisionBranch>(
320  incoming_particles_[0].type(), incoming_particles_[1].type(),
321  (elastic_xs + finder_parameters.additional_el_xs) *
322  finder_parameters.scale_xs,
324 }
double elastic_parametrization(const ScatterActionsFinderParameters &finder_parameters) const
Choose the appropriate parametrizations for given incoming particles and return the (parametrized) el...
@ Elastic
See here for a short description.

◆ two_to_one()

CollisionBranchList smash::CrossSections::two_to_one ( ) const

Find all resonances that can be produced in a 2->1 collision of the two input particles and the production cross sections of these resonances.

Given the data and type information of two colliding particles, create a list of possible resonance production processes and their cross sections.

Returns
A list of processes with resonance in the final state. Each element in the list contains the type of the final-state particle and the cross section for that particular process.

Definition at line 842 of file crosssections.cc.

842  {
843  CollisionBranchList resonance_process_list;
844  const ParticleType& type_particle_a = incoming_particles_[0].type();
845  const ParticleType& type_particle_b = incoming_particles_[1].type();
846 
847  const double m1 = incoming_particles_[0].effective_mass();
848  const double m2 = incoming_particles_[1].effective_mass();
849  const double p_cm_sqr = pCM_sqr(sqrt_s_, m1, m2);
850 
851  ParticleTypePtrList possible_resonances =
852  list_possible_resonances(&type_particle_a, &type_particle_b);
853 
854  // Find all the possible resonances
855  for (const ParticleTypePtr type_resonance : possible_resonances) {
856  double resonance_xsection = formation(*type_resonance, p_cm_sqr);
857 
858  // If cross section is non-negligible, add resonance to the list
859  if (resonance_xsection > really_small) {
860  resonance_process_list.push_back(std::make_unique<CollisionBranch>(
861  *type_resonance, resonance_xsection, ProcessType::TwoToOne));
862  logg[LCrossSections].debug("Found resonance: ", *type_resonance);
863  logg[LCrossSections].debug(type_particle_a.name(), type_particle_b.name(),
864  "->", type_resonance->name(),
865  " at sqrt(s)[GeV] = ", sqrt_s_,
866  " with xs[mb] = ", resonance_xsection);
867  }
868  }
869  return resonance_process_list;
870 }
double formation(const ParticleType &type_resonance, double cm_momentum_sqr) const
Return the 2-to-1 resonance production cross section for a given resonance.
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:40
ParticleTypePtrList list_possible_resonances(const ParticleTypePtr type_a, const ParticleTypePtr type_b)
Lists the possible resonances that decay into two particles.
T pCM_sqr(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:91
@ TwoToOne
See here for a short description.
static constexpr int LCrossSections
constexpr double really_small
Numerical error tolerance.
Definition: constants.h:37

◆ formation()

double smash::CrossSections::formation ( const ParticleType type_resonance,
double  cm_momentum_sqr 
) const

Return the 2-to-1 resonance production cross section for a given resonance.

Parameters
[in]type_resonanceType information for the resonance to be produced.
[in]cm_momentum_sqrSquare of the center-of-mass momentum of the two initial particles.
Returns
The cross section for the process [initial particle a] + [initial particle b] -> resonance.

Calculate resonance production cross section using the Breit-Wigner distribution as probability amplitude. See Eq. (176) in Buss:2011mx [14].

Definition at line 872 of file crosssections.cc.

873  {
874  const ParticleType& type_particle_a = incoming_particles_[0].type();
875  const ParticleType& type_particle_b = incoming_particles_[1].type();
876 
877  // Calculate partial in-width.
878  const double partial_width = type_resonance.get_partial_in_width(
880  if (partial_width <= 0.) {
881  return 0.;
882  }
883 
884  assert(type_resonance.charge() ==
885  type_particle_a.charge() + type_particle_b.charge());
886  assert(type_resonance.baryon_number() ==
887  type_particle_a.baryon_number() + type_particle_b.baryon_number());
888 
889  // Calculate spin factor
890  const double spinfactor =
891  static_cast<double>(type_resonance.spin() + 1) /
892  ((type_particle_a.spin() + 1) * (type_particle_b.spin() + 1));
893  const int sym_factor =
894  (type_particle_a.pdgcode() == type_particle_b.pdgcode()) ? 2 : 1;
898  return spinfactor * sym_factor * 2. * M_PI * M_PI / cm_momentum_sqr *
899  type_resonance.spectral_function(sqrt_s_) * partial_width * hbarc *
900  hbarc / fm2_mb;
901 }
constexpr double hbarc
GeV <-> fm conversion factor.
Definition: constants.h:25
constexpr double fm2_mb
mb <-> fm^2 conversion factor.
Definition: constants.h:28

◆ rare_two_to_two()

CollisionBranchList smash::CrossSections::rare_two_to_two ( ) const

Find all 2->2 processes which are suppressed at high energies when strings are turned on with probabilites, but important for the production of rare species such as strange particles.

This function should call the different, more specific functions for the different scatterings. But so far, only Nucleon-Pion to Hyperon- Kaon scattering is implemented.

Returns
List of all possible rare 2->2 processes.

Definition at line 326 of file crosssections.cc.

326  {
327  CollisionBranchList process_list;
328  const ParticleData& data_a = incoming_particles_[0];
329  const ParticleData& data_b = incoming_particles_[1];
330  const auto& pdg_a = data_a.pdgcode();
331  const auto& pdg_b = data_b.pdgcode();
332  if ((pdg_a.is_nucleon() && pdg_b.is_pion()) ||
333  (pdg_b.is_nucleon() && pdg_a.is_pion())) {
334  process_list = npi_yk();
335  }
336  return process_list;
337 }
CollisionBranchList npi_yk() const
Find all processes for Nucleon-Pion to Hyperon-Kaon Scattering.

◆ two_to_two()

CollisionBranchList smash::CrossSections::two_to_two ( const ReactionsBitSet included_2to2,
double  KN_offset 
) const

Find all inelastic 2->2 processes for the given scattering.

This function calls the different, more specific functions for the different scatterings.

Parameters
[in]included_2to2Which 2->2 reactions are enabled?
[in]KN_offsetOffset to the minimum energy for string production in KN scatterings
Returns
List of all possible inelastic 2->2 processes.

Definition at line 903 of file crosssections.cc.

904  {
905  CollisionBranchList process_list;
906  const ParticleData& data_a = incoming_particles_[0];
907  const ParticleData& data_b = incoming_particles_[1];
908  const ParticleType& type_a = data_a.type();
909  const ParticleType& type_b = data_b.type();
910  const auto& pdg_a = data_a.pdgcode();
911  const auto& pdg_b = data_b.pdgcode();
912 
913  if (data_a.is_baryon() && data_b.is_baryon()) {
914  if (pdg_a.is_nucleon() && pdg_b.is_nucleon() &&
915  pdg_a.antiparticle_sign() == pdg_b.antiparticle_sign()) {
916  // Nucleon Nucleon Scattering
917  process_list = nn_xx(included_2to2);
918  } else {
919  // Baryon Baryon Scattering
920  process_list = bb_xx_except_nn(included_2to2);
921  }
922  } else if ((type_a.is_baryon() && type_b.is_meson()) ||
923  (type_a.is_meson() && type_b.is_baryon())) {
924  // Baryon Meson Scattering
925  if ((pdg_a.is_nucleon() && pdg_b.is_kaon()) ||
926  (pdg_b.is_nucleon() && pdg_a.is_kaon())) {
927  // Nucleon Kaon Scattering
928  process_list = nk_xx(included_2to2, KN_offset);
929  } else if ((pdg_a.is_hyperon() && pdg_b.is_pion()) ||
930  (pdg_b.is_hyperon() && pdg_a.is_pion())) {
931  // Hyperon Pion Scattering
932  process_list = ypi_xx(included_2to2);
933  } else if ((pdg_a.is_Delta() && pdg_b.is_kaon()) ||
934  (pdg_b.is_Delta() && pdg_a.is_kaon())) {
935  // Delta Kaon Scattering
936  process_list = deltak_xx(included_2to2);
937  }
938  } else if (type_a.is_nucleus() || type_b.is_nucleus()) {
939  if ((type_a.is_nucleon() && type_b.is_nucleus()) ||
940  (type_b.is_nucleon() && type_a.is_nucleus())) {
941  // Nucleon Deuteron and Nucleon d' Scattering
942  process_list = dn_xx(included_2to2);
943  } else if (((type_a.is_deuteron() || type_a.is_dprime()) &&
944  pdg_b.is_pion()) ||
945  ((type_b.is_deuteron() || type_b.is_dprime()) &&
946  pdg_a.is_pion())) {
947  // Pion Deuteron and Pion d' Scattering
948  process_list = dpi_xx(included_2to2);
949  }
950  }
951  return process_list;
952 }
CollisionBranchList dpi_xx(const ReactionsBitSet &included_2to2) const
Find all inelastic 2->2 processes involving Pion and (anti-) Deuteron (dpi), specifically dπ→ NN,...
CollisionBranchList bb_xx_except_nn(const ReactionsBitSet &included_2to2) const
Find all inelastic 2->2 processes for Baryon-Baryon (BB) Scattering except the more specific Nucleon-...
CollisionBranchList deltak_xx(const ReactionsBitSet &included_2to2) const
Find all inelastic 2->2 processes for Delta-Kaon (DeltaK) Scattering.
CollisionBranchList nk_xx(const ReactionsBitSet &included_2to2, double KN_offset) const
Find all inelastic 2->2 background processes for Nucleon-Kaon (NK) Scattering.
CollisionBranchList dn_xx(const ReactionsBitSet &included_2to2) const
Find all inelastic 2->2 processes involving Nucleon and (anti-) Deuteron (dN), specifically Nd → Nd',...
CollisionBranchList ypi_xx(const ReactionsBitSet &included_2to2) const
Find all inelastic 2->2 processes for Hyperon-Pion (Ypi) Scattering.
CollisionBranchList nn_xx(const ReactionsBitSet &included_2to2) const
Find all inelastic 2->2 processes for Nucelon-Nucelon Scattering.

◆ two_to_three()

CollisionBranchList smash::CrossSections::two_to_three ( ) const

Find all 2->3 processes for the given scattering.

This function calls the different, more specific functions for the different scatterings.

Returns
List of all possible 2->3 processes.

Definition at line 954 of file crosssections.cc.

954  {
955  CollisionBranchList process_list;
956  const ParticleType& type_a = incoming_particles_[0].type();
957  const ParticleType& type_b = incoming_particles_[1].type();
958 
959  if ((type_a.is_deuteron() && type_b.pdgcode().is_pion()) ||
960  (type_b.is_deuteron() && type_a.pdgcode().is_pion())) {
961  const ParticleType& type_pi = type_a.pdgcode().is_pion() ? type_a : type_b;
962  const ParticleType& type_nucleus = type_a.is_nucleus() ? type_a : type_b;
963 
964  if (type_nucleus.baryon_number() > 0) {
965  // πd → πpn
966  const auto& type_p = ParticleType::find(pdg::p);
967  const auto& type_n = ParticleType::find(pdg::n);
968 
969  process_list.push_back(std::make_unique<CollisionBranch>(
970  type_pi, type_p, type_n, two_to_three_xs(type_a, type_b, sqrt_s_),
972  } else {
973  // πd̅ → πp̅n̅
974  const auto& type_anti_p = ParticleType::find(-pdg::p);
975  const auto& type_anti_n = ParticleType::find(-pdg::n);
976 
977  process_list.push_back(std::make_unique<CollisionBranch>(
978  type_pi, type_anti_p, type_anti_n,
979  two_to_three_xs(type_a, type_b, sqrt_s_), ProcessType::TwoToThree));
980  }
981  }
982 
983  if ((type_a.is_nucleon() && type_b.is_deuteron()) ||
984  (type_b.is_nucleon() && type_a.is_deuteron())) {
985  const ParticleType& type_N = type_a.is_nucleon() ? type_a : type_b;
986  const ParticleType& type_nucleus = type_a.is_deuteron() ? type_a : type_b;
987 
988  if (type_nucleus.baryon_number() > 0) {
989  // Nd → Nnp, N̅d → N̅np
990  const auto& type_p = ParticleType::find(pdg::p);
991  const auto& type_n = ParticleType::find(pdg::n);
992 
993  process_list.push_back(std::make_unique<CollisionBranch>(
994  type_N, type_p, type_n, two_to_three_xs(type_a, type_b, sqrt_s_),
996  } else {
997  // Nd̅ → Np̅n̅, N̅d̅ → N̅p̅n̅
998  const auto& type_anti_p = ParticleType::find(-pdg::p);
999  const auto& type_anti_n = ParticleType::find(-pdg::n);
1000 
1001  process_list.push_back(std::make_unique<CollisionBranch>(
1002  type_N, type_anti_p, type_anti_n,
1003  two_to_three_xs(type_a, type_b, sqrt_s_), ProcessType::TwoToThree));
1004  }
1005  }
1006  return process_list;
1007 }
static double two_to_three_xs(const ParticleType &type_in1, const ParticleType &type_in2, double sqrts)
Determine 2->3 cross section for the scattering of the given particle types.
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
Definition: particletype.cc:99
@ TwoToThree
See here for a short description.

◆ two_to_four()

CollisionBranchList smash::CrossSections::two_to_four ( ) const

Find all 2->4 processes for the given scattering.

This function calls the different, more specific functions for the different scatterings.

Returns
List of all possible 2->4 processes.

Definition at line 1009 of file crosssections.cc.

1009  {
1010  CollisionBranchList process_list;
1011  ParticleTypePtr type_nucleus = &(incoming_particles_[0].type());
1012  ParticleTypePtr type_catalyzer = &(incoming_particles_[1].type());
1013  if (!type_nucleus->is_nucleus()) {
1014  type_nucleus = &(incoming_particles_[1].type());
1015  type_catalyzer = &(incoming_particles_[0].type());
1016  }
1017 
1018  if (type_nucleus->is_nucleus() &&
1019  std::abs(type_nucleus->baryon_number()) == 3 &&
1020  (type_catalyzer->is_pion() || type_catalyzer->is_nucleon())) {
1021  const ParticleTypePtr type_p = ParticleType::try_find(pdg::p);
1022  const ParticleTypePtr type_n = ParticleType::try_find(pdg::n);
1023  const ParticleTypePtr type_anti_p = ParticleType::try_find(-pdg::p);
1024  const ParticleTypePtr type_anti_n = ParticleType::try_find(-pdg::n);
1025  const ParticleTypePtr type_la = ParticleType::try_find(pdg::Lambda);
1026  const ParticleTypePtr type_anti_la = ParticleType::try_find(-pdg::Lambda);
1027 
1028  // Find nucleus components
1029  ParticleTypePtrList components;
1030  components.reserve(3);
1031  const PdgCode nucleus_pdg = type_nucleus->pdgcode();
1032  for (int i = 0; i < nucleus_pdg.nucleus_p(); i++) {
1033  components.push_back(type_p);
1034  }
1035  for (int i = 0; i < nucleus_pdg.nucleus_n(); i++) {
1036  components.push_back(type_n);
1037  }
1038  for (int i = 0; i < nucleus_pdg.nucleus_ap(); i++) {
1039  components.push_back(type_anti_p);
1040  }
1041  for (int i = 0; i < nucleus_pdg.nucleus_an(); i++) {
1042  components.push_back(type_anti_n);
1043  }
1044  for (int i = 0; i < nucleus_pdg.nucleus_La(); i++) {
1045  components.push_back(type_la);
1046  }
1047  for (int i = 0; i < nucleus_pdg.nucleus_aLa(); i++) {
1048  components.push_back(type_anti_la);
1049  }
1050  if (sqrt_s_ > type_catalyzer->mass() + components[0]->mass() +
1051  components[1]->mass() + components[2]->mass()) {
1052  process_list.push_back(std::make_unique<CollisionBranch>(
1053  *type_catalyzer, *(components[0]), *(components[1]), *(components[2]),
1054  two_to_four_xs(*type_nucleus, *type_catalyzer, sqrt_s_),
1056  }
1057  }
1058  return process_list;
1059 }
static double two_to_four_xs(const ParticleType &type_in1, const ParticleType &type_in2, double sqrts)
Determine 2->4 cross section for the scattering of the given particle types.
static const ParticleTypePtr try_find(PdgCode pdgcode)
Returns the ParticleTypePtr for the given pdgcode.
Definition: particletype.cc:89
constexpr int Lambda
Λ.
@ TwoToFour
See here for a short description.

◆ string_excitation()

CollisionBranchList smash::CrossSections::string_excitation ( double  total_string_xs,
StringProcess string_process,
const ScatterActionsFinderParameters finder_parameters 
) const

Determine the cross section for string excitations, which is given by the difference between the parametrized total cross section and all the explicitly implemented channels at low energy (elastic, resonance excitation, etc).

Parameters
[in]total_string_xsTotal cross section for the string process [mb]
[in]string_processa pointer to the StringProcess object, which is used for string excitation and fragmentation
[in]finder_parametersparameters for collision finding and cross sections
Returns
List of subprocesses (single-diffractive, double-diffractive and non-diffractive) with their cross sections
Exceptions
std::runtime_errorif string_process is a null pointer

This method has to be called after all other processes have been determined.

Todo:
Same assumption made by NNbar_annihilation. Resolve.

Definition at line 2460 of file crosssections.cc.

2462  {
2463  if (!string_process) {
2464  throw std::runtime_error("string_process should be initialized.");
2465  }
2466 
2467  CollisionBranchList channel_list;
2468  if (total_string_xs <= 0.) {
2469  return channel_list;
2470  }
2471 
2472  /* Get mapped PDG id for evaluation of the parametrized cross sections
2473  * for diffractive processes.
2474  * This must be rescaled according to additive quark model
2475  * in the case of exotic hadrons.
2476  * Also calculate the multiplicative factor for AQM
2477  * based on the quark contents. */
2478  std::array<int, 2> pdgid;
2479  double AQM_scaling = 1.;
2480  for (int i = 0; i < 2; i++) {
2481  PdgCode pdg = incoming_particles_[i].type().pdgcode();
2482  pdgid[i] = StringProcess::pdg_map_for_pythia(pdg);
2483  AQM_scaling *= finder_parameters.AQM_scaling_factor(pdg);
2484  }
2485 
2486  /* Determine if the initial state is a baryon-antibaryon pair,
2487  * which can annihilate. */
2488  bool can_annihilate = false;
2489  if (is_BBbar_pair_) {
2490  int n_q_types = 5; // u, d, s, c, b
2491  for (int iq = 1; iq <= n_q_types; iq++) {
2492  std::array<int, 2> nquark;
2493  for (int i = 0; i < 2; i++) {
2494  nquark[i] =
2495  incoming_particles_[i].type().pdgcode().net_quark_number(iq);
2496  }
2497  if (nquark[0] != 0 && nquark[1] != 0) {
2498  can_annihilate = true;
2499  break;
2500  }
2501  }
2502  }
2503 
2504  /* Total parametrized cross-section (I) and pythia-produced total
2505  * cross-section (II) do not necessarily coincide. If I > II then
2506  * non-diffractive cross-section is reinforced to get I == II.
2507  * If I < II then partial cross-sections are drained one-by-one
2508  * to reduce II until I == II:
2509  * first non-diffractive, then double-diffractive, then
2510  * single-diffractive AB->AX and AB->XB in equal proportion.
2511  * The way it is done here is not unique. I (ryu) think that at high energy
2512  * collision this is not an issue, but at sqrt_s < 10 GeV it may
2513  * matter. */
2514  std::array<double, 3> xs =
2515  string_process->cross_sections_diffractive(pdgid[0], pdgid[1], sqrt_s_);
2516  if (finder_parameters.use_AQM) {
2517  for (int ip = 0; ip < 3; ip++) {
2518  xs[ip] *= AQM_scaling;
2519  }
2520  }
2521  double single_diffr_AX = xs[0], single_diffr_XB = xs[1], double_diffr = xs[2];
2522  double single_diffr = single_diffr_AX + single_diffr_XB;
2523  double diffractive = single_diffr + double_diffr;
2524 
2525  /* The case for baryon/anti-baryon annihilation is treated separately,
2526  * as in this case we use only one way to break up the particles, namely
2527  * into 2 mesonic strings of equal mass after annihilating one quark-
2528  * anti-quark pair. See StringProcess::next_BBbarAnn() */
2529  double sig_annihilation = 0.0;
2530  if (can_annihilate) {
2531  /* In the case of baryon-antibaryon pair,
2532  * the parametrized cross section for annihilation will be added.
2533  * See xs_ppbar_annihilation(). */
2534  double xs_param = xs_ppbar_annihilation(sqrt_s_ * sqrt_s_);
2535  if (finder_parameters.use_AQM) {
2536  xs_param *= AQM_scaling;
2537  }
2538  sig_annihilation = std::min(total_string_xs, xs_param);
2539  }
2540 
2541  const double nondiffractive_all =
2542  std::max(0., total_string_xs - sig_annihilation - diffractive);
2543  diffractive = total_string_xs - sig_annihilation - nondiffractive_all;
2544  double_diffr = std::max(0., diffractive - single_diffr);
2545  const double a = (diffractive - double_diffr) / single_diffr;
2546  single_diffr_AX *= a;
2547  single_diffr_XB *= a;
2548  assert(std::abs(single_diffr_AX + single_diffr_XB + double_diffr +
2549  sig_annihilation + nondiffractive_all - total_string_xs) <
2550  1.e-6);
2551 
2552  double nondiffractive_soft = 0.;
2553  double nondiffractive_hard = 0.;
2554  if (nondiffractive_all > 0.) {
2555  /* Hard string process is added by hard cross section
2556  * in conjunction with multipartion interaction picture
2557  * \iref{Sjostrand:1987su}. */
2558  const double hard_xsec = AQM_scaling * string_hard_cross_section();
2559  nondiffractive_soft =
2560  nondiffractive_all * std::exp(-hard_xsec / nondiffractive_all);
2561  nondiffractive_hard = nondiffractive_all - nondiffractive_soft;
2562  }
2563  logg[LCrossSections].debug("String cross sections [mb] are");
2564  logg[LCrossSections].debug("Single-diffractive AB->AX: ", single_diffr_AX);
2565  logg[LCrossSections].debug("Single-diffractive AB->XB: ", single_diffr_XB);
2566  logg[LCrossSections].debug("Double-diffractive AB->XX: ", double_diffr);
2567  logg[LCrossSections].debug("Soft non-diffractive: ", nondiffractive_soft);
2568  logg[LCrossSections].debug("Hard non-diffractive: ", nondiffractive_hard);
2569  logg[LCrossSections].debug("B-Bbar annihilation: ", sig_annihilation);
2570 
2571  /* cross section of soft string excitation including annihilation */
2572  const double sig_string_soft = total_string_xs - nondiffractive_hard;
2573 
2574  /* fill the list of process channels */
2575  if (sig_string_soft > 0.) {
2576  channel_list.push_back(std::make_unique<CollisionBranch>(
2577  single_diffr_AX, ProcessType::StringSoftSingleDiffractiveAX));
2578  channel_list.push_back(std::make_unique<CollisionBranch>(
2579  single_diffr_XB, ProcessType::StringSoftSingleDiffractiveXB));
2580  channel_list.push_back(std::make_unique<CollisionBranch>(
2582  channel_list.push_back(std::make_unique<CollisionBranch>(
2583  nondiffractive_soft, ProcessType::StringSoftNonDiffractive));
2584  if (can_annihilate) {
2585  channel_list.push_back(std::make_unique<CollisionBranch>(
2586  sig_annihilation, ProcessType::StringSoftAnnihilation));
2587  }
2588  }
2589  if (nondiffractive_hard > 0.) {
2590  channel_list.push_back(std::make_unique<CollisionBranch>(
2591  nondiffractive_hard, ProcessType::StringHard));
2592  }
2593  return channel_list;
2594 }
double string_hard_cross_section() const
Determine the (parametrized) hard non-diffractive string cross section for this collision.
static int pdg_map_for_pythia(PdgCode &pdg)
Take pdg code and map onto particle specie which can be handled by PYTHIA.
@ StringSoftDoubleDiffractive
See here for a short description.
@ StringSoftSingleDiffractiveXB
See here for a short description.
@ StringSoftAnnihilation
See here for a short description.
@ StringSoftNonDiffractive
See here for a short description.
@ StringSoftSingleDiffractiveAX
See here for a short description.
@ StringHard
See here for a short description.
double xs_ppbar_annihilation(double mandelstam_s)
parametrized cross-section for proton-antiproton annihilation used in the UrQMD model

◆ NNbar_annihilation()

CollisionBranchPtr smash::CrossSections::NNbar_annihilation ( double  current_xs,
double  scale_xs 
) const

Determine the cross section for NNbar annihilation, which is given by the difference between the parametrized total cross section and all the explicitly implemented channels at low energy (in this case only elastic).

Parameters
[in]current_xsSum of all cross sections of already determined processes
[in]scale_xsFactor by which all (partial) cross sections are scaled
Returns
Collision Branch with NNbar annihilation process and its cross section

This method has to be called after all other processes have been determined.

Todo:
Same assumption made by string_excitation. Resolve.

Definition at line 2702 of file crosssections.cc.

2703  {
2704  /* Calculate NNbar cross section:
2705  * Parametrized total minus all other present channels.*/
2706  const double s = sqrt_s_ * sqrt_s_;
2707  double nnbar_xsec = std::max(0., ppbar_total(s) * scale_xs - current_xs);
2708  logg[LCrossSections].debug("NNbar cross section is: ", nnbar_xsec);
2709  // Make collision channel NNbar -> ρh₁(1170); eventually decays into 5π
2710  return std::make_unique<CollisionBranch>(ParticleType::find(pdg::h1),
2712  nnbar_xsec, ProcessType::TwoToTwo);
2713 }
constexpr int h1
h₁(1170).
constexpr int rho_z
ρ⁰.
@ TwoToTwo
See here for a short description.

◆ NNbar_creation()

CollisionBranchList smash::CrossSections::NNbar_creation ( ) const

Determine the cross section for NNbar creation, which is given by detailed balance from the reverse reaction.

See NNbar_annihilation.

Returns
Collision Branch with NNbar creation process and its cross section

Definition at line 2715 of file crosssections.cc.

2715  {
2716  CollisionBranchList channel_list;
2717  const ParticleType& type_a = incoming_particles_[0].type();
2718  const ParticleType& type_b = incoming_particles_[1].type();
2719  if ((type_a.pdgcode() == pdg::rho_z && type_b.pdgcode() == pdg::h1) ||
2720  (type_a.pdgcode() == pdg::h1 && type_b.pdgcode() == pdg::rho_z)) {
2721  /* Calculate NNbar reverse cross section:
2722  * from reverse reaction (see NNbar_annihilation_cross_section).*/
2723  const double s = sqrt_s_ * sqrt_s_;
2724  const double pcm = cm_momentum();
2725 
2726  const auto& type_N = ParticleType::find(pdg::p);
2727  const auto& type_Nbar = ParticleType::find(-pdg::p);
2728 
2729  // Check available energy
2730  if (sqrt_s_ - 2 * type_N.mass() < 0) {
2731  return channel_list;
2732  }
2733 
2734  double xsection = detailed_balance_factor_RR(sqrt_s_, pcm, type_a, type_b,
2735  type_N, type_Nbar) *
2736  std::max(0., ppbar_total(s) - ppbar_elastic(s));
2737  logg[LCrossSections].debug("NNbar reverse cross section is: ", xsection);
2738  channel_list.push_back(std::make_unique<CollisionBranch>(
2739  type_N, type_Nbar, xsection, ProcessType::TwoToTwo));
2740  channel_list.push_back(std::make_unique<CollisionBranch>(
2743  }
2744  return channel_list;
2745 }
double cm_momentum() const
Determine the momenta of the incoming particles in the center-of-mass system.
static double detailed_balance_factor_RR(double sqrts, double pcm, const ParticleType &a, const ParticleType &b, const ParticleType &c, const ParticleType &d)
Helper function: Calculate the detailed balance factor R such that.
double ppbar_elastic(double mandelstam_s)
ppbar elastic cross section parametrization Source: Bass:1998ca

◆ NNbar_to_5pi()

CollisionBranchPtr smash::CrossSections::NNbar_to_5pi ( double  scale_xs) const

Create collision branch for NNbar annihilation going directly into 5 pions.

The cross section is given by the parametrized ppbar cross section, which is also used for the reverse 5-to-2 process.

Parameters
[in]scale_xsFactor by which all (partial) cross sections are scaled
Returns
Collision Branch with NNbar annihilation process

Definition at line 2685 of file crosssections.cc.

2685  {
2686  const double s = sqrt_s_ * sqrt_s_;
2687  /* Use difference between total and elastic in order to conserve detailed
2688  * balance for all inelastoc NNbar processes. */
2689  const double nnbar_xsec = std::max(0., ppbar_total(s) - ppbar_elastic(s));
2690  logg[LCrossSections].debug("NNbar cross section for 2-to-5 is: ", nnbar_xsec);
2691 
2692  /* Make collision channel NNbar -> 5π (with same final state as resonance
2693  * approach). */
2694  const auto& type_piz = ParticleType::find(pdg::pi_z);
2695  const auto& type_pip = ParticleType::find(pdg::pi_p);
2696  const auto& type_pim = ParticleType::find(pdg::pi_m);
2697  return std::make_unique<CollisionBranch>(
2698  type_pip, type_pim, type_pip, type_pim, type_piz, nnbar_xsec * scale_xs,
2700 }
@ TwoToFive
See here for a short description.

◆ d_pi_inelastic_xs()

double smash::CrossSections::d_pi_inelastic_xs ( double  pion_kinetic_energy)
static

Parametrization of deuteron-pion inelastic cross section.

Parameters
[in]pion_kinetic_energypion kinetic energy [GeV] in the deuteron rest frame
Returns
cross section [mb]

Definition at line 1061 of file crosssections.cc.

1061  {
1062  const double x = pion_kinetic_energy;
1063  return x * (4.3 + 10.0 * x) / ((x - 0.16) * (x - 0.16) + 0.007);
1064 }

◆ d_N_inelastic_xs()

double smash::CrossSections::d_N_inelastic_xs ( double  N_kinetic_energy)
static

Parametrization of deuteron-nucleon inelastic cross section.

Parameters
[in]N_kinetic_energyNucleon kinetic energy [GeV] in the deuteron rest frame
Returns
cross section [mb]

Definition at line 1066 of file crosssections.cc.

1066  {
1067  const double x = N_kinetic_energy;
1068  return x * (1.0 + 50 * x) / (x * x + 0.01) +
1069  4 * x / ((x - 0.008) * (x - 0.008) + 0.0004);
1070 }

◆ d_aN_inelastic_xs()

double smash::CrossSections::d_aN_inelastic_xs ( double  aN_kinetic_energy)
static

Parametrization of deuteron-antinucleon inelastic cross section.

Parameters
[in]aN_kinetic_energy[GeV] Anti-nucleon kinetic energy in the deuteron rest frame
Returns
cross section [mb]

Definition at line 1072 of file crosssections.cc.

1072  {
1073  return 55.0 / (aN_kinetic_energy + 0.17);
1074 }

◆ two_to_three_xs()

double smash::CrossSections::two_to_three_xs ( const ParticleType type_in1,
const ParticleType type_in2,
double  sqrts 
)
static

Determine 2->3 cross section for the scattering of the given particle types.

That the function only depends on the types of particles (plus sqrt(s)) and not on the specific particles, is an assumption needed in order to treat the 3->2 back-reaction with the stochastic criterion, where this function also needs to be called for 3-to-2 collision probability with only types and sqrt(s) known at this point. Therefore the function is also made static.

Parameters
[in]type_in1first scatterning particle type
[in]type_in2second scatterning particle type
[in]sqrtscenter-of-mass energy of scattering
Returns
cross section for 2->3 process

Definition at line 1076 of file crosssections.cc.

1078  {
1079  double xs = 0.0;
1080  ParticleTypePtr type_nucleus = &type_a, type_catalyzer = &type_b;
1081  if (!type_nucleus->is_nucleus()) {
1082  type_nucleus = &type_b;
1083  type_catalyzer = &type_a;
1084  }
1085 
1086  bool nonzero_xs = type_nucleus->is_nucleus() &&
1087  (type_catalyzer->is_pion() || type_catalyzer->is_nucleon());
1088  if (!nonzero_xs) {
1089  return 0.0;
1090  }
1091 
1092  const double md = type_nucleus->mass(), mcat = type_catalyzer->mass();
1093  const double Tkin = (sqrts * sqrts - (md + mcat) * (md + mcat)) / (2.0 * md);
1094 
1095  // Should normally never happen, but may be a useful safeguard
1096  if (Tkin <= 0.0) {
1097  return 0.0;
1098  }
1099 
1100  if (type_catalyzer->is_pion()) {
1101  xs = d_pi_inelastic_xs(Tkin);
1102  } else if (type_catalyzer->is_nucleon()) {
1103  if (type_nucleus->pdgcode().antiparticle_sign() ==
1104  type_catalyzer->pdgcode().antiparticle_sign()) {
1105  // Nd and N̅d̅
1106  xs = d_N_inelastic_xs(Tkin);
1107  } else {
1108  // N̅d and Nd̅
1109  xs = d_aN_inelastic_xs(Tkin);
1110  }
1111  }
1112  return xs;
1113 }
static double d_N_inelastic_xs(double N_kinetic_energy)
Parametrization of deuteron-nucleon inelastic cross section.
static double d_aN_inelastic_xs(double aN_kinetic_energy)
Parametrization of deuteron-antinucleon inelastic cross section.
static double d_pi_inelastic_xs(double pion_kinetic_energy)
Parametrization of deuteron-pion inelastic cross section.

◆ two_to_four_xs()

double smash::CrossSections::two_to_four_xs ( const ParticleType type_in1,
const ParticleType type_in2,
double  sqrts 
)
static

Determine 2->4 cross section for the scattering of the given particle types.

Same assumptions as for 2->3 cross section, see respective documentation.

Parameters
[in]type_in1first scatterning particle type
[in]type_in2second scatterning particle type
[in]sqrtscenter-of-mass energy of scattering
Returns
cross section for 2->4 process

Definition at line 1115 of file crosssections.cc.

1116  {
1117  double xs = 0.0;
1118  ParticleTypePtr type_nucleus = &type_a, type_catalyzer = &type_b;
1119  if (!type_nucleus->is_nucleus()) {
1120  type_nucleus = &type_b;
1121  type_catalyzer = &type_a;
1122  }
1123  bool nonzero_xs = type_nucleus->is_nucleus() &&
1124  (type_catalyzer->is_pion() || type_catalyzer->is_nucleon());
1125  if (!nonzero_xs) {
1126  return 0.0;
1127  }
1128 
1129  const double mA = type_nucleus->mass(), mcat = type_catalyzer->mass();
1130  const double Tkin = (sqrts * sqrts - (mA + mcat) * (mA + mcat)) / (2.0 * mA);
1131  const int A = type_nucleus->pdgcode().nucleus_A();
1132  // Should normally never happen, but may be a useful safeguard
1133  if (A != 3 || Tkin <= 0.0) {
1134  return 0.0;
1135  }
1136 
1137  if (type_catalyzer->is_pion()) {
1138  xs = A / 2. * d_pi_inelastic_xs(Tkin);
1139  } else if (type_catalyzer->is_nucleon()) {
1140  if (type_nucleus->pdgcode().antiparticle_sign() ==
1141  type_catalyzer->pdgcode().antiparticle_sign()) {
1142  // N + A, anti-N + anti-A
1143  xs = A / 2. * d_N_inelastic_xs(Tkin);
1144  } else {
1145  // N̅ + A and N + anti-A
1146  xs = A / 2. * d_aN_inelastic_xs(Tkin);
1147  }
1148  }
1149  return xs;
1150 }

◆ high_energy()

double smash::CrossSections::high_energy ( const ScatterActionsFinderParameters finder_parameters) const

Determine the parametrized total cross section at high energies for the given collision, which is non-zero for Baryon-Baryon and Nucleon-Pion scatterings currently.

This is rescaled by AQM factors.

Parameters
[in]finder_parametersparameters for collision finding and cross sections.

Definition at line 2596 of file crosssections.cc.

2597  {
2598  const PdgCode& pdg_a = incoming_particles_[0].type().pdgcode();
2599  const PdgCode& pdg_b = incoming_particles_[1].type().pdgcode();
2600 
2601  const double s = sqrt_s_ * sqrt_s_;
2602  double xs = 0.;
2603 
2604  // Currently all BB collisions use the nucleon-nucleon parametrizations.
2605  if (pdg_a.is_baryon() && pdg_b.is_baryon()) {
2606  if (pdg_a == pdg_b) {
2607  xs = pp_high_energy(s); // pp, nn
2608  } else if (pdg_a.antiparticle_sign() * pdg_b.antiparticle_sign() == 1) {
2609  xs = np_high_energy(s); // np, nbarpbar
2610  } else if (pdg_a.antiparticle_sign() * pdg_b.antiparticle_sign() == -1) {
2611  /* In the case of baryon-antibaryon interactions,
2612  * the low-energy cross section must be involved
2613  * due to annihilation processes (via strings). */
2614  double xs_l = ppbar_total(s);
2615  double xs_h = 0.;
2616  if (pdg_a.is_antiparticle_of(pdg_b)) {
2617  xs_h = ppbar_high_energy(s); // ppbar, nnbar
2618  } else {
2619  xs_h = npbar_high_energy(s); // npbar, nbarp
2620  }
2621  /* Transition between low and high energy is set to be consistent with
2622  * that defined in string_probability(). */
2623  auto [region_lower, region_upper] =
2624  finder_parameters.transition_high_energy.sqrts_range_NN;
2625  double prob_high = probability_transit_high(region_lower, region_upper);
2626  xs = xs_l * (1. - prob_high) + xs_h * prob_high;
2627  }
2628  }
2629 
2630  // Pion nucleon interaction / baryon-meson
2631  if ((pdg_a == pdg::pi_p && pdg_b == pdg::p) ||
2632  (pdg_b == pdg::pi_p && pdg_a == pdg::p) ||
2633  (pdg_a == pdg::pi_m && pdg_b == pdg::n) ||
2634  (pdg_b == pdg::pi_m && pdg_a == pdg::n)) {
2635  xs = piplusp_high_energy(s); // pi+ p, pi- n
2636  } else if ((pdg_a == pdg::pi_m && pdg_b == pdg::p) ||
2637  (pdg_b == pdg::pi_m && pdg_a == pdg::p) ||
2638  (pdg_a == pdg::pi_p && pdg_b == pdg::n) ||
2639  (pdg_b == pdg::pi_p && pdg_a == pdg::n)) {
2640  xs = piminusp_high_energy(s); // pi- p, pi+ n
2641  } else if ((pdg_a.is_meson() && pdg_b.is_baryon()) ||
2642  (pdg_b.is_meson() && pdg_a.is_baryon())) {
2643  xs = piminusp_high_energy(s); // default for baryon-meson
2644  }
2645 
2646  /* Meson-meson interaction goes through AQM from pi+p,
2647  * see user guide "Use_AQM"*/
2648  if (pdg_a.is_meson() && pdg_b.is_meson()) {
2649  /* 2/3 factor since difference of 1 meson between meson-meson
2650  * and baryon-meson */
2651  xs = 2. / 3. * piplusp_high_energy(s);
2652  }
2653 
2654  // AQM scaling for cross-sections
2655  xs *= finder_parameters.AQM_scaling_factor(pdg_a) *
2656  finder_parameters.AQM_scaling_factor(pdg_b);
2657 
2658  return xs;
2659 }
double probability_transit_high(double region_lower, double region_upper) const
double npbar_high_energy(double mandelstam_s)
npbar total cross section at high energies
double np_high_energy(double mandelstam_s)
np total cross section at high energies
double ppbar_high_energy(double mandelstam_s)
ppbar total cross section at high energies
double pp_high_energy(double mandelstam_s)
pp total cross section at high energies
double piplusp_high_energy(double mandelstam_s)
pi+p total cross section at high energies

◆ string_probability()

double smash::CrossSections::string_probability ( const ScatterActionsFinderParameters finder_parameters) const
Returns
the probability whether the scattering between the incoming particles is via string fragmentation or not.

If use_transition_probability is true: The string fragmentation is implemented in the same way in GiBUU (Physics Reports 512(2012), 1-124, pg. 33). If the center of mass energy is low, two particles scatter through the resonance channels. If high, the outgoing particles are generated by string fragmentation. If in between, the out- going particles are generated either through the resonance channels or string fragmentation by chance. In detail, the low energy region is from the threshold to (mix_scatter_type_energy - mix_scatter_type_window_width), while the high energy region is from (mix_scatter_type_energy + mix_scatter_type_window_width) to infinity. In between, the probability for string fragmentation increases smoothly from 0 to 1 as the c.m. energy.

If use_transition_probability is false: The string fragmentation is implemented similarly to what is in UrQMD (Bass:1998ca [6]). If sqrts is lower than some cutoff value, there are no strings. If higher, strings are allowed, with the cross-section being the difference between some parametrized total cross-section and the sum of all other channels, if this parametrization is larger than the sum of the channels. If not, strings are not allowed (this cross-section check is performed directly after the function is called, for technical reasons).

Both of these methods are initially implemented for NN and Npi cross- sections, and extended using the AQM to all BB, BM and MM interactions.

Baryon-antibaryon annihilation also uses this function to decide whether to produce strings or not. Since there are no other contributions for this process, there are no cutoffs or gradual increase in the probability of this process happening or not, it just requires the proper combination of incoming particles and config parameters.

Parameters
[in]finder_parametersparameters for collision finding and cross sections.

Definition at line 2975 of file crosssections.cc.

2976  {
2977  /* string fragmentation is enabled when strings_switch is on and the process
2978  * is included in pythia. */
2979  if (!finder_parameters.strings_switch) {
2980  return 0.;
2981  }
2982 
2983  const ParticleType& t1 = incoming_particles_[0].type();
2984  const ParticleType& t2 = incoming_particles_[1].type();
2985  const bool treat_BBbar_with_strings =
2986  (finder_parameters.nnbar_treatment == NNbarTreatment::Strings);
2987  const bool is_NN_scattering =
2988  t1.is_nucleon() && t2.is_nucleon() &&
2989  t1.antiparticle_sign() == t2.antiparticle_sign();
2990  const bool is_BBbar_scattering =
2991  (treat_BBbar_with_strings && is_BBbar_pair_ &&
2992  finder_parameters.use_AQM) ||
2993  (t1.is_nucleon() && t2.is_nucleon() &&
2994  t1.antiparticle_sign() != t2.antiparticle_sign());
2995  const bool is_Npi_scattering = (t1.pdgcode().is_pion() && t2.is_nucleon()) ||
2996  (t1.is_nucleon() && t2.pdgcode().is_pion());
2997  /* True for baryon-baryon, anti-baryon-anti-baryon, baryon-meson,
2998  * anti-baryon-meson and meson-meson*/
2999  const bool is_AQM_scattering =
3000  finder_parameters.use_AQM &&
3001  ((t1.is_baryon() && t2.is_baryon() &&
3002  t1.antiparticle_sign() == t2.antiparticle_sign()) ||
3003  ((t1.is_baryon() && t2.is_meson()) ||
3004  (t2.is_baryon() && t1.is_meson())) ||
3005  (t1.is_meson() && t2.is_meson()));
3006  const double mass_sum =
3007  incoming_particles_[0].pole_mass() + incoming_particles_[1].pole_mass();
3008 
3009  if (!is_NN_scattering && !is_BBbar_scattering && !is_Npi_scattering &&
3010  !is_AQM_scattering) {
3011  return 0.;
3012  } else if (is_NNbar_pair_ && !treat_BBbar_with_strings) {
3013  return 0.;
3014  } else if (is_BBbar_scattering) {
3015  // BBbar only goes through strings, so there are no "window" considerations
3016  return 1.;
3017  } else {
3018  /* true for K+ p and K0 p (+ antiparticles), which have special treatment
3019  * to fit data */
3020  const PdgCode pdg1 = t1.pdgcode(), pdg2 = t2.pdgcode();
3021  const bool is_KplusP =
3022  ((pdg1 == pdg::K_p || pdg1 == pdg::K_z) && (pdg2 == pdg::p)) ||
3023  ((pdg2 == pdg::K_p || pdg2 == pdg::K_z) && (pdg1 == pdg::p)) ||
3024  ((pdg1 == -pdg::K_p || pdg1 == -pdg::K_z) && (pdg2 == -pdg::p)) ||
3025  ((pdg2 == -pdg::K_p || pdg2 == -pdg::K_z) && (pdg1 == -pdg::p));
3026  // where to start the AQM strings above mass sum
3027  double aqm_offset =
3028  finder_parameters.transition_high_energy.sqrts_add_lower;
3029  if (is_KplusP) {
3030  /* for this specific case we have data. This corresponds to the point
3031  * where the AQM parametrization is smaller than the current 2to2
3032  * parametrization, which starts growing and diverges from exp. data */
3033  aqm_offset = finder_parameters.transition_high_energy.KN_offset;
3034  } else if (pdg1.is_pion() && pdg2.is_pion()) {
3035  aqm_offset = finder_parameters.transition_high_energy.pipi_offset;
3036  }
3037  /* if we do not use the probability transition algorithm, this is always a
3038  * string contribution if the energy is large enough */
3039  if (!finder_parameters.strings_with_probability) {
3040  return static_cast<double>(sqrt_s_ > mass_sum + aqm_offset);
3041  }
3042  /* No strings at low energy, only strings at high energy and
3043  * a transition region in the middle. Determine transition region: */
3044  double region_lower, region_upper;
3045  if (is_Npi_scattering) {
3046  std::tie(region_lower, region_upper) =
3047  finder_parameters.transition_high_energy.sqrts_range_Npi;
3048  } else if (is_NN_scattering) {
3049  std::tie(region_lower, region_upper) =
3050  finder_parameters.transition_high_energy.sqrts_range_NN;
3051  } else { // AQM - Additive Quark Model
3052  /* Transition region around 0.9 larger than the sum of pole masses;
3053  * highly arbitrary, feel free to improve */
3054  region_lower = mass_sum + aqm_offset;
3055  region_upper = mass_sum + aqm_offset +
3056  finder_parameters.transition_high_energy.sqrts_range_width;
3057  }
3058 
3059  if (sqrt_s_ > region_upper) {
3060  return 1.;
3061  } else if (sqrt_s_ < region_lower) {
3062  return 0.;
3063  } else {
3064  // Rescale transition region to [-1, 1]
3065  return probability_transit_high(region_lower, region_upper);
3066  }
3067  }
3068 }
@ Strings
Use string fragmentation.

◆ probability_transit_high()

double smash::CrossSections::probability_transit_high ( double  region_lower,
double  region_upper 
) const
Parameters
[in]region_lowerthe lowest sqrts in the transition region [GeV]
[in]region_upperthe highest sqrts in the transition region [GeV]
Returns
probability to have the high energy interaction (via string)

Definition at line 3070 of file crosssections.cc.

3071  {
3072  if (sqrt_s_ < region_lower) {
3073  return 0.;
3074  }
3075 
3076  if (sqrt_s_ > region_upper) {
3077  return 1.;
3078  }
3079 
3080  double x = (sqrt_s_ - 0.5 * (region_lower + region_upper)) /
3081  (region_upper - region_lower);
3082  assert(x >= -0.5 && x <= 0.5);
3083  double prob = 0.5 * (std::sin(M_PI * x) + 1.0);
3084  assert(prob >= 0. && prob <= 1.);
3085 
3086  return prob;
3087 }

◆ elastic_parametrization()

double smash::CrossSections::elastic_parametrization ( const ScatterActionsFinderParameters finder_parameters) const
private

Choose the appropriate parametrizations for given incoming particles and return the (parametrized) elastic cross section.

Parameters
[in]finder_parametersparameters for collision finding and cross sections, containing whether to extend string cross-sections with AQM and the offset to the minimum energy for string production in \(\pi\pi \) scatterings
Returns
Elastic cross section

Definition at line 339 of file crosssections.cc.

340  {
341  const bool use_AQM = finder_parameters.use_AQM;
342  const double pipi_offset =
343  finder_parameters.transition_high_energy.pipi_offset;
344  const PdgCode& pdg_a = incoming_particles_[0].type().pdgcode();
345  const PdgCode& pdg_b = incoming_particles_[1].type().pdgcode();
346  double elastic_xs = 0.0;
347  if ((pdg_a.is_nucleon() && pdg_b.is_pion()) ||
348  (pdg_b.is_nucleon() && pdg_a.is_pion())) {
349  // Elastic Nucleon Pion Scattering
350  elastic_xs = npi_el();
351  } else if ((pdg_a.is_nucleon() && pdg_b.is_kaon()) ||
352  (pdg_b.is_nucleon() && pdg_a.is_kaon())) {
353  // Elastic Nucleon Kaon Scattering
354  elastic_xs = nk_el();
355  } else if (pdg_a.is_nucleon() && pdg_b.is_nucleon() &&
356  pdg_a.antiparticle_sign() == pdg_b.antiparticle_sign()) {
357  // Elastic Nucleon Nucleon Scattering
358  elastic_xs = nn_el();
359  } else if (pdg_a.is_nucleon() && pdg_b.is_nucleon() &&
360  pdg_a.antiparticle_sign() == -pdg_b.antiparticle_sign()) {
361  // Elastic Nucleon anti-Nucleon Scattering
362  elastic_xs = ppbar_elastic(sqrt_s_ * sqrt_s_);
363  } else if (pdg_a.is_nucleus() || pdg_b.is_nucleus()) {
364  const PdgCode& pdg_nucleus = pdg_a.is_nucleus() ? pdg_a : pdg_b;
365  const PdgCode& pdg_other = pdg_a.is_nucleus() ? pdg_b : pdg_a;
366  const bool is_deuteron = pdg_nucleus.is_deuteron(); // d or anti-d
367  if (is_deuteron && pdg_other.is_pion()) {
368  // Elastic (Anti-)deuteron Pion Scattering
369  elastic_xs = deuteron_pion_elastic(sqrt_s_ * sqrt_s_);
370  } else if (is_deuteron && pdg_other.is_nucleon()) {
371  // Elastic (Anti-)deuteron (Anti-)Nucleon Scattering
372  elastic_xs = deuteron_nucleon_elastic(sqrt_s_ * sqrt_s_);
373  }
374  } else if (use_AQM) {
375  const double m1 = incoming_particles_[0].effective_mass();
376  const double m2 = incoming_particles_[1].effective_mass();
377  const double s = sqrt_s_ * sqrt_s_;
378  if (pdg_a.is_baryon() && pdg_b.is_baryon()) {
379  elastic_xs = nn_el(); // valid also for annihilation
380  } else if ((pdg_a.is_meson() && pdg_b.is_baryon()) ||
381  (pdg_b.is_meson() && pdg_a.is_baryon())) {
382  elastic_xs = piplusp_elastic_high_energy(s, m1, m2);
383  } else if (pdg_a.is_meson() && pdg_b.is_meson()) {
384  /* Special case: the pi+pi- elastic cross-section goes through resonances
385  * at low sqrt_s, so we turn it off for this region so as not to destroy
386  * the agreement with experimental data; this does not
387  * apply to other pi pi cross-sections, which do not have any data */
388  if (((pdg_a == pdg::pi_p && pdg_b == pdg::pi_m) ||
389  (pdg_a == pdg::pi_m && pdg_b == pdg::pi_p)) &&
390  (m1 + m2 + pipi_offset) > sqrt_s_) {
391  elastic_xs = 0.0;
392  } else {
393  // meson-meson goes through scaling from π+p parametrization
394  elastic_xs = 2. / 3. * piplusp_elastic_AQM(s, m1, m2);
395  }
396  }
397  elastic_xs *= finder_parameters.AQM_scaling_factor(pdg_a) *
398  finder_parameters.AQM_scaling_factor(pdg_b);
399  }
400  return elastic_xs;
401 }
double nk_el() const
Determine the elastic cross section for a nucleon-kaon (NK) collision.
double npi_el() const
Determine the elastic cross section for a nucleon-pion (Npi) collision.
double nn_el() const
Determine the (parametrized) elastic cross section for a nucleon-nucleon (NN) collision.
double piplusp_elastic_high_energy(double mandelstam_s, double m1, double m2)
pi+p elactic cross section parametrization.
double deuteron_nucleon_elastic(double mandelstam_s)
Deuteron nucleon elastic cross-section [mb] parametrized by Oh:2009gx .
double deuteron_pion_elastic(double mandelstam_s)
Deuteron pion elastic cross-section [mb] parametrized to fit pi-d elastic scattering data (the data c...
double piplusp_elastic_AQM(double mandelstam_s, double m1, double m2)
An overload of piplusp_elastic_high_energy in which the very low part is replaced by a flat 5 mb cros...

◆ nn_el()

double smash::CrossSections::nn_el ( ) const
private

Determine the (parametrized) elastic cross section for a nucleon-nucleon (NN) collision.

Returns
Elastic cross section for NN
Exceptions
std::runtime_errorif positive cross section cannot be specified.

Definition at line 403 of file crosssections.cc.

403  {
404  const PdgCode& pdg_a = incoming_particles_[0].type().pdgcode();
405  const PdgCode& pdg_b = incoming_particles_[1].type().pdgcode();
406 
407  const double s = sqrt_s_ * sqrt_s_;
408 
409  // Use parametrized cross sections.
410  double sig_el = -1.;
411  if (pdg_a.antiparticle_sign() == -pdg_b.antiparticle_sign()) {
412  sig_el = ppbar_elastic(s);
413  } else if (pdg_a.is_nucleon() && pdg_b.is_nucleon()) {
414  sig_el = (pdg_a == pdg_b) ? pp_elastic(s) : np_elastic(s);
415  } else {
416  // AQM - Additive Quark Model
417  const double m1 = incoming_particles_[0].effective_mass();
418  const double m2 = incoming_particles_[1].effective_mass();
419  sig_el = pp_elastic_high_energy(s, m1, m2);
420  }
421  if (sig_el > 0.) {
422  return sig_el;
423  } else {
424  std::stringstream ss;
425  const auto name_a = incoming_particles_[0].type().name();
426  const auto name_b = incoming_particles_[1].type().name();
427  ss << "problem in CrossSections::elastic: a=" << name_a << " b=" << name_b
428  << " j_a=" << pdg_a.spin() << " j_b=" << pdg_b.spin()
429  << " sigma=" << sig_el << " s=" << s;
430  throw std::runtime_error(ss.str());
431  }
432 }
double pp_elastic_high_energy(double mandelstam_s, double m1, double m2)
pp elastic cross section parametrization, with only the high energy part generalized to all energy re...
double np_elastic(double mandelstam_s)
np elastic cross section parametrization Source: Weil:2013mya , eq.
double pp_elastic(double mandelstam_s)
pp elastic cross section parametrization Source: Weil:2013mya , eq.

◆ npi_el()

double smash::CrossSections::npi_el ( ) const
private

Determine the elastic cross section for a nucleon-pion (Npi) collision.

It is given by a parametrization of experimental data.

Returns
Elastic cross section for Npi
Exceptions
std::runtime_errorif incoming particles are not nucleon+pion.
std::runtime_errorif positive cross section cannot be specified.

Definition at line 434 of file crosssections.cc.

434  {
435  const PdgCode& pdg_a = incoming_particles_[0].type().pdgcode();
436  const PdgCode& pdg_b = incoming_particles_[1].type().pdgcode();
437 
438  const PdgCode& nucleon = pdg_a.is_nucleon() ? pdg_a : pdg_b;
439  const PdgCode& pion = pdg_a.is_nucleon() ? pdg_b : pdg_a;
440  assert(pion != nucleon);
441 
442  const double s = sqrt_s_ * sqrt_s_;
443 
444  double sig_el = 0.;
445  switch (nucleon.code()) {
446  case pdg::p:
447  switch (pion.code()) {
448  case pdg::pi_p:
449  sig_el = piplusp_elastic(s);
450  break;
451  case pdg::pi_m:
452  sig_el = piminusp_elastic(s);
453  break;
454  case pdg::pi_z:
455  sig_el = 0.5 * (piplusp_elastic(s) + piminusp_elastic(s));
456  break;
457  }
458  break;
459  case pdg::n:
460  switch (pion.code()) {
461  case pdg::pi_p:
462  sig_el = piminusp_elastic(s);
463  break;
464  case pdg::pi_m:
465  sig_el = piplusp_elastic(s);
466  break;
467  case pdg::pi_z:
468  sig_el = 0.5 * (piplusp_elastic(s) + piminusp_elastic(s));
469  break;
470  }
471  break;
472  case -pdg::p:
473  switch (pion.code()) {
474  case pdg::pi_p:
475  sig_el = piminusp_elastic(s);
476  break;
477  case pdg::pi_m:
478  sig_el = piplusp_elastic(s);
479  break;
480  case pdg::pi_z:
481  sig_el = 0.5 * (piplusp_elastic(s) + piminusp_elastic(s));
482  break;
483  }
484  break;
485  case -pdg::n:
486  switch (pion.code()) {
487  case pdg::pi_p:
488  sig_el = piplusp_elastic(s);
489  break;
490  case pdg::pi_m:
491  sig_el = piminusp_elastic(s);
492  break;
493  case pdg::pi_z:
494  sig_el = 0.5 * (piplusp_elastic(s) + piminusp_elastic(s));
495  break;
496  }
497  break;
498  default:
499  throw std::runtime_error(
500  "only the elastic cross section for proton-pion "
501  "is implemented");
502  }
503 
504  if (sig_el > 0) {
505  return sig_el;
506  } else {
507  std::stringstream ss;
508  const auto name_a = incoming_particles_[0].type().name();
509  const auto name_b = incoming_particles_[1].type().name();
510  ss << "problem in CrossSections::elastic: a=" << name_a << " b=" << name_b
511  << " j_a=" << pdg_a.spin() << " j_b=" << pdg_b.spin()
512  << " sigma=" << sig_el << " s=" << s;
513  throw std::runtime_error(ss.str());
514  }
515 }
double piminusp_elastic(double mandelstam_s)
pi-p elastic cross section parametrization Source: GiBUU:parametrizationBarMes_HighEnergy....
double piplusp_elastic(double mandelstam_s)
pi+p elastic cross section parametrization, PDG data.

◆ nk_el()

double smash::CrossSections::nk_el ( ) const
private

Determine the elastic cross section for a nucleon-kaon (NK) collision.

It is given by a parametrization of experimental data.

Returns
Elastic cross section for NK
Exceptions
std::runtime_errorif incoming particles are not nucleon+kaon.
std::runtime_errorif positive cross section cannot be specified.

Definition at line 747 of file crosssections.cc.

747  {
748  const PdgCode& pdg_a = incoming_particles_[0].type().pdgcode();
749  const PdgCode& pdg_b = incoming_particles_[1].type().pdgcode();
750 
751  const PdgCode& nucleon = pdg_a.is_nucleon() ? pdg_a : pdg_b;
752  const PdgCode& kaon = pdg_a.is_nucleon() ? pdg_b : pdg_a;
753  assert(kaon != nucleon);
754 
755  const double s = sqrt_s_ * sqrt_s_;
756 
757  double sig_el = 0.;
758  switch (nucleon.code()) {
759  case pdg::p:
760  switch (kaon.code()) {
761  case pdg::K_p:
762  sig_el = kplusp_elastic_background(s);
763  break;
764  case pdg::K_m:
765  sig_el = kminusp_elastic_background(s);
766  break;
767  case pdg::K_z:
768  sig_el = k0p_elastic_background(s);
769  break;
770  case pdg::Kbar_z:
771  sig_el = kbar0p_elastic_background(s);
772  break;
773  }
774  break;
775  case pdg::n:
776  switch (kaon.code()) {
777  case pdg::K_p:
778  sig_el = kplusn_elastic_background(s);
779  break;
780  case pdg::K_m:
781  sig_el = kminusn_elastic_background(s);
782  break;
783  case pdg::K_z:
784  sig_el = k0n_elastic_background(s);
785  break;
786  case pdg::Kbar_z:
787  sig_el = kbar0n_elastic_background(s);
788  break;
789  }
790  break;
791  case -pdg::p:
792  switch (kaon.code()) {
793  case pdg::K_p:
794  sig_el = kminusp_elastic_background(s);
795  break;
796  case pdg::K_m:
797  sig_el = kplusp_elastic_background(s);
798  break;
799  case pdg::K_z:
800  sig_el = kbar0p_elastic_background(s);
801  break;
802  case pdg::Kbar_z:
803  sig_el = k0p_elastic_background(s);
804  break;
805  }
806  break;
807  case -pdg::n:
808  switch (kaon.code()) {
809  case pdg::K_p:
810  sig_el = kminusn_elastic_background(s);
811  break;
812  case pdg::K_m:
813  sig_el = kplusn_elastic_background(s);
814  break;
815  case pdg::K_z:
816  sig_el = kbar0n_elastic_background(s);
817  break;
818  case pdg::Kbar_z:
819  sig_el = k0n_elastic_background(s);
820  break;
821  }
822  break;
823  default:
824  throw std::runtime_error(
825  "elastic cross section for antinucleon-kaon "
826  "not implemented");
827  }
828 
829  if (sig_el > 0) {
830  return sig_el;
831  } else {
832  std::stringstream ss;
833  const auto name_a = incoming_particles_[0].type().name();
834  const auto name_b = incoming_particles_[1].type().name();
835  ss << "problem in CrossSections::elastic: a=" << name_a << " b=" << name_b
836  << " j_a=" << pdg_a.spin() << " j_b=" << pdg_b.spin()
837  << " sigma=" << sig_el << " s=" << s;
838  throw std::runtime_error(ss.str());
839  }
840 }
double kbar0p_elastic_background(double mandelstam_s)
Kbar0 p elastic background cross section parametrization Source: Buss:2011mx , B.3....
double kminusp_elastic_background(double mandelstam_s)
K- p elastic background cross section parametrization Source: Buss:2011mx , B.3.9.
double k0p_elastic_background(double mandelstam_s)
K0 p elastic background cross section parametrization Source: Buss:2011mx , B.3.9.
double kplusn_elastic_background(double mandelstam_s)
K+ n elastic background cross section parametrization sigma(K+n->K+n) = sigma(K+n->K0p) = 0....
double k0n_elastic_background(double mandelstam_s)
K0 n elastic background cross section parametrization Source: Buss:2011mx , B.3.9.
double kbar0n_elastic_background(double mandelstam_s)
Kbar0 n elastic background cross section parametrization Source: Buss:2011mx , B.3....
double kminusn_elastic_background(double mandelstam_s)
K- n elastic background cross section parametrization Source: Buss:2011mx , B.3.9.
double kplusp_elastic_background(double mandelstam_s)
K+ p elastic background cross section parametrization.

◆ npi_yk()

CollisionBranchList smash::CrossSections::npi_yk ( ) const
private

Find all processes for Nucleon-Pion to Hyperon-Kaon Scattering.

These scatterings are suppressed at high energies when strings are turned on with probabilities, so they need to be added back manually.

Returns
List of all possible Npi -> YK reactions with their cross sections

Definition at line 517 of file crosssections.cc.

517  {
518  const ParticleType& a = incoming_particles_[0].type();
519  const ParticleType& b = incoming_particles_[1].type();
520  const ParticleType& type_nucleon = a.pdgcode().is_nucleon() ? a : b;
521  const ParticleType& type_pion = a.pdgcode().is_nucleon() ? b : a;
522 
523  const auto pdg_nucleon = type_nucleon.pdgcode().code();
524  const auto pdg_pion = type_pion.pdgcode().code();
525 
526  const double s = sqrt_s_ * sqrt_s_;
527 
528  /* The cross sections are paramectrized for four isospin channels. The
529  * cross sections of the rest isospin channels are obtained using
530  * Clebsch-Gordan coefficients */
531 
532  CollisionBranchList process_list;
533  switch (pdg_nucleon) {
534  case pdg::p: {
535  switch (pdg_pion) {
536  case pdg::pi_p: {
537  const auto& type_Sigma_p = ParticleType::find(pdg::Sigma_p);
538  const auto& type_K_p = ParticleType::find(pdg::K_p);
539  add_channel(
540  process_list, [&] { return piplusp_sigmapluskplus_pdg(s); },
541  sqrt_s_, type_K_p, type_Sigma_p);
542  break;
543  }
544  case pdg::pi_m: {
545  const auto& type_Sigma_m = ParticleType::find(pdg::Sigma_m);
546  const auto& type_Sigma_z = ParticleType::find(pdg::Sigma_z);
547  const auto& type_Lambda = ParticleType::find(pdg::Lambda);
548  const auto& type_K_p = ParticleType::find(pdg::K_p);
549  const auto& type_K_z = ParticleType::find(pdg::K_z);
550  add_channel(
551  process_list, [&] { return piminusp_sigmaminuskplus_pdg(s); },
552  sqrt_s_, type_K_p, type_Sigma_m);
553  add_channel(
554  process_list, [&] { return piminusp_sigma0k0_res(s); }, sqrt_s_,
555  type_K_z, type_Sigma_z);
556  add_channel(
557  process_list, [&] { return piminusp_lambdak0_pdg(s); }, sqrt_s_,
558  type_K_z, type_Lambda);
559  break;
560  }
561  case pdg::pi_z: {
562  const auto& type_Sigma_p = ParticleType::find(pdg::Sigma_p);
563  const auto& type_Sigma_z = ParticleType::find(pdg::Sigma_z);
564  const auto& type_Lambda = ParticleType::find(pdg::Lambda);
565  const auto& type_K_p = ParticleType::find(pdg::K_p);
566  const auto& type_K_z = ParticleType::find(pdg::K_z);
567  add_channel(
568  process_list,
569  [&] {
570  return 0.5 * (piplusp_sigmapluskplus_pdg(s) -
573  },
574  sqrt_s_, type_K_p, type_Sigma_z);
575  add_channel(
576  process_list, [&] { return piminusp_sigma0k0_res(s); }, sqrt_s_,
577  type_K_z, type_Sigma_p);
578  add_channel(
579  process_list, [&] { return 0.5 * piminusp_lambdak0_pdg(s); },
580  sqrt_s_, type_K_p, type_Lambda);
581  break;
582  }
583  }
584  break;
585  }
586  case pdg::n: {
587  switch (pdg_pion) {
588  case pdg::pi_p: {
589  const auto& type_Sigma_p = ParticleType::find(pdg::Sigma_p);
590  const auto& type_Sigma_z = ParticleType::find(pdg::Sigma_z);
591  const auto& type_Lambda = ParticleType::find(pdg::Lambda);
592  const auto& type_K_p = ParticleType::find(pdg::K_p);
593  const auto& type_K_z = ParticleType::find(pdg::K_z);
594  add_channel(
595  process_list, [&] { return piminusp_sigmaminuskplus_pdg(s); },
596  sqrt_s_, type_K_z, type_Sigma_p);
597  add_channel(
598  process_list, [&] { return piminusp_sigma0k0_res(s); }, sqrt_s_,
599  type_K_p, type_Sigma_z);
600  add_channel(
601  process_list, [&] { return piminusp_lambdak0_pdg(s); }, sqrt_s_,
602  type_K_p, type_Lambda);
603  break;
604  }
605  case pdg::pi_m: {
606  const auto& type_Sigma_m = ParticleType::find(pdg::Sigma_m);
607  const auto& type_K_z = ParticleType::find(pdg::K_z);
608  add_channel(
609  process_list, [&] { return piplusp_sigmapluskplus_pdg(s); },
610  sqrt_s_, type_K_z, type_Sigma_m);
611  break;
612  }
613  case pdg::pi_z: {
614  const auto& type_Sigma_m = ParticleType::find(pdg::Sigma_m);
615  const auto& type_Sigma_z = ParticleType::find(pdg::Sigma_z);
616  const auto& type_Lambda = ParticleType::find(pdg::Lambda);
617  const auto& type_K_p = ParticleType::find(pdg::K_p);
618  const auto& type_K_z = ParticleType::find(pdg::K_z);
619  add_channel(
620  process_list,
621  [&] {
622  return 0.5 * (piplusp_sigmapluskplus_pdg(s) -
625  },
626  sqrt_s_, type_K_z, type_Sigma_z);
627  add_channel(
628  process_list, [&] { return piminusp_sigma0k0_res(s); }, sqrt_s_,
629  type_K_p, type_Sigma_m);
630  add_channel(
631  process_list, [&] { return 0.5 * piminusp_lambdak0_pdg(s); },
632  sqrt_s_, type_K_z, type_Lambda);
633  break;
634  }
635  }
636  break;
637  }
638  case -pdg::p: {
639  switch (pdg_pion) {
640  case pdg::pi_p: {
641  const auto& type_Sigma_m_bar = ParticleType::find(-pdg::Sigma_m);
642  const auto& type_Sigma_z_bar = ParticleType::find(-pdg::Sigma_z);
643  const auto& type_Lambda_bar = ParticleType::find(-pdg::Lambda);
644  const auto& type_K_m = ParticleType::find(-pdg::K_p);
645  const auto& type_Kbar_z = ParticleType::find(-pdg::K_z);
646  add_channel(
647  process_list, [&] { return piminusp_sigmaminuskplus_pdg(s); },
648  sqrt_s_, type_K_m, type_Sigma_m_bar);
649  add_channel(
650  process_list, [&] { return piminusp_sigma0k0_res(s); }, sqrt_s_,
651  type_Kbar_z, type_Sigma_z_bar);
652  add_channel(
653  process_list, [&] { return piminusp_lambdak0_pdg(s); }, sqrt_s_,
654  type_Kbar_z, type_Lambda_bar);
655  break;
656  }
657  case pdg::pi_m: {
658  const auto& type_Sigma_p_bar = ParticleType::find(-pdg::Sigma_p);
659  const auto& type_K_m = ParticleType::find(-pdg::K_p);
660  add_channel(
661  process_list, [&] { return piplusp_sigmapluskplus_pdg(s); },
662  sqrt_s_, type_K_m, type_Sigma_p_bar);
663  break;
664  }
665  case pdg::pi_z: {
666  const auto& type_Sigma_p_bar = ParticleType::find(-pdg::Sigma_p);
667  const auto& type_Sigma_z_bar = ParticleType::find(-pdg::Sigma_z);
668  const auto& type_Lambda_bar = ParticleType::find(-pdg::Lambda);
669  const auto& type_K_m = ParticleType::find(-pdg::K_p);
670  const auto& type_Kbar_z = ParticleType::find(-pdg::K_z);
671  add_channel(
672  process_list,
673  [&] {
674  return 0.5 * (piplusp_sigmapluskplus_pdg(s) -
677  },
678  sqrt_s_, type_K_m, type_Sigma_z_bar);
679  add_channel(
680  process_list, [&] { return piminusp_sigma0k0_res(s); }, sqrt_s_,
681  type_Kbar_z, type_Sigma_p_bar);
682  add_channel(
683  process_list, [&] { return 0.5 * piminusp_lambdak0_pdg(s); },
684  sqrt_s_, type_K_m, type_Lambda_bar);
685  break;
686  }
687  }
688  break;
689  }
690  case -pdg::n: {
691  switch (pdg_pion) {
692  case pdg::pi_p: {
693  const auto& type_Sigma_m_bar = ParticleType::find(-pdg::Sigma_m);
694  const auto& type_Kbar_z = ParticleType::find(-pdg::K_z);
695  add_channel(
696  process_list, [&] { return piplusp_sigmapluskplus_pdg(s); },
697  sqrt_s_, type_Kbar_z, type_Sigma_m_bar);
698  break;
699  }
700  case pdg::pi_m: {
701  const auto& type_Sigma_p_bar = ParticleType::find(-pdg::Sigma_p);
702  const auto& type_Sigma_z_bar = ParticleType::find(-pdg::Sigma_z);
703  const auto& type_Lambda_bar = ParticleType::find(-pdg::Lambda);
704  const auto& type_K_m = ParticleType::find(-pdg::K_p);
705  const auto& type_Kbar_z = ParticleType::find(-pdg::K_z);
706  add_channel(
707  process_list, [&] { return piminusp_sigmaminuskplus_pdg(s); },
708  sqrt_s_, type_Kbar_z, type_Sigma_p_bar);
709  add_channel(
710  process_list, [&] { return piminusp_sigma0k0_res(s); }, sqrt_s_,
711  type_K_m, type_Sigma_z_bar);
712  add_channel(
713  process_list, [&] { return piminusp_lambdak0_pdg(s); }, sqrt_s_,
714  type_K_m, type_Lambda_bar);
715  break;
716  }
717  case pdg::pi_z: {
718  const auto& type_Sigma_m_bar = ParticleType::find(-pdg::Sigma_m);
719  const auto& type_Sigma_z_bar = ParticleType::find(-pdg::Sigma_z);
720  const auto& type_Lambda_bar = ParticleType::find(-pdg::Lambda);
721  const auto& type_K_m = ParticleType::find(-pdg::K_p);
722  const auto& type_Kbar_z = ParticleType::find(-pdg::K_z);
723  add_channel(
724  process_list,
725  [&] {
726  return 0.5 * (piplusp_sigmapluskplus_pdg(s) -
729  },
730  sqrt_s_, type_Kbar_z, type_Sigma_z_bar);
731  add_channel(
732  process_list, [&] { return piminusp_sigma0k0_res(s); }, sqrt_s_,
733  type_K_m, type_Sigma_m_bar);
734  add_channel(
735  process_list, [&] { return 0.5 * piminusp_lambdak0_pdg(s); },
736  sqrt_s_, type_Kbar_z, type_Lambda_bar);
737  break;
738  }
739  }
740  break;
741  }
742  }
743 
744  return process_list;
745 }
void add_channel(CollisionBranchList &process_list, F &&get_xsection, double sqrts, const ParticleType &type_a, const ParticleType &type_b) const
Helper function: Add a 2-to-2 channel to a collision branch list given a cross section.
constexpr int Sigma_m
Σ⁻.
constexpr int Sigma_p
Σ⁺.
constexpr int Sigma_z
Σ⁰.
double piminusp_sigma0k0_res(double mandelstam_s)
pi- p -> Sigma0 K0 cross section parametrization, resonance contribution.
double piplusp_sigmapluskplus_pdg(double mandelstam_s)
pi+ p to Sigma+ K+ cross section parametrization, PDG data.
double piminusp_sigmaminuskplus_pdg(double mandelstam_s)
pi- p -> Sigma- K+ cross section parametrization, PDG data.
double piminusp_lambdak0_pdg(double mandelstam_s)
pi- p -> Lambda K0 cross section parametrization, PDG data.

◆ bb_xx_except_nn()

CollisionBranchList smash::CrossSections::bb_xx_except_nn ( const ReactionsBitSet included_2to2) const
private

Find all inelastic 2->2 processes for Baryon-Baryon (BB) Scattering except the more specific Nucleon-Nucleon Scattering.

Parameters
[in]included_2to2Which 2->2 reactions are enabled?
Returns
List of all possible BB reactions with their cross sections

Definition at line 1152 of file crosssections.cc.

1153  {
1154  CollisionBranchList process_list;
1155  const ParticleType& type_a = incoming_particles_[0].type();
1156  const ParticleType& type_b = incoming_particles_[1].type();
1157 
1158  bool same_sign = type_a.antiparticle_sign() == type_b.antiparticle_sign();
1159  bool any_nucleus = type_a.is_nucleus() || type_b.is_nucleus();
1160  if (!same_sign && !any_nucleus) {
1161  return process_list;
1162  }
1163  bool anti_particles = type_a.antiparticle_sign() == -1;
1164  if (type_a.is_nucleon() || type_b.is_nucleon()) {
1165  // N R → N N, N̅ R → N̅ N̅
1166  if (included_2to2[IncludedReactions::NN_to_NR] == 1) {
1167  process_list = bar_bar_to_nuc_nuc(anti_particles);
1168  }
1169  } else if (type_a.is_Delta() || type_b.is_Delta()) {
1170  // Δ R → N N, Δ̅ R → N̅ N̅
1171  if (included_2to2[IncludedReactions::NN_to_DR] == 1) {
1172  process_list = bar_bar_to_nuc_nuc(anti_particles);
1173  }
1174  }
1175 
1176  return process_list;
1177 }
CollisionBranchList bar_bar_to_nuc_nuc(const bool is_anti_particles) const
Calculate cross sections for resonance absorption (i.e.
@ NN_to_NR
@ NN_to_DR

◆ nn_xx()

CollisionBranchList smash::CrossSections::nn_xx ( const ReactionsBitSet included_2to2) const
private

Find all inelastic 2->2 processes for Nucelon-Nucelon Scattering.

Calculate cross sections for resonance production from nucleon-nucleon collisions (i.e. N N -> N R, N N -> Delta R).

Checks are processed in the following order:

  1. Charge conservation
  2. Isospin factors (Clebsch-Gordan)
  3. Enough energy for all decay channels to be available for the resonance
Parameters
[in]included_2to2Which 2->2 reactions are enabled?
Returns
List of resonance production processes possible in the collision of the two nucleons. Each element in the list contains the type(s) of the final state particle(s) and the cross section for that particular process.

Definition at line 1179 of file crosssections.cc.

1180  {
1181  CollisionBranchList process_list, channel_list;
1182 
1183  const double sqrts = sqrt_s_;
1184 
1185  /* Find whether colliding particles are nucleons or anti-nucleons;
1186  * adjust lists of produced particles. */
1187  bool both_antinucleons =
1188  (incoming_particles_[0].type().antiparticle_sign() == -1) &&
1189  (incoming_particles_[1].type().antiparticle_sign() == -1);
1190  const ParticleTypePtrList& nuc_or_anti_nuc =
1191  both_antinucleons ? ParticleType::list_anti_nucleons()
1192  : ParticleType::list_nucleons();
1193  const ParticleTypePtrList& delta_or_anti_delta =
1194  both_antinucleons ? ParticleType::list_anti_Deltas()
1195  : ParticleType::list_Deltas();
1196  // Find N N → N R channels.
1197  if (included_2to2[IncludedReactions::NN_to_NR] == 1) {
1198  channel_list = find_nn_xsection_from_type(
1199  ParticleType::list_baryon_resonances(), nuc_or_anti_nuc,
1200  [&sqrts](const ParticleType& type_res_1, const ParticleType&) {
1201  return type_res_1.iso_multiplet()->get_integral_NR(sqrts);
1202  });
1203  process_list.reserve(process_list.size() + channel_list.size());
1204  std::move(channel_list.begin(), channel_list.end(),
1205  std::inserter(process_list, process_list.end()));
1206  channel_list.clear();
1207  }
1208 
1209  // Find N N → Δ R channels.
1210  if (included_2to2[IncludedReactions::NN_to_DR] == 1) {
1211  channel_list = find_nn_xsection_from_type(
1212  ParticleType::list_baryon_resonances(), delta_or_anti_delta,
1213  [&sqrts](const ParticleType& type_res_1,
1214  const ParticleType& type_res_2) {
1215  return type_res_1.iso_multiplet()->get_integral_RR(
1216  type_res_2.iso_multiplet(), sqrts);
1217  });
1218  process_list.reserve(process_list.size() + channel_list.size());
1219  std::move(channel_list.begin(), channel_list.end(),
1220  std::inserter(process_list, process_list.end()));
1221  channel_list.clear();
1222  }
1223 
1224  // Find N N → dπ and N̅ N̅→ d̅π channels.
1225  ParticleTypePtr deuteron = ParticleType::try_find(pdg::deuteron);
1226  ParticleTypePtr antideutron = ParticleType::try_find(pdg::antideuteron);
1227  ParticleTypePtr pim = ParticleType::try_find(pdg::pi_m);
1228  ParticleTypePtr pi0 = ParticleType::try_find(pdg::pi_z);
1229  ParticleTypePtr pip = ParticleType::try_find(pdg::pi_p);
1230  // Make sure all the necessary particle types are found
1231  if (deuteron && antideutron && pim && pi0 && pip &&
1232  included_2to2[IncludedReactions::PiDeuteron_to_NN] == 1) {
1233  const ParticleTypePtrList deutron_list = {deuteron};
1234  const ParticleTypePtrList antideutron_list = {antideutron};
1235  const ParticleTypePtrList pion_list = {pim, pi0, pip};
1236  channel_list = find_nn_xsection_from_type(
1237  (both_antinucleons ? antideutron_list : deutron_list), pion_list,
1238  [&sqrts](const ParticleType& type_res_1,
1239  const ParticleType& type_res_2) {
1240  return pCM(sqrts, type_res_1.mass(), type_res_2.mass());
1241  });
1242  process_list.reserve(process_list.size() + channel_list.size());
1243  std::move(channel_list.begin(), channel_list.end(),
1244  std::inserter(process_list, process_list.end()));
1245  channel_list.clear();
1246  }
1247 
1248  return process_list;
1249 }
CollisionBranchList find_nn_xsection_from_type(const ParticleTypePtrList &type_res_1, const ParticleTypePtrList &type_res_2, const IntegrationMethod integrator) const
Utility function to avoid code replication in nn_xx().
static ParticleTypePtrList & list_anti_nucleons()
Definition: particletype.cc:71
static ParticleTypePtrList & list_anti_Deltas()
Definition: particletype.cc:77
static ParticleTypePtrList & list_baryon_resonances()
Definition: particletype.cc:81
@ PiDeuteron_to_NN
constexpr int64_t antideuteron
Anti-deuteron in decimal digits.
constexpr int64_t deuteron
Deuteron.
T pCM(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:79

◆ nk_xx()

CollisionBranchList smash::CrossSections::nk_xx ( const ReactionsBitSet included_2to2,
double  KN_offset 
) const
private

Find all inelastic 2->2 background processes for Nucleon-Kaon (NK) Scattering.

Parameters
[in]included_2to2Which 2->2 reactions are enabled?
[in]KN_offsetOffset to the minimum energy for string production in KN scatterings
Returns
List of all possible NK reactions with their cross sections

Definition at line 1251 of file crosssections.cc.

1252  {
1253  const ParticleType& a = incoming_particles_[0].type();
1254  const ParticleType& b = incoming_particles_[1].type();
1255  const ParticleType& type_nucleon = a.pdgcode().is_nucleon() ? a : b;
1256  const ParticleType& type_kaon = a.pdgcode().is_nucleon() ? b : a;
1257 
1258  const auto pdg_nucleon = type_nucleon.pdgcode().code();
1259  const auto pdg_kaon = type_kaon.pdgcode().code();
1260 
1261  const double s = sqrt_s_ * sqrt_s_;
1262 
1263  // Some variable declarations for frequently used quantities
1264  const auto sigma_kplusp = kplusp_inelastic_background(s);
1265  const auto sigma_kplusn = kplusn_inelastic_background(s);
1266 
1267  /* At high energy, the parametrization we use diverges from experimental
1268  * data. This cutoff represents the point where the AQM cross section
1269  * becomes smaller than this parametrization, so we cut it here, and fully
1270  * switch to AQM beyond this point. */
1271  const double KN_to_KDelta_cutoff = KN_offset +
1272  incoming_particles_[0].pole_mass() +
1273  incoming_particles_[1].pole_mass();
1274 
1275  bool incl_KN_to_KN = included_2to2[IncludedReactions::KN_to_KN] == 1;
1276  bool incl_KN_to_KDelta =
1277  included_2to2[IncludedReactions::KN_to_KDelta] == 1 &&
1278  sqrt_s_ < KN_to_KDelta_cutoff;
1279  bool incl_Strangeness_exchange =
1280  included_2to2[IncludedReactions::Strangeness_exchange] == 1;
1281 
1282  CollisionBranchList process_list;
1283  switch (pdg_kaon) {
1284  case pdg::K_m: {
1285  /* All inelastic K- N channels here are strangeness exchange, plus one
1286  * charge exchange. */
1287  switch (pdg_nucleon) {
1288  case pdg::p: {
1289  if (incl_Strangeness_exchange) {
1290  const auto& type_pi_z = ParticleType::find(pdg::pi_z);
1291  const auto& type_pi_m = ParticleType::find(pdg::pi_m);
1292  const auto& type_pi_p = ParticleType::find(pdg::pi_p);
1293  const auto& type_Sigma_p = ParticleType::find(pdg::Sigma_p);
1294  const auto& type_Sigma_m = ParticleType::find(pdg::Sigma_m);
1295  const auto& type_Sigma_z = ParticleType::find(pdg::Sigma_z);
1296  const auto& type_Lambda = ParticleType::find(pdg::Lambda);
1297  add_channel(
1298  process_list, [&] { return kminusp_piminussigmaplus(sqrt_s_); },
1299  sqrt_s_, type_pi_m, type_Sigma_p);
1300  add_channel(
1301  process_list, [&] { return kminusp_piplussigmaminus(sqrt_s_); },
1302  sqrt_s_, type_pi_p, type_Sigma_m);
1303  add_channel(
1304  process_list, [&] { return kminusp_pi0sigma0(sqrt_s_); },
1305  sqrt_s_, type_pi_z, type_Sigma_z);
1306  add_channel(
1307  process_list, [&] { return kminusp_pi0lambda(sqrt_s_); },
1308  sqrt_s_, type_pi_z, type_Lambda);
1309  }
1310  if (incl_KN_to_KN) {
1311  const auto& type_n = ParticleType::find(pdg::n);
1312  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
1313  add_channel(
1314  process_list, [&] { return kminusp_kbar0n(s); }, sqrt_s_,
1315  type_Kbar_z, type_n);
1316  }
1317  break;
1318  }
1319  case pdg::n: {
1320  if (incl_Strangeness_exchange) {
1321  const auto& type_pi_z = ParticleType::find(pdg::pi_z);
1322  const auto& type_pi_m = ParticleType::find(pdg::pi_m);
1323  const auto& type_Sigma_m = ParticleType::find(pdg::Sigma_m);
1324  const auto& type_Sigma_z = ParticleType::find(pdg::Sigma_z);
1325  const auto& type_Lambda = ParticleType::find(pdg::Lambda);
1326  add_channel(
1327  process_list, [&] { return kminusn_piminussigma0(sqrt_s_); },
1328  sqrt_s_, type_pi_m, type_Sigma_z);
1329  add_channel(
1330  process_list, [&] { return kminusn_piminussigma0(sqrt_s_); },
1331  sqrt_s_, type_pi_z, type_Sigma_m);
1332  add_channel(
1333  process_list, [&] { return kminusn_piminuslambda(sqrt_s_); },
1334  sqrt_s_, type_pi_m, type_Lambda);
1335  }
1336  break;
1337  }
1338  case -pdg::p: {
1339  if (incl_KN_to_KDelta) {
1340  const auto& type_K_m = ParticleType::find(pdg::K_m);
1341  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
1342  const auto& type_Delta_pp_bar = ParticleType::find(-pdg::Delta_pp);
1343  const auto& type_Delta_p_bar = ParticleType::find(-pdg::Delta_p);
1344  add_channel(
1345  process_list,
1346  [&] {
1347  return sigma_kplusp * kaon_nucleon_ratios.get_ratio(
1348  type_nucleon, type_kaon,
1349  type_Kbar_z, type_Delta_pp_bar);
1350  },
1351  sqrt_s_, type_Kbar_z, type_Delta_pp_bar);
1352  add_channel(
1353  process_list,
1354  [&] {
1355  return sigma_kplusp * kaon_nucleon_ratios.get_ratio(
1356  type_nucleon, type_kaon, type_K_m,
1357  type_Delta_p_bar);
1358  },
1359  sqrt_s_, type_K_m, type_Delta_p_bar);
1360  }
1361  break;
1362  }
1363  case -pdg::n: {
1364  if (incl_KN_to_KDelta) {
1365  const auto& type_K_m = ParticleType::find(pdg::K_m);
1366  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
1367  const auto& type_Delta_p_bar = ParticleType::find(-pdg::Delta_p);
1368  const auto& type_Delta_z_bar = ParticleType::find(-pdg::Delta_z);
1369  add_channel(
1370  process_list,
1371  [&] {
1372  return sigma_kplusn * kaon_nucleon_ratios.get_ratio(
1373  type_nucleon, type_kaon,
1374  type_Kbar_z, type_Delta_p_bar);
1375  },
1376  sqrt_s_, type_Kbar_z, type_Delta_p_bar);
1377  add_channel(
1378  process_list,
1379  [&] {
1380  return sigma_kplusn * kaon_nucleon_ratios.get_ratio(
1381  type_nucleon, type_kaon, type_K_m,
1382  type_Delta_z_bar);
1383  },
1384  sqrt_s_, type_K_m, type_Delta_z_bar);
1385  }
1386  if (incl_KN_to_KN) {
1387  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
1388  const auto& type_p_bar = ParticleType::find(-pdg::p);
1389  add_channel(
1390  process_list, [&] { return kplusn_k0p(s); }, sqrt_s_,
1391  type_Kbar_z, type_p_bar);
1392  }
1393  break;
1394  }
1395  }
1396  break;
1397  }
1398  case pdg::K_p: {
1399  /* All inelastic channels are K+ N -> K Delta -> K pi N, with identical
1400  * cross section, weighted by the isospin factor. */
1401  switch (pdg_nucleon) {
1402  case pdg::p: {
1403  if (incl_KN_to_KDelta) {
1404  const auto& type_K_p = ParticleType::find(pdg::K_p);
1405  const auto& type_K_z = ParticleType::find(pdg::K_z);
1406  const auto& type_Delta_pp = ParticleType::find(pdg::Delta_pp);
1407  const auto& type_Delta_p = ParticleType::find(pdg::Delta_p);
1408  add_channel(
1409  process_list,
1410  [&] {
1411  return sigma_kplusp *
1412  kaon_nucleon_ratios.get_ratio(type_nucleon, type_kaon,
1413  type_K_z, type_Delta_pp);
1414  },
1415  sqrt_s_, type_K_z, type_Delta_pp);
1416  add_channel(
1417  process_list,
1418  [&] {
1419  return sigma_kplusp *
1420  kaon_nucleon_ratios.get_ratio(type_nucleon, type_kaon,
1421  type_K_p, type_Delta_p);
1422  },
1423  sqrt_s_, type_K_p, type_Delta_p);
1424  }
1425  break;
1426  }
1427  case pdg::n: {
1428  if (incl_KN_to_KDelta) {
1429  const auto& type_K_p = ParticleType::find(pdg::K_p);
1430  const auto& type_K_z = ParticleType::find(pdg::K_z);
1431  const auto& type_Delta_p = ParticleType::find(pdg::Delta_p);
1432  const auto& type_Delta_z = ParticleType::find(pdg::Delta_z);
1433  add_channel(
1434  process_list,
1435  [&] {
1436  return sigma_kplusn *
1437  kaon_nucleon_ratios.get_ratio(type_nucleon, type_kaon,
1438  type_K_z, type_Delta_p);
1439  },
1440  sqrt_s_, type_K_z, type_Delta_p);
1441  add_channel(
1442  process_list,
1443  [&] {
1444  return sigma_kplusn *
1445  kaon_nucleon_ratios.get_ratio(type_nucleon, type_kaon,
1446  type_K_p, type_Delta_z);
1447  },
1448  sqrt_s_, type_K_p, type_Delta_z);
1449  }
1450  if (incl_KN_to_KN) {
1451  const auto& type_K_z = ParticleType::find(pdg::K_z);
1452  const auto& type_p = ParticleType::find(pdg::p);
1453  add_channel(
1454  process_list, [&] { return kplusn_k0p(s); }, sqrt_s_, type_K_z,
1455  type_p);
1456  }
1457  break;
1458  }
1459  case -pdg::p: {
1460  if (incl_Strangeness_exchange) {
1461  const auto& type_pi_z = ParticleType::find(pdg::pi_z);
1462  const auto& type_pi_m = ParticleType::find(pdg::pi_m);
1463  const auto& type_pi_p = ParticleType::find(pdg::pi_p);
1464  const auto& type_Sigma_p_bar = ParticleType::find(-pdg::Sigma_p);
1465  const auto& type_Sigma_m_bar = ParticleType::find(-pdg::Sigma_m);
1466  const auto& type_Sigma_z_bar = ParticleType::find(-pdg::Sigma_z);
1467  const auto& type_Lambda_bar = ParticleType::find(-pdg::Lambda);
1468  add_channel(
1469  process_list, [&] { return kminusp_piminussigmaplus(sqrt_s_); },
1470  sqrt_s_, type_pi_p, type_Sigma_p_bar);
1471  add_channel(
1472  process_list, [&] { return kminusp_piplussigmaminus(sqrt_s_); },
1473  sqrt_s_, type_pi_m, type_Sigma_m_bar);
1474  add_channel(
1475  process_list, [&] { return kminusp_pi0sigma0(sqrt_s_); },
1476  sqrt_s_, type_pi_z, type_Sigma_z_bar);
1477  add_channel(
1478  process_list, [&] { return kminusp_pi0lambda(sqrt_s_); },
1479  sqrt_s_, type_pi_z, type_Lambda_bar);
1480  }
1481  if (incl_KN_to_KN) {
1482  const auto& type_n_bar = ParticleType::find(-pdg::n);
1483  const auto& type_K_z = ParticleType::find(pdg::K_z);
1484  add_channel(
1485  process_list, [&] { return kminusp_kbar0n(s); }, sqrt_s_,
1486  type_K_z, type_n_bar);
1487  }
1488  break;
1489  }
1490  case -pdg::n: {
1491  if (incl_Strangeness_exchange) {
1492  const auto& type_pi_z = ParticleType::find(pdg::pi_z);
1493  const auto& type_pi_p = ParticleType::find(pdg::pi_p);
1494  const auto& type_Sigma_m_bar = ParticleType::find(-pdg::Sigma_m);
1495  const auto& type_Sigma_z_bar = ParticleType::find(-pdg::Sigma_z);
1496  const auto& type_Lambda_bar = ParticleType::find(-pdg::Lambda);
1497  add_channel(
1498  process_list, [&] { return kminusn_piminussigma0(sqrt_s_); },
1499  sqrt_s_, type_pi_p, type_Sigma_z_bar);
1500  add_channel(
1501  process_list, [&] { return kminusn_piminussigma0(sqrt_s_); },
1502  sqrt_s_, type_pi_z, type_Sigma_m_bar);
1503  add_channel(
1504  process_list, [&] { return kminusn_piminuslambda(sqrt_s_); },
1505  sqrt_s_, type_pi_p, type_Lambda_bar);
1506  }
1507  break;
1508  }
1509  }
1510  break;
1511  }
1512  case pdg::K_z: {
1513  // K+ and K0 have the same mass and spin, so their cross sections are
1514  // assumed to only differ in isospin factors. For the initial state, we
1515  // assume that K0 p is equivalent to K+ n and K0 n equivalent to K+ p,
1516  // like for the elastic background.
1517 
1518  switch (pdg_nucleon) {
1519  case pdg::p: {
1520  if (incl_KN_to_KDelta) {
1521  const auto& type_K_p = ParticleType::find(pdg::K_p);
1522  const auto& type_K_z = ParticleType::find(pdg::K_z);
1523  const auto& type_Delta_p = ParticleType::find(pdg::Delta_p);
1524  const auto& type_Delta_z = ParticleType::find(pdg::Delta_z);
1525  add_channel(
1526  process_list,
1527  [&] {
1528  return sigma_kplusn *
1529  kaon_nucleon_ratios.get_ratio(type_nucleon, type_kaon,
1530  type_K_z, type_Delta_p);
1531  },
1532  sqrt_s_, type_K_z, type_Delta_p);
1533  add_channel(
1534  process_list,
1535  [&] {
1536  return sigma_kplusn *
1537  kaon_nucleon_ratios.get_ratio(type_nucleon, type_kaon,
1538  type_K_p, type_Delta_z);
1539  },
1540  sqrt_s_, type_K_p, type_Delta_z);
1541  }
1542  if (incl_KN_to_KN) {
1543  const auto& type_K_p = ParticleType::find(pdg::K_p);
1544  const auto& type_n = ParticleType::find(pdg::n);
1545  add_channel(
1546  process_list,
1547  [&] {
1548  // The isospin factor is 1, see the parametrizations
1549  // tests.
1550  return kplusn_k0p(s);
1551  },
1552  sqrt_s_, type_K_p, type_n);
1553  }
1554  break;
1555  }
1556  case pdg::n: {
1557  if (incl_KN_to_KDelta) {
1558  const auto& type_K_p = ParticleType::find(pdg::K_p);
1559  const auto& type_K_z = ParticleType::find(pdg::K_z);
1560  const auto& type_Delta_z = ParticleType::find(pdg::Delta_z);
1561  const auto& type_Delta_m = ParticleType::find(pdg::Delta_m);
1562  add_channel(
1563  process_list,
1564  [&] {
1565  return sigma_kplusp *
1566  kaon_nucleon_ratios.get_ratio(type_nucleon, type_kaon,
1567  type_K_z, type_Delta_z);
1568  },
1569  sqrt_s_, type_K_z, type_Delta_z);
1570  add_channel(
1571  process_list,
1572  [&] {
1573  return sigma_kplusp *
1574  kaon_nucleon_ratios.get_ratio(type_nucleon, type_kaon,
1575  type_K_p, type_Delta_m);
1576  },
1577  sqrt_s_, type_K_p, type_Delta_m);
1578  }
1579  break;
1580  }
1581  case -pdg::p: {
1582  if (incl_Strangeness_exchange) {
1583  const auto& type_pi_z = ParticleType::find(pdg::pi_z);
1584  const auto& type_pi_m = ParticleType::find(pdg::pi_m);
1585  const auto& type_Sigma_p_bar = ParticleType::find(-pdg::Sigma_p);
1586  const auto& type_Sigma_z_bar = ParticleType::find(-pdg::Sigma_z);
1587  const auto& type_Lambda_bar = ParticleType::find(-pdg::Lambda);
1588  add_channel(
1589  process_list, [&] { return kminusn_piminussigma0(sqrt_s_); },
1590  sqrt_s_, type_pi_m, type_Sigma_z_bar);
1591  add_channel(
1592  process_list, [&] { return kminusn_piminussigma0(sqrt_s_); },
1593  sqrt_s_, type_pi_z, type_Sigma_p_bar);
1594  add_channel(
1595  process_list, [&] { return kminusn_piminuslambda(sqrt_s_); },
1596  sqrt_s_, type_pi_m, type_Lambda_bar);
1597  }
1598  break;
1599  }
1600  case -pdg::n: {
1601  if (incl_Strangeness_exchange) {
1602  const auto& type_pi_z = ParticleType::find(pdg::pi_z);
1603  const auto& type_pi_m = ParticleType::find(pdg::pi_m);
1604  const auto& type_pi_p = ParticleType::find(pdg::pi_p);
1605  const auto& type_Sigma_p_bar = ParticleType::find(-pdg::Sigma_p);
1606  const auto& type_Sigma_m_bar = ParticleType::find(-pdg::Sigma_m);
1607  const auto& type_Sigma_z_bar = ParticleType::find(-pdg::Sigma_z);
1608  const auto& type_Lambda_bar = ParticleType::find(-pdg::Lambda);
1609  add_channel(
1610  process_list, [&] { return kminusp_piminussigmaplus(sqrt_s_); },
1611  sqrt_s_, type_pi_m, type_Sigma_m_bar);
1612  add_channel(
1613  process_list, [&] { return kminusp_piplussigmaminus(sqrt_s_); },
1614  sqrt_s_, type_pi_p, type_Sigma_p_bar);
1615  add_channel(
1616  process_list, [&] { return kminusp_pi0sigma0(sqrt_s_); },
1617  sqrt_s_, type_pi_z, type_Sigma_z_bar);
1618  add_channel(
1619  process_list, [&] { return kminusp_pi0lambda(sqrt_s_); },
1620  sqrt_s_, type_pi_z, type_Lambda_bar);
1621  }
1622  if (incl_KN_to_KN) {
1623  const auto& type_K_p = ParticleType::find(pdg::K_p);
1624  const auto& type_p_bar = ParticleType::find(-pdg::p);
1625  add_channel(
1626  process_list, [&] { return kminusp_kbar0n(s); }, sqrt_s_,
1627  type_K_p, type_p_bar);
1628  }
1629  break;
1630  }
1631  }
1632  break;
1633  }
1634  case pdg::Kbar_z:
1635  switch (pdg_nucleon) {
1636  case pdg::p: {
1637  if (incl_Strangeness_exchange) {
1638  const auto& type_pi_z = ParticleType::find(pdg::pi_z);
1639  const auto& type_pi_p = ParticleType::find(pdg::pi_p);
1640  const auto& type_Sigma_p = ParticleType::find(pdg::Sigma_p);
1641  const auto& type_Sigma_z = ParticleType::find(pdg::Sigma_z);
1642  const auto& type_Lambda = ParticleType::find(pdg::Lambda);
1643  add_channel(
1644  process_list, [&] { return kminusn_piminussigma0(sqrt_s_); },
1645  sqrt_s_, type_pi_z, type_Sigma_p);
1646  add_channel(
1647  process_list, [&] { return kminusn_piminussigma0(sqrt_s_); },
1648  sqrt_s_, type_pi_p, type_Sigma_z);
1649  add_channel(
1650  process_list, [&] { return kminusn_piminuslambda(sqrt_s_); },
1651  sqrt_s_, type_pi_p, type_Lambda);
1652  }
1653  break;
1654  }
1655  case pdg::n: {
1656  if (incl_Strangeness_exchange) {
1657  const auto& type_pi_z = ParticleType::find(pdg::pi_z);
1658  const auto& type_pi_m = ParticleType::find(pdg::pi_m);
1659  const auto& type_pi_p = ParticleType::find(pdg::pi_p);
1660  const auto& type_Sigma_p = ParticleType::find(pdg::Sigma_p);
1661  const auto& type_Sigma_m = ParticleType::find(pdg::Sigma_m);
1662  const auto& type_Sigma_z = ParticleType::find(pdg::Sigma_z);
1663  const auto& type_Lambda = ParticleType::find(pdg::Lambda);
1664  add_channel(
1665  process_list, [&] { return kminusp_piminussigmaplus(sqrt_s_); },
1666  sqrt_s_, type_pi_p, type_Sigma_m);
1667  add_channel(
1668  process_list, [&] { return kminusp_piplussigmaminus(sqrt_s_); },
1669  sqrt_s_, type_pi_m, type_Sigma_p);
1670  add_channel(
1671  process_list, [&] { return kminusp_pi0sigma0(sqrt_s_); },
1672  sqrt_s_, type_pi_z, type_Sigma_z);
1673  add_channel(
1674  process_list, [&] { return kminusp_pi0lambda(sqrt_s_); },
1675  sqrt_s_, type_pi_z, type_Lambda);
1676  }
1677  if (incl_KN_to_KN) {
1678  const auto& type_p = ParticleType::find(pdg::p);
1679  const auto& type_K_m = ParticleType::find(pdg::K_m);
1680  add_channel(
1681  process_list, [&] { return kminusp_kbar0n(s); }, sqrt_s_,
1682  type_K_m, type_p);
1683  }
1684  break;
1685  }
1686  case -pdg::p: {
1687  if (incl_KN_to_KDelta) {
1688  const auto& type_K_m = ParticleType::find(pdg::K_m);
1689  const auto& type_Kbar_z = type_kaon;
1690  const auto& type_Delta_bar_m = ParticleType::find(-pdg::Delta_p);
1691  const auto& type_Delta_bar_z = ParticleType::find(-pdg::Delta_z);
1692  add_channel(
1693  process_list,
1694  [&] {
1695  return sigma_kplusn * kaon_nucleon_ratios.get_ratio(
1696  type_nucleon, type_kaon,
1697  type_Kbar_z, type_Delta_bar_m);
1698  },
1699  sqrt_s_, type_Kbar_z, type_Delta_bar_m);
1700  add_channel(
1701  process_list,
1702  [&] {
1703  return sigma_kplusn * kaon_nucleon_ratios.get_ratio(
1704  type_nucleon, type_kaon, type_K_m,
1705  type_Delta_bar_z);
1706  },
1707  sqrt_s_, type_K_m, type_Delta_bar_z);
1708  }
1709  if (incl_KN_to_KN) {
1710  const auto& type_K_m = ParticleType::find(pdg::K_m);
1711  const auto& type_n_bar = ParticleType::find(-pdg::n);
1712  add_channel(
1713  process_list,
1714  [&] {
1715  // The isospin factor is 1, see the parametrizations
1716  // tests.
1717  return kplusn_k0p(s);
1718  },
1719  sqrt_s_, type_K_m, type_n_bar);
1720  }
1721  break;
1722  }
1723  case -pdg::n: {
1724  if (incl_KN_to_KDelta) {
1725  const auto& type_K_m = ParticleType::find(pdg::K_m);
1726  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
1727  const auto& type_Delta_z_bar = ParticleType::find(-pdg::Delta_z);
1728  const auto& type_Delta_m_bar = ParticleType::find(-pdg::Delta_m);
1729  add_channel(
1730  process_list,
1731  [&] {
1732  return sigma_kplusp * kaon_nucleon_ratios.get_ratio(
1733  type_nucleon, type_kaon,
1734  type_Kbar_z, type_Delta_z_bar);
1735  },
1736  sqrt_s_, type_Kbar_z, type_Delta_z_bar);
1737  add_channel(
1738  process_list,
1739  [&] {
1740  return sigma_kplusp * kaon_nucleon_ratios.get_ratio(
1741  type_nucleon, type_kaon, type_K_m,
1742  type_Delta_m_bar);
1743  },
1744  sqrt_s_, type_K_m, type_Delta_m_bar);
1745  }
1746  break;
1747  }
1748  }
1749  break;
1750  }
1751 
1752  return process_list;
1753 }
double get_ratio(const ParticleType &a, const ParticleType &b, const ParticleType &c, const ParticleType &d) const
Return the isospin ratio of the given K N -> K Delta cross section.
@ KN_to_KDelta
@ KN_to_KN
@ Strangeness_exchange
constexpr int Delta_p
Δ⁺.
constexpr int Delta_pp
Δ⁺⁺.
constexpr int Delta_m
Δ⁻.
constexpr int Delta_z
Δ⁰.
double kplusn_k0p(double mandelstam_s)
K+ n charge exchange cross section parametrization.
double kminusp_pi0lambda(double sqrts)
K- p <-> pi0 Lambda cross section parametrization Fit to Landolt-Börnstein instead of UrQMD values.
double kminusn_piminussigma0(double sqrts)
K- n <-> pi- Sigma0 cross section parametrization Follow from the parametrization with the same stran...
KaonNucleonRatios kaon_nucleon_ratios
double kminusn_piminuslambda(double sqrts)
K- n <-> pi- Lambda cross section parametrization Follow from the parametrization with the same stran...
double kminusp_piminussigmaplus(double sqrts)
K- p <-> pi- Sigma+ cross section parametrization Taken from UrQMD (Graef:2014mra ).
double kplusp_inelastic_background(double mandelstam_s)
K+ p inelastic background cross section parametrization Source: Buss:2011mx , B.3....
double kminusp_pi0sigma0(double sqrts)
K- p <-> pi0 Sigma0 cross section parametrization Fit to Landolt-Börnstein instead of UrQMD values.
double kminusp_piplussigmaminus(double sqrts)
K- p <-> pi+ Sigma- cross section parametrization Taken from UrQMD (Graef:2014mra ).
double kminusp_kbar0n(double mandelstam_s)
K- p <-> Kbar0 n cross section parametrization.
double kplusn_inelastic_background(double mandelstam_s)
K+ n inelastic background cross section parametrization Source: Buss:2011mx , B.3....

◆ deltak_xx()

CollisionBranchList smash::CrossSections::deltak_xx ( const ReactionsBitSet included_2to2) const
private

Find all inelastic 2->2 processes for Delta-Kaon (DeltaK) Scattering.

Parameters
[in]included_2to2Which 2->2 reactions are enabled?
Returns
List of all possible DeltaK reactions with their cross sections

Definition at line 1755 of file crosssections.cc.

1756  {
1757  CollisionBranchList process_list;
1758  if (included_2to2[IncludedReactions::KN_to_KDelta] == 0) {
1759  return process_list;
1760  }
1761  const ParticleType& a = incoming_particles_[0].type();
1762  const ParticleType& b = incoming_particles_[1].type();
1763  const ParticleType& type_delta = a.pdgcode().is_Delta() ? a : b;
1764  const ParticleType& type_kaon = a.pdgcode().is_Delta() ? b : a;
1765 
1766  const auto pdg_delta = type_delta.pdgcode().code();
1767  const auto pdg_kaon = type_kaon.pdgcode().code();
1768 
1769  const double s = sqrt_s_ * sqrt_s_;
1770  const double pcm = cm_momentum();
1771  /* The cross sections are determined from the backward reactions via
1772  * detailed balance. The same isospin factors as for the backward reaction
1773  * are used. */
1774  switch (pack(pdg_delta, pdg_kaon)) {
1775  case pack(pdg::Delta_pp, pdg::K_z):
1776  case pack(pdg::Delta_p, pdg::K_p): {
1777  const auto& type_p = ParticleType::find(pdg::p);
1778  const auto& type_K_p = ParticleType::find(pdg::K_p);
1779  add_channel(
1780  process_list,
1781  [&] {
1782  return detailed_balance_factor_RK(sqrt_s_, pcm, type_delta,
1783  type_kaon, type_p, type_K_p) *
1784  kaon_nucleon_ratios.get_ratio(type_p, type_K_p, type_kaon,
1785  type_delta) *
1787  },
1788  sqrt_s_, type_p, type_K_p);
1789  break;
1790  }
1791  case pack(-pdg::Delta_pp, pdg::Kbar_z):
1792  case pack(-pdg::Delta_p, pdg::K_m): {
1793  const auto& type_p_bar = ParticleType::find(-pdg::p);
1794  const auto& type_K_m = ParticleType::find(pdg::K_m);
1795  add_channel(
1796  process_list,
1797  [&] {
1798  return detailed_balance_factor_RK(sqrt_s_, pcm, type_delta,
1799  type_kaon, type_p_bar, type_K_m) *
1800  kaon_nucleon_ratios.get_ratio(type_p_bar, type_K_m,
1801  type_kaon, type_delta) *
1803  },
1804  sqrt_s_, type_p_bar, type_K_m);
1805  break;
1806  }
1807  case pack(pdg::Delta_p, pdg::K_z):
1808  case pack(pdg::Delta_z, pdg::K_p): {
1809  const auto& type_n = ParticleType::find(pdg::n);
1810  const auto& type_p = ParticleType::find(pdg::p);
1811  const auto& type_K_p = ParticleType::find(pdg::K_p);
1812  const auto& type_K_z = ParticleType::find(pdg::K_z);
1813  add_channel(
1814  process_list,
1815  [&] {
1816  return detailed_balance_factor_RK(sqrt_s_, pcm, type_delta,
1817  type_kaon, type_n, type_K_p) *
1818  kaon_nucleon_ratios.get_ratio(type_n, type_K_p, type_kaon,
1819  type_delta) *
1821  },
1822  sqrt_s_, type_n, type_K_p);
1823 
1824  add_channel(
1825  process_list,
1826  [&] {
1827  return detailed_balance_factor_RK(sqrt_s_, pcm, type_delta,
1828  type_kaon, type_p, type_K_z) *
1829  kaon_nucleon_ratios.get_ratio(type_p, type_K_z, type_kaon,
1830  type_delta) *
1832  },
1833  sqrt_s_, type_p, type_K_z);
1834  break;
1835  }
1836  case pack(-pdg::Delta_p, pdg::Kbar_z):
1837  case pack(-pdg::Delta_z, pdg::K_m): {
1838  const auto& type_n_bar = ParticleType::find(-pdg::n);
1839  const auto& type_p_bar = ParticleType::find(-pdg::p);
1840  const auto& type_K_m = ParticleType::find(pdg::K_m);
1841  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
1842  add_channel(
1843  process_list,
1844  [&] {
1845  return detailed_balance_factor_RK(sqrt_s_, pcm, type_delta,
1846  type_kaon, type_n_bar, type_K_m) *
1847  kaon_nucleon_ratios.get_ratio(type_n_bar, type_K_m,
1848  type_kaon, type_delta) *
1850  },
1851  sqrt_s_, type_n_bar, type_K_m);
1852 
1853  add_channel(
1854  process_list,
1855  [&] {
1856  return detailed_balance_factor_RK(sqrt_s_, pcm, type_delta,
1857  type_kaon, type_p_bar,
1858  type_Kbar_z) *
1859  kaon_nucleon_ratios.get_ratio(type_p_bar, type_Kbar_z,
1860  type_kaon, type_delta) *
1862  },
1863  sqrt_s_, type_p_bar, type_Kbar_z);
1864  break;
1865  }
1866  case pack(pdg::Delta_z, pdg::K_z):
1867  case pack(pdg::Delta_m, pdg::K_p): {
1868  const auto& type_n = ParticleType::find(pdg::n);
1869  const auto& type_K_z = ParticleType::find(pdg::K_z);
1870  add_channel(
1871  process_list,
1872  [&] {
1873  return detailed_balance_factor_RK(sqrt_s_, pcm, type_delta,
1874  type_kaon, type_n, type_K_z) *
1875  kaon_nucleon_ratios.get_ratio(type_n, type_K_z, type_kaon,
1876  type_delta) *
1878  },
1879  sqrt_s_, type_n, type_K_z);
1880  break;
1881  }
1882  case pack(-pdg::Delta_z, pdg::Kbar_z):
1883  case pack(-pdg::Delta_m, pdg::K_m): {
1884  const auto& type_n_bar = ParticleType::find(-pdg::n);
1885  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
1886  add_channel(
1887  process_list,
1888  [&] {
1889  return detailed_balance_factor_RK(sqrt_s_, pcm, type_delta,
1890  type_kaon, type_n_bar,
1891  type_Kbar_z) *
1892  kaon_nucleon_ratios.get_ratio(type_n_bar, type_Kbar_z,
1893  type_kaon, type_delta) *
1895  },
1896  sqrt_s_, type_n_bar, type_Kbar_z);
1897  break;
1898  }
1899  default:
1900  break;
1901  }
1902 
1903  return process_list;
1904 }
constexpr uint64_t pack(int32_t x, int32_t y)
Pack two int32_t into an uint64_t.
static double detailed_balance_factor_RK(double sqrts, double pcm, const ParticleType &a, const ParticleType &b, const ParticleType &c, const ParticleType &d)
Helper function: Calculate the detailed balance factor R such that.

◆ ypi_xx()

CollisionBranchList smash::CrossSections::ypi_xx ( const ReactionsBitSet included_2to2) const
private

Find all inelastic 2->2 processes for Hyperon-Pion (Ypi) Scattering.

Parameters
[in]included_2to2Which 2->2 reactions are enabled?
Returns
List of all possible Ypi reactions with their cross sections

Definition at line 1906 of file crosssections.cc.

1907  {
1908  CollisionBranchList process_list;
1909  if (included_2to2[IncludedReactions::Strangeness_exchange] == 0) {
1910  return process_list;
1911  }
1912  const ParticleType& a = incoming_particles_[0].type();
1913  const ParticleType& b = incoming_particles_[1].type();
1914  const ParticleType& type_hyperon = a.pdgcode().is_hyperon() ? a : b;
1915  const ParticleType& type_pion = a.pdgcode().is_hyperon() ? b : a;
1916 
1917  const auto pdg_hyperon = type_hyperon.pdgcode().code();
1918  const auto pdg_pion = type_pion.pdgcode().code();
1919 
1920  const double s = sqrt_s_ * sqrt_s_;
1921 
1922  switch (pack(pdg_hyperon, pdg_pion)) {
1923  case pack(pdg::Sigma_z, pdg::pi_m): {
1924  const auto& type_n = ParticleType::find(pdg::n);
1925  const auto& type_K_m = ParticleType::find(pdg::K_m);
1926  add_channel(
1927  process_list,
1928  [&] {
1929  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
1930  type_n, type_K_m) *
1932  },
1933  sqrt_s_, type_n, type_K_m);
1934  break;
1935  }
1936  case pack(pdg::Sigma_z, pdg::pi_p): {
1937  const auto& type_p = ParticleType::find(pdg::p);
1938  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
1939  add_channel(
1940  process_list,
1941  [&] {
1942  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
1943  type_p, type_Kbar_z) *
1945  },
1946  sqrt_s_, type_p, type_Kbar_z);
1947  break;
1948  }
1949  case pack(-pdg::Sigma_z, pdg::pi_p): {
1950  const auto& type_n_bar = ParticleType::find(-pdg::n);
1951  const auto& type_K_p = ParticleType::find(pdg::K_p);
1952  add_channel(
1953  process_list,
1954  [&] {
1955  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
1956  type_n_bar, type_K_p) *
1958  },
1959  sqrt_s_, type_n_bar, type_K_p);
1960  break;
1961  }
1962  case pack(-pdg::Sigma_z, pdg::pi_m): {
1963  const auto& type_p_bar = ParticleType::find(-pdg::p);
1964  const auto& type_K_z = ParticleType::find(pdg::K_z);
1965  add_channel(
1966  process_list,
1967  [&] {
1968  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
1969  type_p_bar, type_K_z) *
1971  },
1972  sqrt_s_, type_p_bar, type_K_z);
1973  break;
1974  }
1975  case pack(pdg::Sigma_m, pdg::pi_z): {
1976  const auto& type_n = ParticleType::find(pdg::n);
1977  const auto& type_K_m = ParticleType::find(pdg::K_m);
1978  add_channel(
1979  process_list,
1980  [&] {
1981  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
1982  type_n, type_K_m) *
1984  },
1985  sqrt_s_, type_n, type_K_m);
1986  break;
1987  }
1988  case pack(pdg::Sigma_p, pdg::pi_z): {
1989  const auto& type_p = ParticleType::find(pdg::p);
1990  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
1991  add_channel(
1992  process_list,
1993  [&] {
1994  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
1995  type_p, type_Kbar_z) *
1997  },
1998  sqrt_s_, type_p, type_Kbar_z);
1999  break;
2000  }
2001  case pack(-pdg::Sigma_m, pdg::pi_z): {
2002  const auto& type_n_bar = ParticleType::find(-pdg::n);
2003  const auto& type_K_p = ParticleType::find(pdg::K_p);
2004  add_channel(
2005  process_list,
2006  [&] {
2007  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2008  type_n_bar, type_K_p) *
2010  },
2011  sqrt_s_, type_n_bar, type_K_p);
2012  break;
2013  }
2014  case pack(-pdg::Sigma_p, pdg::pi_z): {
2015  const auto& type_p_bar = ParticleType::find(-pdg::p);
2016  const auto& type_K_z = ParticleType::find(pdg::K_z);
2017  add_channel(
2018  process_list,
2019  [&] {
2020  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2021  type_p_bar, type_K_z) *
2023  },
2024  sqrt_s_, type_p_bar, type_K_z);
2025  break;
2026  }
2027  case pack(pdg::Lambda, pdg::pi_m): {
2028  const auto& type_n = ParticleType::find(pdg::n);
2029  const auto& type_K_m = ParticleType::find(pdg::K_m);
2030  add_channel(
2031  process_list,
2032  [&] {
2033  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2034  type_n, type_K_m) *
2036  },
2037  sqrt_s_, type_n, type_K_m);
2038  break;
2039  }
2040  case pack(pdg::Lambda, pdg::pi_p): {
2041  const auto& type_p = ParticleType::find(pdg::p);
2042  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
2043  add_channel(
2044  process_list,
2045  [&] {
2046  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2047  type_p, type_Kbar_z) *
2049  },
2050  sqrt_s_, type_p, type_Kbar_z);
2051  break;
2052  }
2053  case pack(-pdg::Lambda, pdg::pi_p): {
2054  const auto& type_n_bar = ParticleType::find(-pdg::n);
2055  const auto& type_K_p = ParticleType::find(pdg::K_p);
2056  add_channel(
2057  process_list,
2058  [&] {
2059  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2060  type_n_bar, type_K_p) *
2062  },
2063  sqrt_s_, type_n_bar, type_K_p);
2064  break;
2065  }
2066  case pack(-pdg::Lambda, pdg::pi_m): {
2067  const auto& type_p_bar = ParticleType::find(-pdg::p);
2068  const auto& type_K_z = ParticleType::find(pdg::K_z);
2069  add_channel(
2070  process_list,
2071  [&] {
2072  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2073  type_p_bar, type_K_z) *
2075  },
2076  sqrt_s_, type_p_bar, type_K_z);
2077  break;
2078  }
2079  case pack(pdg::Sigma_z, pdg::pi_z): {
2080  const auto& type_p = ParticleType::find(pdg::p);
2081  const auto& type_n = ParticleType::find(pdg::n);
2082  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
2083  const auto& type_K_m = ParticleType::find(pdg::K_m);
2084  add_channel(
2085  process_list,
2086  [&] {
2087  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2088  type_p, type_K_m) *
2090  },
2091  sqrt_s_, type_p, type_K_m);
2092  add_channel(
2093  process_list,
2094  [&] {
2095  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2096  type_n, type_Kbar_z) *
2098  },
2099  sqrt_s_, type_n, type_Kbar_z);
2100  break;
2101  }
2102  case pack(-pdg::Sigma_z, pdg::pi_z): {
2103  const auto& type_p_bar = ParticleType::find(-pdg::p);
2104  const auto& type_n_bar = ParticleType::find(-pdg::n);
2105  const auto& type_K_z = ParticleType::find(pdg::K_z);
2106  const auto& type_K_p = ParticleType::find(pdg::K_p);
2107  add_channel(
2108  process_list,
2109  [&] {
2110  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2111  type_p_bar, type_K_p) *
2113  },
2114  sqrt_s_, type_p_bar, type_K_p);
2115  add_channel(
2116  process_list,
2117  [&] {
2118  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2119  type_n_bar, type_K_z) *
2121  },
2122  sqrt_s_, type_n_bar, type_K_z);
2123  break;
2124  }
2125  case pack(pdg::Sigma_m, pdg::pi_p): {
2126  const auto& type_p = ParticleType::find(pdg::p);
2127  const auto& type_n = ParticleType::find(pdg::n);
2128  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
2129  const auto& type_K_m = ParticleType::find(pdg::K_m);
2130  add_channel(
2131  process_list,
2132  [&] {
2133  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2134  type_p, type_K_m) *
2136  },
2137  sqrt_s_, type_p, type_K_m);
2138  add_channel(
2139  process_list,
2140  [&] {
2141  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2142  type_n, type_Kbar_z) *
2144  },
2145  sqrt_s_, type_n, type_Kbar_z);
2146  break;
2147  }
2148  case pack(-pdg::Sigma_m, pdg::pi_m): {
2149  const auto& type_p_bar = ParticleType::find(-pdg::p);
2150  const auto& type_n_bar = ParticleType::find(-pdg::n);
2151  const auto& type_K_z = ParticleType::find(pdg::K_z);
2152  const auto& type_K_p = ParticleType::find(pdg::K_p);
2153  add_channel(
2154  process_list,
2155  [&] {
2156  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2157  type_p_bar, type_K_p) *
2159  },
2160  sqrt_s_, type_p_bar, type_K_p);
2161  add_channel(
2162  process_list,
2163  [&] {
2164  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2165  type_n_bar, type_K_z) *
2167  },
2168  sqrt_s_, type_n_bar, type_K_z);
2169  break;
2170  }
2171  case pack(pdg::Lambda, pdg::pi_z): {
2172  const auto& type_p = ParticleType::find(pdg::p);
2173  const auto& type_n = ParticleType::find(pdg::n);
2174  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
2175  const auto& type_K_m = ParticleType::find(pdg::K_m);
2176  add_channel(
2177  process_list,
2178  [&] {
2179  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2180  type_p, type_K_m) *
2182  },
2183  sqrt_s_, type_p, type_K_m);
2184  add_channel(
2185  process_list,
2186  [&] {
2187  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2188  type_n, type_Kbar_z) *
2190  },
2191  sqrt_s_, type_n, type_Kbar_z);
2192  break;
2193  }
2194  case pack(-pdg::Lambda, pdg::pi_z): {
2195  const auto& type_p_bar = ParticleType::find(-pdg::p);
2196  const auto& type_n_bar = ParticleType::find(-pdg::n);
2197  const auto& type_K_z = ParticleType::find(pdg::K_z);
2198  const auto& type_K_p = ParticleType::find(pdg::K_p);
2199  add_channel(
2200  process_list,
2201  [&] {
2202  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2203  type_p_bar, type_K_p) *
2205  },
2206  sqrt_s_, type_p_bar, type_K_p);
2207  add_channel(
2208  process_list,
2209  [&] {
2210  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2211  type_n_bar, type_K_z) *
2213  },
2214  sqrt_s_, type_n_bar, type_K_z);
2215  break;
2216  }
2217  case pack(pdg::Sigma_p, pdg::pi_m): {
2218  const auto& type_p = ParticleType::find(pdg::p);
2219  const auto& type_n = ParticleType::find(pdg::n);
2220  const auto& type_K_m = ParticleType::find(pdg::K_m);
2221  const auto& type_Kbar_z = ParticleType::find(pdg::Kbar_z);
2222  add_channel(
2223  process_list,
2224  [&] {
2225  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2226  type_p, type_K_m) *
2228  },
2229  sqrt_s_, type_p, type_K_m);
2230  add_channel(
2231  process_list,
2232  [&] {
2233  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2234  type_n, type_Kbar_z) *
2236  },
2237  sqrt_s_, type_n, type_Kbar_z);
2238  break;
2239  }
2240  case pack(-pdg::Sigma_p, pdg::pi_p): {
2241  const auto& type_p_bar = ParticleType::find(-pdg::p);
2242  const auto& type_n_bar = ParticleType::find(-pdg::n);
2243  const auto& type_K_p = ParticleType::find(pdg::K_p);
2244  const auto& type_K_z = ParticleType::find(pdg::K_z);
2245  add_channel(
2246  process_list,
2247  [&] {
2248  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2249  type_p_bar, type_K_p) *
2251  },
2252  sqrt_s_, type_p_bar, type_K_p);
2253  add_channel(
2254  process_list,
2255  [&] {
2256  return detailed_balance_factor_stable(s, type_hyperon, type_pion,
2257  type_n_bar, type_K_z) *
2259  },
2260  sqrt_s_, type_n_bar, type_K_z);
2261  break;
2262  }
2263  default:
2264  break;
2265  }
2266 
2267  return process_list;
2268 }
static double detailed_balance_factor_stable(double s, const ParticleType &a, const ParticleType &b, const ParticleType &c, const ParticleType &d)
Helper function: Calculate the detailed balance factor R such that.

◆ dpi_xx()

CollisionBranchList smash::CrossSections::dpi_xx ( const ReactionsBitSet included_2to2) const
private

Find all inelastic 2->2 processes involving Pion and (anti-) Deuteron (dpi), specifically dπ→ NN, d̅π→ N̅N̅; πd→ πd' (mockup for πd→ πnp), πd̅→ πd̅' and reverse.

Parameters
[in]included_2to2Which 2->2 reactions are enabled?
Returns
List of all possible dpi reactions with their cross sections

Definition at line 2302 of file crosssections.cc.

2303  {
2304  CollisionBranchList process_list;
2305  const double sqrts = sqrt_s_;
2306  const ParticleType& type_a = incoming_particles_[0].type();
2307  const ParticleType& type_b = incoming_particles_[1].type();
2308 
2309  // pi d -> N N
2310  bool is_pid = (type_a.is_deuteron() && type_b.pdgcode().is_pion()) ||
2311  (type_b.is_deuteron() && type_a.pdgcode().is_pion());
2312  if (is_pid && included_2to2[IncludedReactions::PiDeuteron_to_NN] == 1) {
2313  const int baryon_number = type_a.baryon_number() + type_b.baryon_number();
2314  ParticleTypePtrList nuc = (baryon_number > 0)
2317  const double s = sqrt_s_ * sqrt_s_;
2318  for (ParticleTypePtr nuc_a : nuc) {
2319  for (ParticleTypePtr nuc_b : nuc) {
2320  if (type_a.charge() + type_b.charge() !=
2321  nuc_a->charge() + nuc_b->charge()) {
2322  continue;
2323  }
2324  // loop over total isospin
2325  for (const int twoI : I_tot_range(*nuc_a, *nuc_b)) {
2326  const double isospin_factor = isospin_clebsch_gordan_sqr_2to2(
2327  type_a, type_b, *nuc_a, *nuc_b, twoI);
2328  // If Clebsch-Gordan coefficient = 0, don't bother with the rest.
2329  if (std::abs(isospin_factor) < really_small) {
2330  continue;
2331  }
2332 
2333  // Calculate matrix element for inverse process.
2334  const double matrix_element =
2335  nn_to_resonance_matrix_element(sqrts, type_a, type_b, twoI);
2336  if (matrix_element <= 0.) {
2337  continue;
2338  }
2339 
2340  const double spin_factor = (nuc_a->spin() + 1) * (nuc_b->spin() + 1);
2341  const int sym_fac_in =
2342  (type_a.iso_multiplet() == type_b.iso_multiplet()) ? 2 : 1;
2343  const int sym_fac_out =
2344  (nuc_a->iso_multiplet() == nuc_b->iso_multiplet()) ? 2 : 1;
2345  double p_cm_final = pCM_from_s(s, nuc_a->mass(), nuc_b->mass());
2346  const double xsection = isospin_factor * spin_factor * sym_fac_in /
2347  sym_fac_out * p_cm_final * matrix_element /
2348  (s * cm_momentum());
2349 
2350  if (xsection > really_small) {
2351  process_list.push_back(std::make_unique<CollisionBranch>(
2352  *nuc_a, *nuc_b, xsection, ProcessType::TwoToTwo));
2353  logg[LScatterAction].debug(type_a.name(), type_b.name(), "->",
2354  nuc_a->name(), nuc_b->name(),
2355  " at sqrts [GeV] = ", sqrts,
2356  " with cs[mb] = ", xsection);
2357  }
2358  }
2359  }
2360  }
2361  }
2362 
2363  // pi d -> pi d' (effectively pi d -> pi p n) AND reverse, pi d' -> pi d
2364  bool is_pid_or_pidprime = ((type_a.is_deuteron() || type_a.is_dprime()) &&
2365  type_b.pdgcode().is_pion()) ||
2366  ((type_b.is_deuteron() || type_b.is_dprime()) &&
2367  type_a.pdgcode().is_pion());
2368  if (is_pid_or_pidprime &&
2369  included_2to2[IncludedReactions::PiDeuteron_to_pidprime] == 1) {
2370  const ParticleType& type_pi = type_a.pdgcode().is_pion() ? type_a : type_b;
2371  const ParticleType& type_nucleus = type_a.is_nucleus() ? type_a : type_b;
2372  ParticleTypePtrList nuclei = ParticleType::list_light_nuclei();
2373  for (ParticleTypePtr produced_nucleus : nuclei) {
2374  // Elastic collisions are treated in a different function
2375  if (produced_nucleus == &type_nucleus ||
2376  produced_nucleus->charge() != type_nucleus.charge() ||
2377  produced_nucleus->baryon_number() != type_nucleus.baryon_number()) {
2378  continue;
2379  }
2380  const double xsection =
2381  xs_dpi_dprimepi(sqrts, cm_momentum(), produced_nucleus, type_pi);
2382  process_list.push_back(std::make_unique<CollisionBranch>(
2383  type_pi, *produced_nucleus, xsection, ProcessType::TwoToTwo));
2384  logg[LScatterAction].debug(type_pi.name(), type_nucleus.name(), "→ ",
2385  type_pi.name(), produced_nucleus->name(),
2386  " at ", sqrts, " GeV, xs[mb] = ", xsection);
2387  }
2388  }
2389  return process_list;
2390 }
static double xs_dpi_dprimepi(double sqrts, double cm_mom, ParticleTypePtr produced_nucleus, const ParticleType &type_pi)
Parametrized cross section for πd→ πd' (mockup for πd→ πnp), πd̅→ πd̅' and reverse,...
static double nn_to_resonance_matrix_element(double sqrts, const ParticleType &type_a, const ParticleType &type_b, const int twoI)
Scattering matrix amplitude squared (divided by 16π) for resonance production processes like NN → NR ...
static ParticleTypePtrList & list_nucleons()
Definition: particletype.cc:69
static ParticleTypePtrList & list_light_nuclei()
Definition: particletype.cc:85
@ PiDeuteron_to_pidprime
double isospin_clebsch_gordan_sqr_2to2(const ParticleType &p_a, const ParticleType &p_b, const ParticleType &p_c, const ParticleType &p_d, const int I=-1)
Calculate the squared isospin Clebsch-Gordan coefficient for a 2-to-2 reaction A + B -> C + D.
T pCM_from_s(const T s, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:66
static constexpr int LScatterAction

◆ dn_xx()

CollisionBranchList smash::CrossSections::dn_xx ( const ReactionsBitSet included_2to2) const
private

Find all inelastic 2->2 processes involving Nucleon and (anti-) Deuteron (dN), specifically Nd → Nd', N̅d → N̅d', N̅d̅→ N̅d̅', Nd̅→ Nd̅' and reverse (e.g.

Nd'→ Nd).

Parameters
[in]included_2to2Which 2->2 reactions are enabled?
Returns
List of all possible dN reactions with their cross sections

Definition at line 2430 of file crosssections.cc.

2431  {
2432  const ParticleType& type_a = incoming_particles_[0].type();
2433  const ParticleType& type_b = incoming_particles_[1].type();
2434  const ParticleType& type_N = type_a.is_nucleon() ? type_a : type_b;
2435  const ParticleType& type_nucleus = type_a.is_nucleus() ? type_a : type_b;
2436  CollisionBranchList process_list;
2437  if (included_2to2[IncludedReactions::NDeuteron_to_Ndprime] == 0) {
2438  return process_list;
2439  }
2440  ParticleTypePtrList nuclei = ParticleType::list_light_nuclei();
2441 
2442  for (ParticleTypePtr produced_nucleus : nuclei) {
2443  // No elastic collisions for now, respect conservation laws
2444  if (produced_nucleus == &type_nucleus ||
2445  produced_nucleus->charge() != type_nucleus.charge() ||
2446  produced_nucleus->baryon_number() != type_nucleus.baryon_number()) {
2447  continue;
2448  }
2449  const double xsection = xs_dn_dprimen(
2450  sqrt_s_, cm_momentum(), produced_nucleus, type_nucleus, type_N);
2451  process_list.push_back(std::make_unique<CollisionBranch>(
2452  type_N, *produced_nucleus, xsection, ProcessType::TwoToTwo));
2453  logg[LScatterAction].debug(type_N.name(), type_nucleus.name(), "→ ",
2454  type_N.name(), produced_nucleus->name(), " at ",
2455  sqrt_s_, " GeV, xs[mb] = ", xsection);
2456  }
2457  return process_list;
2458 }
static double xs_dn_dprimen(double sqrts, double cm_mom, ParticleTypePtr produced_nucleus, const ParticleType &type_nucleus, const ParticleType &type_N)
Parametrized cross section for Nd → Nd', N̅d → N̅d', N̅d̅→ N̅d̅', Nd̅→ Nd̅' and reverse (e....
@ NDeuteron_to_Ndprime

◆ xs_dpi_dprimepi()

double smash::CrossSections::xs_dpi_dprimepi ( double  sqrts,
double  cm_mom,
ParticleTypePtr  produced_nucleus,
const ParticleType type_pi 
)
staticprivate

Parametrized cross section for πd→ πd' (mockup for πd→ πnp), πd̅→ πd̅' and reverse, see Oliinychenko:2018ugs [45] for details.

Parameters
[in]sqrtssquare-root of mandelstam s
[in]cm_momcenter of mass momentum of incoming particles
[in]produced_nucleustype of outgoing deuteron or d-prime
[in]type_pitype of scattering pion
Returns
cross section for given scattering

Definition at line 2270 of file crosssections.cc.

2272  {
2273  const double s = sqrts * sqrts;
2274  // same matrix element for πd and πd̅
2275  const double tmp = sqrts - pion_mass - deuteron_mass;
2276  // Matrix element is fit to match the inelastic pi+ d -> pi+ n p
2277  // cross-section from the Fig. 5 of [\iref{Arndt:1994bs}].
2278  const double matrix_element =
2279  295.5 + 2.862 / (0.00283735 + pow_int(sqrts - 2.181, 2)) +
2280  0.0672 / pow_int(tmp, 2) - 6.61753 / tmp;
2281 
2282  const double spin_factor =
2283  (produced_nucleus->spin() + 1) * (type_pi.spin() + 1);
2284  /* Isospin factor is always the same, so it is included into the
2285  * matrix element.
2286  * Symmetry factor is always 1 here.
2287  * The (hbarc)^2/16 pi factor is absorbed into matrix element. */
2288  double xsection = matrix_element * spin_factor / (s * cm_mom);
2289  if (produced_nucleus->is_stable()) {
2290  xsection *= pCM_from_s(s, type_pi.mass(), produced_nucleus->mass());
2291  } else {
2292  const double resonance_integral =
2293  produced_nucleus->iso_multiplet()->get_integral_piR(sqrts);
2294  xsection *= resonance_integral;
2295  logg[LScatterAction].debug("Resonance integral ", resonance_integral,
2296  ", matrix element: ", matrix_element,
2297  ", cm_momentum: ", cm_mom);
2298  }
2299  return xsection;
2300 }
constexpr double deuteron_mass
Deuteron mass in GeV.
Definition: constants.h:92
constexpr T pow_int(const T base, unsigned const exponent)
Efficient template for calculating integer powers using squaring.
Definition: pow.h:23
constexpr double pion_mass
Pion mass in GeV.
Definition: constants.h:65

◆ xs_dn_dprimen()

double smash::CrossSections::xs_dn_dprimen ( double  sqrts,
double  cm_mom,
ParticleTypePtr  produced_nucleus,
const ParticleType type_nucleus,
const ParticleType type_N 
)
staticprivate

Parametrized cross section for Nd → Nd', N̅d → N̅d', N̅d̅→ N̅d̅', Nd̅→ Nd̅' and reverse (e.g.

Nd'→ Nd), see Oliinychenko:2018ugs [45] for details.

Parameters
[in]sqrtssquare-root of mandelstam s
[in]cm_momcenter of mass momentum of incoming particles
[in]produced_nucleustype of outgoing deuteron or d-prime
[in]type_nucleustype of scattering (incoming) deuteron or d-prime
[in]type_Ntype of scattering nucleon
Returns
cross section for given scattering

Nd → Nd', N̅d̅→ N̅d̅' and reverse: Fit to match experimental cross-section Nd -> Nnp from [17].

N̅d → N̅d', Nd̅→ Nd̅' and reverse: Fit to roughly match experimental cross-section N̅d -> N̅ np from Bizzarri:1973sp [10].

Definition at line 2392 of file crosssections.cc.

2395  {
2396  const double s = sqrts * sqrts;
2397  double matrix_element = 0.0;
2398  double tmp = sqrts - nucleon_mass - deuteron_mass;
2399  assert(tmp >= 0.0);
2400  if (std::signbit(type_N.baryon_number()) ==
2401  std::signbit(type_nucleus.baryon_number())) {
2405  matrix_element = 79.0474 / std::pow(tmp, 0.7897) + 654.596 * tmp;
2406  } else {
2410  matrix_element = 342.572 / std::pow(tmp, 0.6);
2411  }
2412  const double spin_factor =
2413  (produced_nucleus->spin() + 1) * (type_N.spin() + 1);
2414  /* Isospin factor is always the same, so it is included into matrix element
2415  * Symmetry factor is always 1 here
2416  * Absorb (hbarc)^2/16 pi factor into matrix element */
2417  double xsection = matrix_element * spin_factor / (s * cm_mom);
2418  if (produced_nucleus->is_stable()) {
2419  assert(!type_nucleus.is_stable());
2420  xsection *= pCM_from_s(s, type_N.mass(), produced_nucleus->mass());
2421  } else {
2422  assert(type_nucleus.is_stable());
2423  const double resonance_integral =
2424  produced_nucleus->iso_multiplet()->get_integral_NR(sqrts);
2425  xsection *= resonance_integral;
2426  }
2427  return xsection;
2428 }
constexpr double nucleon_mass
Nucleon mass in GeV.
Definition: constants.h:58

◆ string_hard_cross_section()

double smash::CrossSections::string_hard_cross_section ( ) const
private

Determine the (parametrized) hard non-diffractive string cross section for this collision.

Returns
Parametrized cross section (without AQM scaling).

Definition at line 2661 of file crosssections.cc.

2661  {
2662  double cross_sec = 0.;
2663  /* Hard strings can only be excited if the lower cutoff by
2664  * Pythia is fulfilled */
2666  return cross_sec;
2667  }
2668  const ParticleData& data_a = incoming_particles_[0];
2669  const ParticleData& data_b = incoming_particles_[1];
2670 
2671  if (data_a.is_baryon() && data_b.is_baryon()) {
2672  // Nucleon-nucleon cross section is used for all baryon-baryon cases.
2673  cross_sec = NN_string_hard(sqrt_s_ * sqrt_s_);
2674  } else if (data_a.is_baryon() || data_b.is_baryon()) {
2675  // Nucleon-pion cross section is used for all baryon-meson cases.
2676  cross_sec = Npi_string_hard(sqrt_s_ * sqrt_s_);
2677  } else {
2678  // Pion-pion cross section is used for all meson-meson cases.
2679  cross_sec = pipi_string_hard(sqrt_s_ * sqrt_s_);
2680  }
2681 
2682  return cross_sec;
2683 }
double Npi_string_hard(double mandelstam_s)
nucleon-pion hard scattering cross section (with partonic scattering)
constexpr double minimum_sqrts_pythia_can_handle
Energy in GeV, below which hard reactions via pythia are impossible.
Definition: constants.h:111
double pipi_string_hard(double mandelstam_s)
pion-pion hard scattering cross section (with partonic scattering)
double NN_string_hard(double mandelstam_s)
nucleon-nucleon hard scattering cross section (with partonic scattering)

◆ bar_bar_to_nuc_nuc()

CollisionBranchList smash::CrossSections::bar_bar_to_nuc_nuc ( const bool  is_anti_particles) const
private

Calculate cross sections for resonance absorption (i.e.

NR->NN and ΔR->NN).

Parameters
[in]is_anti_particlesWhether the colliding particles are antiparticles
Returns
List of possible resonance absorption processes. Each element of the list contains the types of the final-state particles and the cross section for that particular process.

Cross section for 2->2 resonance absorption, obtained via detailed balance from the inverse reaction. See eqs. (B.6), (B.9) and (181) in Buss:2011mx [14]. There are factors for spin, isospin and symmetry involved.

Definition at line 2747 of file crosssections.cc.

2748  {
2749  const ParticleType& type_a = incoming_particles_[0].type();
2750  const ParticleType& type_b = incoming_particles_[1].type();
2751  CollisionBranchList process_list;
2752 
2753  const double s = sqrt_s_ * sqrt_s_;
2754  // CM momentum in final state
2755  double p_cm_final = std::sqrt(s - 4. * nucleon_mass * nucleon_mass) / 2.;
2756 
2757  ParticleTypePtrList nuc_or_anti_nuc;
2758  if (is_anti_particles) {
2759  nuc_or_anti_nuc = ParticleType::list_anti_nucleons();
2760  } else {
2761  nuc_or_anti_nuc = ParticleType::list_nucleons();
2762  }
2763 
2764  // Loop over all nucleon or anti-nucleon charge states.
2765  for (ParticleTypePtr nuc_a : nuc_or_anti_nuc) {
2766  for (ParticleTypePtr nuc_b : nuc_or_anti_nuc) {
2767  /* Check for charge conservation. */
2768  if (type_a.charge() + type_b.charge() !=
2769  nuc_a->charge() + nuc_b->charge()) {
2770  continue;
2771  }
2772  // loop over total isospin
2773  for (const int twoI : I_tot_range(*nuc_a, *nuc_b)) {
2774  const double isospin_factor = isospin_clebsch_gordan_sqr_2to2(
2775  type_a, type_b, *nuc_a, *nuc_b, twoI);
2776  // If Clebsch-Gordan coefficient is zero, don't bother with the rest
2777  if (std::abs(isospin_factor) < really_small) {
2778  continue;
2779  }
2780 
2781  // Calculate matrix element for inverse process.
2782  const double matrix_element =
2783  nn_to_resonance_matrix_element(sqrt_s_, type_a, type_b, twoI);
2784  if (matrix_element <= 0.) {
2785  continue;
2786  }
2787 
2792  const double spin_factor = (nuc_a->spin() + 1) * (nuc_b->spin() + 1);
2793  const int sym_fac_in =
2794  (type_a.iso_multiplet() == type_b.iso_multiplet()) ? 2 : 1;
2795  const int sym_fac_out =
2796  (nuc_a->iso_multiplet() == nuc_b->iso_multiplet()) ? 2 : 1;
2797  const double xsection = isospin_factor * spin_factor * sym_fac_in /
2798  sym_fac_out * p_cm_final * matrix_element /
2799  (s * cm_momentum());
2800 
2801  if (xsection > really_small) {
2802  process_list.push_back(std::make_unique<CollisionBranch>(
2803  *nuc_a, *nuc_b, xsection, ProcessType::TwoToTwo));
2804  logg[LCrossSections].debug(
2805  "2->2 absorption with original particles: ", type_a, type_b);
2806  }
2807  }
2808  }
2809  }
2810  return process_list;
2811 }

◆ nn_to_resonance_matrix_element()

double smash::CrossSections::nn_to_resonance_matrix_element ( double  sqrts,
const ParticleType type_a,
const ParticleType type_b,
const int  twoI 
)
staticprivate

Scattering matrix amplitude squared (divided by 16π) for resonance production processes like NN → NR and NN → ΔR, where R is a baryon resonance (Δ, N*, Δ*).

Includes no spin or isospin factors.

Parameters
[in]sqrtssqrt(Mandelstam-s), i.e. collision CMS energy.
[in]type_aType information for the first final-state particle.
[in]type_bType information for the second final-state particle.
[in]twoITwice the total isospin of the involved state.
Returns
Matrix amplitude squared \( |\mathcal{M}(\sqrt{s})|^2/16\pi \).

NN → NΔ: fit sqrt(s)-dependence to OBE model [Dmitriev:1986st [21]]

All other processes use a constant matrix element, similar to Bass:1998ca [6], equ. (3.35).

pn → pnη cross section is known to be larger than the corresponding pp → ppη cross section by a factor of 6.5 [Calen:1998vh [15]]. Since the eta is mainly produced by an intermediate N*(1535) we introduce an explicit isospin asymmetry for the production of N*(1535) produced in pn vs. pp similar to [Teis:1996kx [60]], eq. 29.

Definition at line 2813 of file crosssections.cc.

2816  {
2817  const double m_a = type_a.mass();
2818  const double m_b = type_b.mass();
2819  const double msqr = 2. * (m_a * m_a + m_b * m_b);
2820  /* If the c.m. energy is larger than the sum of the pole masses of the
2821  * outgoing particles plus three times of the sum of the widths plus 3 GeV,
2822  * the collision will be neglected.
2823  *
2824  * This can be problematic for some final-state cross sections, but at
2825  * energies that high strings are used anyway.
2826  */
2827  const double w_a = type_a.width_at_pole();
2828  const double w_b = type_b.width_at_pole();
2829  const double uplmt = m_a + m_b + 3.0 * (w_a + w_b) + 3.0;
2830  if (sqrts > uplmt) {
2831  return 0.;
2832  }
2834  if (((type_a.is_Delta() && type_b.is_nucleon()) ||
2835  (type_b.is_Delta() && type_a.is_nucleon())) &&
2836  (type_a.antiparticle_sign() == type_b.antiparticle_sign())) {
2837  return 68. / std::pow(sqrts - 1.104, 1.951);
2840  } else if (((type_a.is_Nstar() && type_b.is_nucleon()) ||
2841  (type_b.is_Nstar() && type_a.is_nucleon())) &&
2842  type_a.antiparticle_sign() == type_b.antiparticle_sign()) {
2843  // NN → NN*
2844  if (twoI == 2) {
2845  return 4.5 / msqr;
2846  } else if (twoI == 0) {
2847  const double parametrization = 14. / msqr;
2853  if (type_a.is_Nstar1535() || type_b.is_Nstar1535()) {
2854  return 6.5 * parametrization;
2855  } else {
2856  return parametrization;
2857  }
2858  }
2859  } else if (((type_a.is_Deltastar() && type_b.is_nucleon()) ||
2860  (type_b.is_Deltastar() && type_a.is_nucleon())) &&
2861  type_a.antiparticle_sign() == type_b.antiparticle_sign()) {
2862  // NN → NΔ*
2863  return 15. / msqr;
2864  } else if ((type_a.is_Delta() && type_b.is_Delta()) &&
2865  (type_a.antiparticle_sign() == type_b.antiparticle_sign())) {
2866  // NN → ΔΔ
2867  if (twoI == 2) {
2868  return 45. / msqr;
2869  } else if (twoI == 0) {
2870  return 120. / msqr;
2871  }
2872  } else if (((type_a.is_Nstar() && type_b.is_Delta()) ||
2873  (type_b.is_Nstar() && type_a.is_Delta())) &&
2874  type_a.antiparticle_sign() == type_b.antiparticle_sign()) {
2875  // NN → ΔN*
2876  return 7. / msqr;
2877  } else if (((type_a.is_Deltastar() && type_b.is_Delta()) ||
2878  (type_b.is_Deltastar() && type_a.is_Delta())) &&
2879  type_a.antiparticle_sign() == type_b.antiparticle_sign()) {
2880  // NN → ΔΔ*
2881  if (twoI == 2) {
2882  return 15. / msqr;
2883  } else if (twoI == 0) {
2884  return 25. / msqr;
2885  }
2886  } else if ((type_a.is_deuteron() && type_b.pdgcode().is_pion()) ||
2887  (type_b.is_deuteron() && type_a.pdgcode().is_pion())) {
2888  /* This parametrization is the result of fitting d+pi->NN cross-section.
2889  * Already Breit-Wigner-like part provides a good fit, exponential fixes
2890  * behaviour around the treshold. The d+pi experimental cross-section
2891  * was taken from Fig. 2 of [\iref{Tanabe:1987vg}]. */
2892  return 0.055 / (pow_int(sqrts - 2.145, 2) + pow_int(0.065, 2)) *
2893  (1.0 - std::exp(-(sqrts - 2.0) * 20.0));
2894  }
2895 
2896  // all cases not listed: zero!
2897  return 0.;
2898 }

◆ find_nn_xsection_from_type()

template<class IntegrationMethod >
CollisionBranchList smash::CrossSections::find_nn_xsection_from_type ( const ParticleTypePtrList &  type_res_1,
const ParticleTypePtrList &  type_res_2,
const IntegrationMethod  integrator 
) const
private

Utility function to avoid code replication in nn_xx().

Parameters
[in]type_res_1List of possible first final resonance types
[in]type_res_2List of possible second final resonance types
[in]integratorUsed to integrate over the kinematically allowed mass range of the Breit-Wigner distribution
Returns
List of all possible NN reactions with their cross sections with different final states

Cross section for 2->2 process with 1/2 resonance(s) in final state. Based on Eq. (46) in Weil:2013mya [63] and Eq. (3.29) in Bass:1998ca [6]

Definition at line 2901 of file crosssections.cc.

2904  {
2905  const ParticleType& type_particle_a = incoming_particles_[0].type();
2906  const ParticleType& type_particle_b = incoming_particles_[1].type();
2907 
2908  CollisionBranchList channel_list;
2909  const double s = sqrt_s_ * sqrt_s_;
2910 
2911  // Loop over specified first resonance list
2912  for (ParticleTypePtr type_res_1 : list_res_1) {
2913  // Loop over specified second resonance list
2914  for (ParticleTypePtr type_res_2 : list_res_2) {
2915  // Check for charge conservation.
2916  if (type_res_1->charge() + type_res_2->charge() !=
2917  type_particle_a.charge() + type_particle_b.charge()) {
2918  continue;
2919  }
2920 
2921  // loop over total isospin
2922  for (const int twoI : I_tot_range(type_particle_a, type_particle_b)) {
2923  const double isospin_factor = isospin_clebsch_gordan_sqr_2to2(
2924  type_particle_a, type_particle_b, *type_res_1, *type_res_2, twoI);
2925  // If Clebsch-Gordan coefficient is zero, don't bother with the rest.
2926  if (std::abs(isospin_factor) < really_small) {
2927  continue;
2928  }
2929 
2930  // Integration limits.
2931  const double lower_limit = type_res_1->min_mass_kinematic();
2932  const double upper_limit = sqrt_s_ - type_res_2->mass();
2933  /* Check the available energy (requiring it to be a little above the
2934  * threshold, because the integration will not work if it's too close).
2935  */
2936  if (upper_limit - lower_limit < 1E-3) {
2937  continue;
2938  }
2939 
2940  // Calculate matrix element.
2941  const double matrix_element = nn_to_resonance_matrix_element(
2942  sqrt_s_, *type_res_1, *type_res_2, twoI);
2943  if (matrix_element <= 0.) {
2944  continue;
2945  }
2946 
2947  /* Calculate resonance production cross section
2948  * using the Breit-Wigner distribution as probability amplitude.
2949  * Integrate over the allowed resonance mass range. */
2950  const double resonance_integral = integrator(*type_res_1, *type_res_2);
2951 
2955  const double spin_factor =
2956  (type_res_1->spin() + 1) * (type_res_2->spin() + 1);
2957  const double xsection = isospin_factor * spin_factor * matrix_element *
2958  resonance_integral / (s * cm_momentum());
2959 
2960  if (xsection > really_small) {
2961  channel_list.push_back(std::make_unique<CollisionBranch>(
2962  *type_res_1, *type_res_2, xsection, ProcessType::TwoToTwo));
2963  logg[LCrossSections].debug(
2964  "Found 2->2 creation process for resonance ", type_res_1, ", ",
2965  type_res_2);
2966  logg[LCrossSections].debug("2->2 with original particles: ",
2967  type_particle_a, type_particle_b);
2968  }
2969  }
2970  }
2971  }
2972  return channel_list;
2973 }

◆ cm_momentum()

double smash::CrossSections::cm_momentum ( ) const
inlineprivate

Determine the momenta of the incoming particles in the center-of-mass system.

Returns
Center-of-mass momentum

Definition at line 580 of file crosssections.h.

580  {
581  const double m1 = incoming_particles_[0].effective_mass();
582  const double m2 = incoming_particles_[1].effective_mass();
583  return pCM(sqrt_s_, m1, m2);
584  }

◆ add_channel()

template<typename F >
void smash::CrossSections::add_channel ( CollisionBranchList &  process_list,
F &&  get_xsection,
double  sqrts,
const ParticleType type_a,
const ParticleType type_b 
) const
inlineprivate

Helper function: Add a 2-to-2 channel to a collision branch list given a cross section.

The cross section is only calculated if there is enough energy for the process. If the cross section is small, the branch is not added.

Definition at line 615 of file crosssections.h.

617  {
618  const double sqrt_s_min =
619  type_a.min_mass_spectral() + type_b.min_mass_spectral();
620  /* Determine wether the process is below the threshold. */
621  double scale_B = 0.0;
622  double scale_I3 = 0.0;
623  bool is_below_threshold;
624  FourVector incoming_momentum = FourVector();
625  if (pot_pointer != nullptr) {
626  for (const auto& p : incoming_particles_) {
627  incoming_momentum += p.momentum();
628  scale_B += pot_pointer->force_scale(p.type()).first;
629  scale_I3 +=
630  pot_pointer->force_scale(p.type()).second * p.type().isospin3_rel();
631  }
632  scale_B -= pot_pointer->force_scale(type_a).first;
633  scale_I3 -=
634  pot_pointer->force_scale(type_a).second * type_a.isospin3_rel();
635  scale_B -= pot_pointer->force_scale(type_b).first;
636  scale_I3 -=
637  pot_pointer->force_scale(type_b).second * type_b.isospin3_rel();
638  is_below_threshold = (incoming_momentum + potentials_.first * scale_B +
639  potentials_.second * scale_I3)
640  .abs() <= sqrt_s_min;
641  } else {
642  is_below_threshold = (sqrts <= sqrt_s_min);
643  }
644  if (is_below_threshold) {
645  return;
646  }
647  const auto xsection = get_xsection();
648  if (xsection > really_small) {
649  process_list.push_back(std::make_unique<CollisionBranch>(
650  type_a, type_b, xsection, ProcessType::TwoToTwo));
651  }
652  }
static std::pair< double, int > force_scale(const ParticleType &data)
Evaluates the scaling factor of the forces acting on the particles.
Definition: potentials.cc:158
Potentials * pot_pointer
Pointer to a Potential class.

Member Data Documentation

◆ incoming_particles_

const ParticleList smash::CrossSections::incoming_particles_
private

List with data of scattering particles.

Definition at line 587 of file crosssections.h.

◆ sqrt_s_

const double smash::CrossSections::sqrt_s_
private

Total energy in the center-of-mass frame.

Definition at line 590 of file crosssections.h.

◆ potentials_

const std::pair<FourVector, FourVector> smash::CrossSections::potentials_
private

Potentials at the interacting point.

They are used to calculate the corrections on the threshold energies.

Definition at line 596 of file crosssections.h.

◆ is_BBbar_pair_

const bool smash::CrossSections::is_BBbar_pair_
private

Whether incoming particles are a pair of a baryon and an antibaryon (could be different baryon types)

Definition at line 602 of file crosssections.h.

◆ is_NNbar_pair_

const bool smash::CrossSections::is_NNbar_pair_
private

Whether incoming particles are a nulecon-antinucleon pair (same isospin)

Definition at line 605 of file crosssections.h.


The documentation for this class was generated from the following files: