Version: SMASH-3.1
random.cc
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2014,2017-2019,2022
4  * SMASH Team
5  *
6  * GNU General Public License (GPLv3 or later)
7  *
8  */
9 
10 #include "smash/random.h"
11 
12 #include <random>
13 
14 #include "smash/logging.h"
15 
16 namespace smash {
17 static constexpr int LGrandcanThermalizer = LogArea::GrandcanThermalizer::id;
18 /*thread_local (see #3075)*/ random::Engine random::engine;
19 
21  std::random_device rd;
22  static_assert(std::is_same<decltype(rd()), uint32_t>::value,
23  "random_device is assumed to generate uint32_t");
24  uint64_t unsigned_seed =
25  (static_cast<uint64_t>(rd()) << 32) | static_cast<uint64_t>(rd());
26  // Discard the highest bit to make sure it fits into a positive int64_t
27  const int64_t seed = static_cast<int64_t>(unsigned_seed >> 1);
28  return seed;
29 }
30 
31 random::BesselSampler::BesselSampler(const double poisson_mean1,
32  const double poisson_mean2,
33  const int fixed_difference)
34  : a_(2.0 * std::sqrt(poisson_mean1 * poisson_mean2)),
35  N_(std::abs(fixed_difference)),
36  N_is_positive_(fixed_difference >= 0) {
37  assert(poisson_mean1 >= 0.0);
38  assert(poisson_mean2 >= 0.0);
39  logg[LGrandcanThermalizer].debug("Bessel sampler",
40  ": Poisson mean N1 = ", poisson_mean1,
41  ", Poisson mean N2 = ", poisson_mean2,
42  ", N1 - N2 fixed to ", fixed_difference);
43  m_ = 0.5 * (std::sqrt(a_ * a_ + N_ * N_) - N_);
44  if (m_ >= m_switch_method_) {
45  mu_ = 0.5 * a_ * r_(N_, a_);
46  const double mean_sqr = mu_ * (1.0 + 0.5 * a_ * r_(N_ + 1, a_));
47  sigma_ = std::sqrt(mean_sqr - mu_ * mu_);
49  "m = ", m_, " -> using gaussian sampling with mean = ", mu_,
50  ", sigma = ", sigma_);
51  } else {
52  logg[LGrandcanThermalizer].debug("m = ", m_,
53  " -> using direct sampling method");
54  std::vector<double> probabilities;
55  double wi = 1.0, sum = 0.0;
56  int i = 0;
57  do {
58  sum += wi;
59  probabilities.push_back(wi);
60  wi *= 0.25 * a_ * a_ / (i + 1) / (N_ + i + 1);
61  i++;
62  } while (wi > negligible_probability_);
63  i = 0;
64  for (double p : probabilities) {
65  p /= sum;
66  logg[LGrandcanThermalizer].debug("Probability (", i, ") = ", p);
67  i++;
68  }
69  dist_.reset_weights(probabilities);
70  }
71 }
72 
73 std::pair<int, int> random::BesselSampler::sample() {
74  const int N_smaller = (m_ >= m_switch_method_)
75  ? std::round(random::normal(mu_, sigma_))
76  : dist_();
77  return N_is_positive_ ? std::make_pair(N_smaller + N_, N_smaller)
78  : std::make_pair(N_smaller, N_smaller + N_);
79 }
80 
81 double random::BesselSampler::r_(int n, double a) {
82  const double a_inv = 1.0 / a;
83  double res = 0.0;
84  // |x - continued fraction of order n| < 2^(-n+1), see the book
85  // "Continued fractions" by Khinchin. For 10^-16 = ~2^-50 precision
86  // 50 iterations should be sufficient. However, I found that for some
87  // numerical reason at least 100 terms are needed.
88  int i = 200;
89  for (; i > 0; i--) {
90  res = 1.0 / (a_inv * 2 * (n + i) + res);
91  }
92  // Check the known property of r(n,a) function, see \cite Yuan2000.
93  assert(a / (std::sqrt(a * a + (n + 1) * (n + 1)) + n + 1) <= res);
94  assert(res <= a / (std::sqrt(a * a + n * n) + n));
95  return res;
96 }
97 
98 } // namespace smash
double mu_
Mean of the Bessel distribution.
Definition: random.h:435
double sigma_
Standard deviation of the Bessel distribution.
Definition: random.h:438
std::pair< int, int > sample()
Sample two numbers from given Poissonians with a fixed difference.
Definition: random.cc:73
static double r_(int n, double a)
Compute the ratio of two Bessel functions r(n,a) = bessel_I(n+1,a)/bessel_I(n,a) using the continued ...
Definition: random.cc:81
static constexpr double negligible_probability_
Probabilities smaller than negligibly_probability are neglected.
Definition: random.h:432
double m_
Mode of the Bessel function, see for details.
Definition: random.h:413
static constexpr double m_switch_method_
Switching mode to normal approximation.
Definition: random.h:429
random::discrete_dist< double > dist_
Vector to store tabulated values of probabilities for small m case (m <6).
Definition: random.h:410
BesselSampler(const double poisson_mean1, const double poisson_mean2, const int fixed_difference)
Construct a BesselSampler.
Definition: random.cc:31
const int N_
First parameter of Bessel distribution (= in ).
Definition: random.h:419
const double a_
Second parameter of Bessel distribution, see for details.
Definition: random.h:416
void reset_weights(const std::vector< T > &plist)
Reset the discrete distribution from a new probability list.
Definition: random.h:280
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
constexpr int p
Proton.
constexpr int n
Neutron.
Engine engine
The engine that is used commonly by all distributions.
Definition: random.cc:18
int64_t generate_63bit_seed()
Generates a seed with a truly random 63-bit value, if possible.
Definition: random.cc:20
std::mt19937_64 Engine
The random number engine used is the Mersenne Twister.
Definition: random.h:27
double normal(const T &mean, const T &sigma)
Returns a random number drawn from a normal distribution.
Definition: random.h:250
Definition: action.h:24
static constexpr int LGrandcanThermalizer