Version: SMASH-3.2
experiment.cc
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2013-2024
4  * SMASH Team
5  *
6  * GNU General Public License (GPLv3 or later)
7  *
8  */
9 
10 #include "smash/experiment.h"
11 
12 #include <cstdint>
13 
14 #include "smash/boxmodus.h"
15 #include "smash/collidermodus.h"
16 #include "smash/listmodus.h"
17 #include "smash/spheremodus.h"
18 
19 namespace smash {
20 
21 /* ExperimentBase carries everything that is needed for the evolution */
22 ExperimentPtr ExperimentBase::create(Configuration &config,
23  const std::filesystem::path &output_path) {
24  if (!std::filesystem::exists(output_path)) {
25  throw NonExistingOutputPathRequest("The requested output path (" +
26  output_path.string() +
27  ") does not exist.");
28  }
30 
31  const std::string modus_chooser = config.read(InputKeys::gen_modus);
32  logg[LExperiment].debug() << "Modus for this calculation: " << modus_chooser;
33 
34  if (modus_chooser == "Box") {
35  return std::make_unique<Experiment<BoxModus>>(config, output_path);
36  } else if (modus_chooser == "List") {
37  return std::make_unique<Experiment<ListModus>>(config, output_path);
38  } else if (modus_chooser == "ListBox") {
39  return std::make_unique<Experiment<ListBoxModus>>(config, output_path);
40  } else if (modus_chooser == "Collider") {
41  return std::make_unique<Experiment<ColliderModus>>(config, output_path);
42  } else if (modus_chooser == "Sphere") {
43  return std::make_unique<Experiment<SphereModus>>(config, output_path);
44  } else {
45  throw InvalidModusRequest("Invalid Modus (" + modus_chooser +
46  ") requested from ExperimentBase::create.");
47  }
48 }
49 
134 
135  const int ntest = config.take(InputKeys::gen_testparticles);
136  if (ntest <= 0) {
137  throw std::invalid_argument("Testparticle number should be positive!");
138  }
139 
140  // sets whether to consider only participants in thermodynamic outputs or not
141  const bool only_participants =
143 
144  if (only_participants && config.has_section(InputSections::potentials)) {
145  throw std::invalid_argument(
146  "Only_Participants option cannot be "
147  "set to True when using Potentials.");
148  }
149 
150  const std::string modus_chooser = config.take(InputKeys::gen_modus);
151  // remove config maps of unused Modi
152  config.remove_all_entries_in_section_but_one(modus_chooser, {"Modi"});
153 
154  double box_length = -1.0;
156  box_length = config.read(InputKeys::modi_box_length);
157  }
159  box_length = config.read(InputKeys::modi_listBox_length);
160  }
161 
162  /* If this Delta_Time option is absent (this can be for timestepless mode)
163  * just assign 1.0 fm, reasonable value will be set at event initialization
164  */
165  const double dt = config.take(InputKeys::gen_deltaTime);
166  if (dt <= 0.) {
167  throw std::invalid_argument("Delta_Time cannot be zero or negative.");
168  }
169 
170  const double t_end = config.read(InputKeys::gen_endTime);
171  if (t_end <= 0.) {
172  throw std::invalid_argument("End_Time cannot be zero or negative.");
173  }
174 
175  // Enforce a small time step, if the box modus is used
176  if (box_length > 0.0 && dt > box_length / 10.0) {
177  throw std::invalid_argument(
178  "Please decrease the timestep size. "
179  "A value of (dt <= l_box / 10) is necessary in the box modus.");
180  }
181 
182  // define output clock
183  std::unique_ptr<Clock> output_clock = nullptr;
186  throw std::invalid_argument(
187  "Please specify either Output_Interval or Output_Times");
188  }
189  std::vector<double> output_times =
191  // Add an output time larger than the end time so that the next time is
192  // always defined during the time evolution
193  output_times.push_back(t_end + 1.);
194  output_clock = std::make_unique<CustomClock>(output_times);
195  } else {
196  const double output_dt =
197  config.take(InputKeys::output_outputInterval, t_end);
198  if (output_dt <= 0.) {
199  throw std::invalid_argument(
200  "Output_Interval cannot be zero or negative.");
201  }
202  output_clock = std::make_unique<UniformClock>(0.0, output_dt, t_end);
203  }
204 
205  // Add proper error messages if photons are not configured properly.
206  // 1) Missing Photon config section.
209  throw std::invalid_argument(
210  "Photon output is enabled although photon production is disabled. "
211  "Photon production can be configured in the \"Photon\" subsection "
212  "of the \"Collision_Term\".");
213  }
214 
215  // 2) Missing Photon output section.
216  if (!(config.has_section(InputSections::o_photons))) {
217  const bool missing_output_2to2 =
219  missing_output_brems =
221  if (missing_output_2to2 || missing_output_brems) {
222  throw std::invalid_argument(
223  "Photon output is disabled although photon production is enabled. "
224  "Please enable the photon output.");
225  }
226  }
227 
228  // Add proper error messages if dileptons are not configured properly.
229  // 1) Missing Dilepton config section.
232  throw std::invalid_argument(
233  "Dilepton output is enabled although dilepton production is disabled. "
234  "Dilepton production can be configured in the \"Dileptons\" subsection "
235  "of the \"Collision_Term\".");
236  }
237 
238  // 2) Missing Dilepton output section.
239  if (!(config.has_section(InputSections::o_dileptons))) {
240  const bool missing_output_decays =
242  if (missing_output_decays) {
243  throw std::invalid_argument(
244  "Dilepton output is disabled although dilepton production is "
245  "enabled. "
246  "Please enable the dilepton output.");
247  }
248  }
249  /* Elastic collisions between the nucleons with the square root s
250  * below low_snn_cut are excluded. */
251  const double low_snn_cut =
253  const auto proton = ParticleType::try_find(pdg::p);
254  const auto pion = ParticleType::try_find(pdg::pi_z);
255  if (proton && pion &&
256  low_snn_cut > proton->mass() + proton->mass() + pion->mass()) {
257  logg[LExperiment].warn("The cut-off should be below the threshold energy",
258  " of the process: NN to NNpi");
259  }
260  const bool potential_affect_threshold =
262  const double scale_xs = config.take(InputKeys::collTerm_crossSectionScaling);
263 
264  const auto criterion = config.take(InputKeys::collTerm_collisionCriterion);
265 
267  criterion != CollisionCriterion::Stochastic) {
268  throw std::invalid_argument(
269  "Only use a fixed minimal cell length with the stochastic collision "
270  "criterion.");
271  }
273  criterion == CollisionCriterion::Stochastic) {
274  throw std::invalid_argument(
275  "Only use maximum cross section with the geometric collision "
276  "criterion. Use Fixed_Min_Cell_Length to change the grid size for the "
277  "stochastic criterion.");
278  }
279 
288  const double maximum_cross_section_default =
289  ParticleType::exists("d'") ? 2000.0 : 200.0;
290 
291  double maximum_cross_section = config.take(
292  InputKeys::collTerm_maximumCrossSection, maximum_cross_section_default);
293  maximum_cross_section *= scale_xs;
294  return {std::make_unique<UniformClock>(0.0, dt, t_end),
295  std::move(output_clock),
297  ntest,
308  criterion,
312  config.take(InputKeys::collTerm_strings, modus_chooser != "Box"),
315  low_snn_cut,
316  potential_affect_threshold,
317  box_length,
318  maximum_cross_section,
320  scale_xs,
321  only_participants,
324  std::nullopt};
325 }
326 
327 std::string format_measurements(const std::vector<Particles> &ensembles,
328  uint64_t scatterings_this_interval,
329  const QuantumNumbers &conserved_initial,
330  SystemTimePoint time_start, double time,
331  double E_mean_field,
332  double E_mean_field_initial) {
333  const SystemTimeSpan elapsed_seconds = SystemClock::now() - time_start;
334 
335  const QuantumNumbers current_values(ensembles);
336  const QuantumNumbers difference = current_values - conserved_initial;
337  int total_particles = 0;
338  for (const Particles &particles : ensembles) {
339  total_particles += particles.size();
340  }
341 
342  // Make sure there are no FPEs in case of IC output, were there will
343  // eventually be no more particles in the system
344  const double current_energy = current_values.momentum().x0();
345  const double energy_per_part =
346  (total_particles > 0) ? (current_energy + E_mean_field) / total_particles
347  : 0.0;
348 
349  std::ostringstream ss;
350  // clang-format off
351  ss << field<7, 3> << time
352  // total kinetic energy in the system
353  << field<11, 3> << current_energy
354  // total mean field energy in the system
355  << field<11, 3> << E_mean_field
356  // total energy in the system
357  << field<12, 3> << current_energy + E_mean_field
358  // total energy per particle in the system
359  << field<12, 6> << energy_per_part;
360  // change in total energy per particle (unless IC output is enabled)
361  if (total_particles == 0) {
362  ss << field<13, 6> << "N/A";
363  } else {
364  ss << field<13, 6> << (difference.momentum().x0()
365  + E_mean_field - E_mean_field_initial)
366  / total_particles;
367  }
368  ss << field<14, 3> << scatterings_this_interval
369  << field<10, 3> << total_particles
370  << field<9, 3> << elapsed_seconds;
371  // clang-format on
372  return ss.str();
373 }
374 
376  const Potentials &potentials,
378  RectangularLattice<std::pair<ThreeVector, ThreeVector>> *em_lattice,
379  const ExperimentParameters &parameters) {
380  // basic parameters and variables
381  const double V_cell = (jmuB_lat.cell_sizes())[0] *
382  (jmuB_lat.cell_sizes())[1] * (jmuB_lat.cell_sizes())[2];
383 
384  double E_mean_field = 0.0;
385  double density_mean = 0.0;
386  double density_variance = 0.0;
387 
388  /*
389  * We anticipate having other options, like the vector DFT potentials, in the
390  * future, hence we include checking which potentials are used.
391  */
392  if (potentials.use_skyrme()) {
393  /*
394  * Calculating the symmetry energy contribution to the total mean field
395  * energy in the system is not implemented at this time.
396  */
397  if (potentials.use_symmetry() &&
398  parameters.outputclock->current_time() == 0.0) {
399  logg[LExperiment].warn()
400  << "Note:"
401  << "\nSymmetry energy is not included in the mean field calculation."
402  << "\n\n";
403  }
404 
405  /*
406  * Skyrme potential parameters:
407  * C1GeV are the Skyrme coefficients converted to GeV,
408  * b1 are the powers of the baryon number density entering the expression
409  * for the energy density of the system. Note that these exponents are
410  * larger by 1 than those for the energy of a particle (which are used in
411  * Potentials class). The formula for a total mean field energy due to a
412  * Skyrme potential is E_MF = \sum_i (C_i/b_i) ( n_B^b_i )/( n_0^(b_i - 1) )
413  * where nB is the local rest frame baryon number density and n_0 is the
414  * saturation density. Then the single particle potential follows from
415  * V = d E_MF / d n_B .
416  */
417  double C1GeV = (potentials.skyrme_a()) / 1000.0;
418  double C2GeV = (potentials.skyrme_b()) / 1000.0;
419  double b1 = 2.0;
420  double b2 = (potentials.skyrme_tau()) + 1.0;
421 
422  /*
423  * Note: calculating the mean field only works if lattice is used.
424  * We iterate over the nodes of the baryon density lattice to sum their
425  * contributions to the total mean field.
426  */
427  int number_of_nodes = 0;
428  double lattice_mean_field_total = 0.0;
429 
430  for (auto &node : jmuB_lat) {
431  number_of_nodes++;
432  // the rest frame density
433  double rhoB = node.rho();
434  // the computational frame density
435  const double j0B = node.jmu_net().x0();
436 
437  const double abs_rhoB = std::abs(rhoB);
438  if (abs_rhoB < very_small_double) {
439  continue;
440  }
441  density_mean += j0B;
442  density_variance += j0B * j0B;
443 
444  /*
445  * The mean-field energy for the Skyrme potential. Note: this expression
446  * is only exact in the rest frame, and is expected to significantly
447  * deviate from the correct value for systems that are considerably
448  * relativistic. Note: symmetry energy is not taken into the account.
449  *
450  * TODO: Add symmetry energy.
451  */
452  double mean_field_contribution_1 = (C1GeV / b1) * std::pow(abs_rhoB, b1) /
453  std::pow(nuclear_density, b1 - 1);
454  double mean_field_contribution_2 = (C2GeV / b2) * std::pow(abs_rhoB, b2) /
455  std::pow(nuclear_density, b2 - 1);
456 
457  lattice_mean_field_total +=
458  V_cell * (mean_field_contribution_1 + mean_field_contribution_2);
459  }
460 
461  // logging statistical properties of the density calculation
462  density_mean = density_mean / number_of_nodes;
463  density_variance = density_variance / number_of_nodes;
464  double density_scaled_variance =
465  std::sqrt(density_variance - density_mean * density_mean) /
466  density_mean;
467  logg[LExperiment].debug() << "\t\t\t\t\t";
468  logg[LExperiment].debug()
469  << "\n\t\t\t\t\t density mean = " << density_mean;
470  logg[LExperiment].debug()
471  << "\n\t\t\t\t\t density scaled variance = " << density_scaled_variance;
472  logg[LExperiment].debug()
473  << "\n\t\t\t\t\t total mean_field = "
474  << lattice_mean_field_total * parameters.testparticles *
475  parameters.n_ensembles
476  << "\n";
477 
478  E_mean_field = lattice_mean_field_total;
479  } // if (potentials.use_skyrme())
480 
481  if (potentials.use_vdf()) {
482  /*
483  * Safety check:
484  * Calculating the symmetry energy contribution to the total mean field
485  * energy in the system is not implemented at this time.
486  */
487  if (potentials.use_symmetry() &&
488  parameters.outputclock->current_time() == 0.0) {
489  logg[LExperiment].error()
490  << "\nSymmetry energy is not included in the VDF mean-field "
491  "calculation"
492  << "\nas VDF potentials haven't been fitted with symmetry energy."
493  << "\n\n";
494  }
495 
496  /*
497  * The total mean-field energy density due to a VDF potential is
498  * E_MF = \sum_i C_i rho^(b_i - 2) *
499  * * [j_0^2 - rho^2 * (b_i - 1)/b_i] / rho_0^(b_i - 1)
500  * where j_0 is the local computational frame baryon density, rho is the
501  * local rest frame baryon density, and rho_0 is the saturation density.
502  */
503 
504  // saturation density of nuclear matter specified in the VDF parameters
505  double rhoB_0 = potentials.saturation_density();
506 
507  /*
508  * Note: calculating the mean field only works if lattice is used.
509  * We iterate over the nodes of the baryon density lattice to sum their
510  * contributions to the total mean field.
511  */
512  int number_of_nodes = 0;
513  double lattice_mean_field_total = 0.0;
514 
515  for (auto &node : jmuB_lat) {
516  number_of_nodes++;
517  // the rest frame density
518  double rhoB = node.rho();
519  // the computational frame density
520  const double j0B = node.jmu_net().x0();
521  double abs_rhoB = std::abs(rhoB);
522  density_mean += j0B;
523  density_variance += j0B * j0B;
524 
525  /*
526  * The mean-field energy for the VDF potential. This expression is correct
527  * in any frame, and in the rest frame conforms to the Skyrme mean-field
528  * energy (if same coefficients and powers are used).
529  */
530  // in order to prevent dividing by zero in case any b_i < 2.0
531  if (abs_rhoB < very_small_double) {
532  abs_rhoB = very_small_double;
533  }
534  double mean_field_contribution = 0.0;
535  for (int i = 0; i < potentials.number_of_terms(); i++) {
536  mean_field_contribution +=
537  potentials.coeffs()[i] *
538  std::pow(abs_rhoB, potentials.powers()[i] - 2.0) *
539  (j0B * j0B -
540  ((potentials.powers()[i] - 1.0) / potentials.powers()[i]) *
541  abs_rhoB * abs_rhoB) /
542  std::pow(rhoB_0, potentials.powers()[i] - 1.0);
543  }
544  lattice_mean_field_total += V_cell * mean_field_contribution;
545  }
546 
547  // logging statistical properties of the density calculation
548  density_mean = density_mean / number_of_nodes;
549  density_variance = density_variance / number_of_nodes;
550  double density_scaled_variance =
551  std::sqrt(density_variance - density_mean * density_mean) /
552  density_mean;
553  logg[LExperiment].debug() << "\t\t\t\t\t";
554  logg[LExperiment].debug()
555  << "\n\t\t\t\t\t density mean = " << density_mean;
556  logg[LExperiment].debug()
557  << "\n\t\t\t\t\t density scaled variance = " << density_scaled_variance;
558  logg[LExperiment].debug()
559  << "\n\t\t\t\t\t total mean_field = "
560  << lattice_mean_field_total * parameters.testparticles *
561  parameters.n_ensembles
562  << "\n";
563 
564  E_mean_field = lattice_mean_field_total;
565  }
566 
567  double electromagnetic_potential = 0.0;
568  if (potentials.use_coulomb() && em_lattice) {
569  // Use cell volume of electromagnetic fields lattice even though it should
570  // be the same as for net-baryon density
571  double V_cell_em = em_lattice->cell_sizes()[0] *
572  em_lattice->cell_sizes()[1] *
573  em_lattice->cell_sizes()[2];
574  for (auto &fields : *em_lattice) {
575  // Energy is 0.5 * int E^2 + B^2 dV
576  electromagnetic_potential +=
577  hbarc * 0.5 * V_cell_em * (fields.first.sqr() + fields.second.sqr());
578  }
579  }
580  logg[LExperiment].debug() << "Total energy in electromagnetic field = "
581  << electromagnetic_potential;
582  E_mean_field += electromagnetic_potential;
583  /*
584  * E_mean_field is multiplied by the number of testparticles per particle and
585  * the number of parallel ensembles because the total kinetic energy tracked
586  * is that of all particles in the simulation, including test-particles and/or
587  * ensembles, and so this way is more consistent.
588  */
589  E_mean_field =
590  E_mean_field * parameters.testparticles * parameters.n_ensembles;
591 
592  return E_mean_field;
593 }
594 
595 EventInfo fill_event_info(const std::vector<Particles> &ensembles,
596  double E_mean_field, double modus_impact_parameter,
597  const ExperimentParameters &parameters,
598  bool projectile_target_interact,
599  bool kinematic_cut_for_SMASH_IC) {
600  const QuantumNumbers current_values(ensembles);
601  const double E_kinetic_total = current_values.momentum().x0();
602  const double E_total = E_kinetic_total + E_mean_field;
603 
604  EventInfo event_info{modus_impact_parameter,
605  parameters.box_length,
606  parameters.outputclock->current_time(),
607  E_kinetic_total,
608  E_mean_field,
609  E_total,
610  parameters.testparticles,
611  parameters.n_ensembles,
612  !projectile_target_interact,
613  kinematic_cut_for_SMASH_IC};
614  return event_info;
615 }
616 
617 void validate_and_adjust_particle_list(ParticleList &particle_list) {
618  static bool warn_mass_discrepancy = true;
619  static bool warn_off_shell_particle = true;
620  for (auto it = particle_list.begin(); it != particle_list.end();) {
621  auto &particle = *it;
622  auto pdgcode = particle.pdgcode();
623  try {
624  // Convert Kaon-L or Kaon-S into K0 or Anti-K0 used in SMASH
625  if (pdgcode == 0x310 || pdgcode == 0x130) {
626  pdgcode = (random::uniform_int(0, 1) == 0) ? pdg::K_z : pdg::Kbar_z;
627  }
628  /* ATTENTION: It would be wrong to directly assign here the return value
629  * to 'particle', because this would potentially also change its id and
630  * process number, which in turn, might lead to actions to be discarded.
631  * Here, only the particle momentum has to be adjusted and this is done
632  * creating a new particle and using its momentum to set 'particle' one.
633  * The position and momentum of the particle are checked for nan values.
634  */
635  auto valid_smash_particle =
637  pdgcode, particle.effective_mass(), particle.position(),
638  particle.momentum(), LExperiment, warn_mass_discrepancy,
639  warn_off_shell_particle);
640  particle.set_4position(valid_smash_particle.position());
641  particle.set_4momentum(valid_smash_particle.momentum());
642  particle.set_cross_section_scaling_factor(
643  valid_smash_particle.xsec_scaling_factor());
644  it++;
646  logg[LExperiment].warn()
647  << "SMASH does not recognize pdg code " << pdgcode
648  << " obtained from hadron list. This particle will be ignored.\n";
649  it = particle_list.erase(it);
650  }
651  }
652 }
653 
654 void validate_duplicate_IC_config(double output, std::optional<double> collider,
655  std::string key) {
656  const std::string deprecated_message =
657  "Configuration key for initial conditions was provided twice and "
658  "inconsistently.\nSome parameters in the Initial_Conditions section of "
659  "Output are deprecated.\nPlease use the corresponding values in the "
660  "Initial_Conditions subsection under Collider.";
661  if (collider.has_value()) {
662  if (output != collider) {
663  logg[LInitialConditions].fatal("Inconsistent values for ", key,
664  " in configuration.");
665  throw std::invalid_argument(deprecated_message);
666  }
667  }
668 }
669 
670 } // namespace smash
Interface to the SMASH configuration files.
T read(const Key< T > &key) const
Additional interface for SMASH to read configuration values without removing them.
bool has_value(const Key< T > &key) const
Return whether there is a non-empty value behind the requested key (which is supposed not to refer to...
bool has_section(const KeyLabels &labels) const
Return whether there is a (possibly empty) section with the given labels.
T take(const Key< T > &key)
The default interface for SMASH to read configuration values.
void remove_all_entries_in_section_but_one(const std::string &key, KeyLabels section={})
Remove all entries in the given section except for key.
static std::unique_ptr< ExperimentBase > create(Configuration &config, const std::filesystem::path &output_path)
Factory method that creates and initializes a new Experiment<Modus>.
Definition: experiment.cc:22
double x0() const
Definition: fourvector.h:313
static const ParticleTypePtr try_find(PdgCode pdgcode)
Returns the ParticleTypePtr for the given pdgcode.
Definition: particletype.cc:89
static bool exists(PdgCode pdgcode)
The Particles class abstracts the storage and manipulation of particles.
Definition: particles.h:33
A class that stores parameters of potentials, calculates potentials and their gradients.
Definition: potentials.h:36
const std::vector< double > & powers() const
Definition: potentials.h:459
virtual bool use_symmetry() const
Definition: potentials.h:435
const std::vector< double > & coeffs() const
Definition: potentials.h:457
virtual bool use_skyrme() const
Definition: potentials.h:433
virtual bool use_coulomb() const
Definition: potentials.h:437
double skyrme_a() const
Definition: potentials.h:444
double skyrme_tau() const
Definition: potentials.h:448
int number_of_terms() const
Definition: potentials.h:461
double skyrme_b() const
Definition: potentials.h:446
virtual bool use_vdf() const
Definition: potentials.h:453
double saturation_density() const
Definition: potentials.h:455
A container for storing conserved values.
FourVector momentum() const
A container class to hold all the arrays on the lattice and access them.
Definition: lattice.h:49
const std::array< double, 3 > & cell_sizes() const
Definition: lattice.h:162
@ Stochastic
Stochastic Criteiron.
#define SMASH_SOURCE_LOCATION
Hackery that is required to output the location in the source code where the log statement occurs.
Definition: logging.h:153
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:40
constexpr int K_z
K⁰.
constexpr int p
Proton.
constexpr int pi_z
π⁰.
constexpr int Kbar_z
K̄⁰.
T uniform_int(T min, T max)
Definition: random.h:100
Definition: action.h:24
void validate_duplicate_IC_config(double, std::optional< double >, std::string)
The physics inputs for Initial Conditions are currently duplicated in both Output and Collider sectio...
Definition: experiment.cc:654
static constexpr int LInitialConditions
Definition: experiment.h:93
EventInfo fill_event_info(const std::vector< Particles > &ensembles, double E_mean_field, double modus_impact_parameter, const ExperimentParameters &parameters, bool projectile_target_interact, bool kinematic_cut_for_SMASH_IC)
Generate the EventInfo object which is passed to outputs_.
Definition: experiment.cc:595
SystemClock::duration SystemTimeSpan
The time duration type (alias) used for measuring run times.
Definition: chrono.h:28
std::string format_measurements(const std::vector< Particles > &ensembles, uint64_t scatterings_this_interval, const QuantumNumbers &conserved_initial, SystemTimePoint time_start, double time, double E_mean_field, double E_mean_field_initial)
Generate a string which will be printed to the screen when SMASH is running.
Definition: experiment.cc:327
ExperimentParameters create_experiment_parameters(Configuration &config)
Gathers all general Experiment parameters.
Definition: experiment.cc:132
constexpr double very_small_double
A very small double, used to avoid division by zero.
Definition: constants.h:40
double calculate_mean_field_energy(const Potentials &potentials, RectangularLattice< smash::DensityOnLattice > &jmu_B_lat, RectangularLattice< std::pair< ThreeVector, ThreeVector >> *em_lattice, const ExperimentParameters &parameters)
Calculate the total mean field energy of the system; this will be printed to the screen when SMASH is...
Definition: experiment.cc:375
static constexpr int LExperiment
void validate_and_adjust_particle_list(ParticleList &particle_list)
Validate a particle list adjusting each particle to be a valid SMASH particle.
Definition: experiment.cc:617
constexpr double nuclear_density
Ground state density of symmetric nuclear matter [fm^-3].
Definition: constants.h:48
ParticleData create_valid_smash_particle_matching_provided_quantities(PdgCode pdgcode, double mass, const FourVector &four_position, const FourVector &four_momentum, int log_area, bool &mass_warning, bool &on_shell_warning)
This function creates a SMASH particle validating the provided information.
constexpr double hbarc
GeV <-> fm conversion factor.
Definition: constants.h:25
std::chrono::time_point< std::chrono::system_clock > SystemTimePoint
Type (alias) that is used to store the current time.
Definition: chrono.h:22
Structure to contain custom data for output.
Exception class that is thrown if an invalid modus is requested from the Experiment factory.
Definition: experiment.h:147
Exception class that is thrown if the requested output path in the Experiment factory is not existing...
Definition: experiment.h:156
Helper structure for Experiment.
double box_length
Length of the box in fm in case of box modus, otherwise -1.
int n_ensembles
Number of parallel ensembles.
std::unique_ptr< Clock > outputclock
Output clock to keep track of the next output time.
int testparticles
Number of test-particles.
static const Key< bool > collTerm_photons_twoToTwoScatterings
See user guide description for more information.
Definition: input_keys.h:3031
static const Key< double > modi_listBox_length
See user guide description for more information.
Definition: input_keys.h:4538
static const Key< double > collTerm_resonanceLifetimeModifier
See user guide description for more information.
Definition: input_keys.h:2439
static const Key< ReactionsBitSet > collTerm_includedTwoToTwo
See user guide description for more information.
Definition: input_keys.h:2194
static const Key< double > collTerm_crossSectionScaling
See user guide description for more information.
Definition: input_keys.h:2083
static const Key< double > modi_box_length
See user guide description for more information.
Definition: input_keys.h:4265
static const Key< bool > collTerm_decayInitial
See user guide description for more information.
Definition: input_keys.h:2158
static const Key< std::string > gen_modus
See user guide description for more information.
Definition: input_keys.h:1119
static const Key< double > gen_smearingTriangularRange
See user guide description for more information.
Definition: input_keys.h:1511
static const Key< double > output_outputInterval
See user guide description for more information.
Definition: input_keys.h:4587
static const Key< double > gen_smearingGaussianSigma
See user guide description for more information.
Definition: input_keys.h:1349
static const Key< bool > collTerm_dileptons_decays
See user guide description for more information.
Definition: input_keys.h:3019
static const Key< bool > collTerm_strings
See user guide description for more information.
Definition: input_keys.h:2455
static const Key< DerivativesMode > gen_derivativesMode
See user guide description for more information.
Definition: input_keys.h:1227
static const Key< double > gen_endTime
See user guide description for more information.
Definition: input_keys.h:1093
static const Key< bool > collTerm_photons_bremsstrahlung
See user guide description for more information.
Definition: input_keys.h:3043
static const Key< double > gen_smearingGaussCutoffInSigma
See user guide description for more information.
Definition: input_keys.h:1336
static const Key< double > gen_smearingDiscreteWeight
See user guide description for more information.
Definition: input_keys.h:1244
static const Key< double > collTerm_elasticNNCutoffSqrts
See user guide description for more information.
Definition: input_keys.h:2116
static const Key< int > gen_ensembles
See user guide description for more information.
Definition: input_keys.h:1274
static const Key< double > collTerm_fixedMinCellLength
See user guide description for more information.
Definition: input_keys.h:2131
static const Key< MultiParticleReactionsBitSet > collTerm_multiParticleReactions
See user guide description for more information.
Definition: input_keys.h:2321
static const Key< double > collTerm_maximumCrossSection
See user guide description for more information.
Definition: input_keys.h:2273
static const Key< CollisionCriterion > collTerm_collisionCriterion
See user guide description for more information.
Definition: input_keys.h:2066
static const Key< SmearingMode > gen_smearingMode
See user guide description for more information.
Definition: input_keys.h:1442
static const Key< bool > output_thermodynamics_onlyParticipants
See user guide description for more information.
Definition: input_keys.h:5178
static const Key< FieldDerivativesMode > gen_fieldDerivativesMode
See user guide description for more information.
Definition: input_keys.h:1321
static const Key< bool > collTerm_ignoreDecayWidthAtTheEnd
See user guide description for more information.
Definition: input_keys.h:2236
static const Key< NNbarTreatment > collTerm_nnbarTreatment
See user guide description for more information.
Definition: input_keys.h:2346
static const Key< double > gen_deltaTime
See user guide description for more information.
Definition: input_keys.h:1204
static const Key< std::vector< double > > output_outputTimes
See user guide description for more information.
Definition: input_keys.h:4611
static const Key< bool > lattice_potentialsAffectThreshold
See user guide description for more information.
Definition: input_keys.h:5368
static const Key< bool > collTerm_twoToOne
See user guide description for more information.
Definition: input_keys.h:2533
static const Key< int > gen_testparticles
See user guide description for more information.
Definition: input_keys.h:1474
static const Section potentials
Section for the potentials information.
Definition: input_keys.h:164
static const Section c_photons
Subsection for the photons.
Definition: input_keys.h:61
static const Section c_dileptons
Subsection for the dileptons.
Definition: input_keys.h:55
static const Section p_vdf
Subsection for the VDF potentials information.
Definition: input_keys.h:176
static const Section o_dileptons
Subsection for the output dileptons content.
Definition: input_keys.h:147
static const Section o_photons
Subsection for the output photons content.
Definition: input_keys.h:154