44 const int max_iter = 50;
46 double e_previous_step = 0.0;
47 const double tolerance = 5.e-4;
49 for (iter = 0; iter < max_iter; iter++) {
52 if (std::abs(
e_ - e_previous_step) < tolerance) {
55 const double gamma_inv = std::sqrt(1.0 -
v_.
sqr());
61 T_ = T_mub_mus_muq[0];
62 mub_ = T_mub_mus_muq[1];
63 mus_ = T_mub_mus_muq[2];
64 muq_ = T_mub_mus_muq[3];
75 if (iter == max_iter) {
76 std::cout <<
"Warning from solver: max iterations exceeded."
77 <<
" Accuracy: " << std::abs(
e_ - e_previous_step)
78 <<
" is less than tolerance " << tolerance << std::endl;
83 double mus0,
double muq0,
98 return out <<
"T[mu,0]: " << node.
Tmu0() <<
", nb: " << node.
nb()
99 <<
", ns: " << node.
ns() <<
", v: " << node.
v()
100 <<
", e: " << node.
e() <<
", p: " << node.
p()
101 <<
", T: " << node.
T() <<
", mub: " << node.
mub()
102 <<
", mus: " << node.
mus() <<
", muq: " << node.
muq();
106 const std::array<int, 3> n_cells,
107 const std::array<double, 3> origin,
108 bool periodicity,
double e_critical,
109 double t_start,
double delta_t,
111 bool BF_microcanonical)
112 : eos_typelist_(list_eos_particles()),
113 N_sorts_(eos_typelist_.size()),
118 BF_enforce_microcanonical_(BF_microcanonical) {
120 lat_ = std::make_unique<RectangularLattice<ThermLatticeNode>>(
121 lat_sizes, n_cells, origin, periodicity, upd);
122 const std::array<double, 3> abc =
lat_->cell_sizes();
131 bool ignore_cells_under_treshold) {
136 for (
auto &node : *
lat_) {
140 if (!ignore_cells_under_treshold ||
141 node.Tmu0().x0() + std::abs(node.Tmu0().x1()) +
142 std::abs(node.Tmu0().x2()) + std::abs(node.Tmu0().x3()) >=
144 node.compute_rest_frame_quantities(
eos_);
153 +0.5 *
lat_->cell_sizes()[0]),
155 +0.5 *
lat_->cell_sizes()[1]),
157 +0.5 *
lat_->cell_sizes()[2]));
161 ParticleList &plist,
const FourVector required_total_momentum) {
165 required_total_momentum);
171 for (
auto &particle : plist) {
172 particle.set_4momentum(particle.type().mass(),
173 particle.momentum().threevec() + mom_to_add);
182 double E_expected = required_total_momentum.
abs();
183 for (
auto &particle : plist) {
184 particle.boost_momentum(beta_CM_generated);
185 E += particle.momentum().x0();
189 double a, a_min, a_max, er;
190 const int max_iter = 100;
192 if (E_expected >= E) {
200 a = 0.5 * (a_min + a_max);
202 for (
const auto &particle : plist) {
203 const double p2 = particle.momentum().threevec().sqr();
204 const double E2 = particle.momentum().x0() * particle.momentum().x0();
205 E += std::sqrt(E2 + a * (a + 2.0) * p2);
216 }
while (std::abs(er) > tolerance && iter < max_iter);
220 for (
auto &particle : plist) {
221 particle.set_4momentum(particle.type().mass(),
222 (1 + a) * particle.momentum().threevec());
223 particle.boost_momentum(-beta_CM_required);
234 for (
size_t i_type = 0; (i_type <
N_sorts_) && (N_to_sample > 0); i_type++) {
235 if (
get_class(i_type) != particle_class) {
259 const double gamma = 1.0 / std::sqrt(1.0 - cell.
v().
sqr());
260 const double N_this_cell =
268 for (
int i = 0; i <
mult_int_[type_index]; i++) {
271 double partial_sum = 0.0;
272 int index_only_thermalized = -1;
273 while (partial_sum < r) {
274 index_only_thermalized++;
275 partial_sum +=
N_in_cells_[index_only_thermalized];
294 plist.push_back(particle);
299 double time,
int ntest) {
303 const double gamma = 1.0 / std::sqrt(1.0 - cell.
v().
sqr());
304 for (
size_t i = 0; i <
N_sorts_; i++) {
314 for (
size_t i = 0; i <
N_sorts_; i++) {
325 const auto Nbar_antibar = bessel_sampler_B.
sample();
332 for (
size_t i = 0; i <
N_sorts_; i++) {
336 std::pair<int, int> NS_antiS;
342 NS_antiS = bessel_sampler_S.
sample();
344 NS_antiS = std::make_pair(
347 if (NS_antiS.first - NS_antiS.second !=
357 for (
size_t i = 0; i <
N_sorts_; i++) {
361 std::pair<int, int> NC_antiC;
366 conserved_initial.
charge() - ch_sampled);
367 NC_antiC = bessel_sampler_C.
sample();
369 NC_antiC = std::make_pair(
372 if (NC_antiC.first - NC_antiC.second !=
373 conserved_initial.
charge() - ch_sampled) {
384 for (
size_t itype = 0; itype <
N_sorts_; itype++) {
389 const double e_init = conserved_initial.
momentum().
x0();
392 e_tot += particle.momentum().x0();
394 if (std::abs(e_tot - e_init) > 0.01 * e_init) {
396 " too far from ", e_init);
407 int S_plus = 0, S_minus = 0, B_plus = 0, B_minus = 0, E_plus = 0, E_minus = 0;
409 auto condition1 = [](int, int, int) {
return true; };
411 while (conserved_initial.
momentum().
x0() > energy ||
414 energy +=
p.momentum().x0();
415 if (
p.pdgcode().strangeness() > 0) {
417 S_plus +=
p.pdgcode().strangeness();
422 auto condition2 = [](
int S, int, int) {
return (
S < 0); };
424 while (S_plus + S_minus > conserved_initial.
strangeness()) {
426 const int s_part =
p.pdgcode().strangeness();
428 if (S_plus + S_minus + s_part >= conserved_initial.
strangeness()) {
435 auto condition3 = [](
int S, int, int) {
return (
S == 0); };
440 while (conserved_remaining.
momentum().
x0() > energy ||
443 energy +=
p.momentum().x0();
444 if (
p.pdgcode().baryon_number() > 0) {
446 B_plus +=
p.pdgcode().baryon_number();
451 auto condition4 = [](
int S,
int B, int) {
return (
S == 0) && (B < 0); };
453 while (B_plus + B_minus > conserved_remaining.
baryon_number()) {
455 const int bar =
p.pdgcode().baryon_number();
456 if (B_plus + B_minus + bar >= conserved_remaining.
baryon_number()) {
463 auto condition5 = [](
int S,
int B, int) {
return (
S == 0) && (B == 0); };
467 while (conserved_remaining.
momentum().
x0() > energy ||
468 E_plus < conserved_remaining.
charge()) {
470 energy +=
p.momentum().x0();
471 if (
p.pdgcode().charge() > 0) {
473 E_plus +=
p.pdgcode().charge();
478 auto condition6 = [](
int S,
int B,
int C) {
479 return (
S == 0) && (B == 0) && (C < 0);
482 while (E_plus + E_minus > conserved_remaining.
charge()) {
484 const int charge =
p.pdgcode().charge();
485 if (E_plus + E_minus + charge >= conserved_remaining.
charge()) {
492 auto condition7 = [](
int S,
int B,
int C) {
493 return (
S == 0) && (B == 0) && (C == 0);
498 while (conserved_remaining.
momentum().
x0() > energy) {
501 energy +=
p.momentum().x0();
515 for (
auto &particle : particles) {
516 const bool is_on_lattice =
517 lat_->value_at(particle.position().threevec(), node);
518 if (is_on_lattice && node.
e() >
e_crit_) {
540 const size_t lattice_total_cells =
lat_->size();
541 for (
size_t i = 0; i < lattice_total_cells; i++) {
547 "Number of cells in the thermalization region = ",
550 ", in % of lattice: ",
562 throw std::invalid_argument(
563 "This thermalization algorithm is"
564 " not yet implemented");
583 struct to_average on_lattice = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
584 struct to_average in_therm_reg = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
585 double e_sum_on_lattice = 0.0, e_sum_in_therm_reg = 0.0;
586 int node_counter = 0;
587 for (
const auto &node : *
lat_) {
588 const double e = node.e();
589 on_lattice.T += node.T() * e;
590 on_lattice.mub += node.mub() * e;
591 on_lattice.mus += node.mus() * e;
592 on_lattice.muq += node.muq() * e;
593 on_lattice.nb += node.nb() * e;
594 on_lattice.ns += node.ns() * e;
595 on_lattice.nq += node.nq() * e;
596 e_sum_on_lattice += e;
598 in_therm_reg.T += node.T() * e;
599 in_therm_reg.mub += node.mub() * e;
600 in_therm_reg.mus += node.mus() * e;
601 in_therm_reg.muq += node.muq() * e;
602 in_therm_reg.nb += node.nb() * e;
603 in_therm_reg.ns += node.ns() * e;
604 in_therm_reg.nq += node.nq() * e;
605 e_sum_in_therm_reg += e;
610 on_lattice.T /= e_sum_on_lattice;
611 on_lattice.mub /= e_sum_on_lattice;
612 on_lattice.mus /= e_sum_on_lattice;
613 on_lattice.muq /= e_sum_on_lattice;
614 on_lattice.nb /= e_sum_on_lattice;
615 on_lattice.ns /= e_sum_on_lattice;
616 on_lattice.nq /= e_sum_on_lattice;
619 in_therm_reg.T /= e_sum_in_therm_reg;
620 in_therm_reg.mub /= e_sum_in_therm_reg;
621 in_therm_reg.mus /= e_sum_in_therm_reg;
622 in_therm_reg.muq /= e_sum_in_therm_reg;
623 in_therm_reg.nb /= e_sum_in_therm_reg;
624 in_therm_reg.ns /= e_sum_in_therm_reg;
625 in_therm_reg.nq /= e_sum_in_therm_reg;
628 std::cout <<
"Current time [fm]: " << clock.
current_time() << std::endl;
629 std::cout <<
"Averages on the lattice - T[GeV], mub[GeV], mus[GeV], muq[GeV] "
630 <<
"nb[fm^-3], ns[fm^-3], nq[fm^-3]: " << on_lattice.T <<
" "
631 << on_lattice.mub <<
" " << on_lattice.mus <<
" " << on_lattice.muq
632 <<
" " << on_lattice.nb <<
" " << on_lattice.ns <<
" "
633 << on_lattice.nq << std::endl;
635 <<
"Averages in therm. region - T[GeV], mub[GeV], mus[GeV], muq[GeV] "
636 <<
"nb[fm^-3], ns[fm^-3], nq[fm^-3]: " << in_therm_reg.T <<
" "
637 << in_therm_reg.mub <<
" " << in_therm_reg.mus <<
" " << in_therm_reg.muq
638 <<
" " << in_therm_reg.nb <<
" " << in_therm_reg.ns <<
" "
639 << in_therm_reg.nq << std::endl;
640 std::cout <<
"Volume with e > e_crit [fm^3]: "
Angles provides a common interface for generating directions: i.e., two angles that should be interpr...
ThreeVector threevec() const
void distribute_isotropically()
Populate the object with a new direction.
Clock tracks the time in the simulation.
virtual double current_time() const =0
A class to pre-calculate and store parameters relevant for density calculation.
The FourVector class holds relevant values in Minkowski spacetime with (+, −, −, −) metric signature.
double abs() const
calculate the lorentz invariant absolute value
ThreeVector threevec() const
ThreeVector velocity() const
Get the velocity (3-vector divided by zero component).
void thermalize_BF_algo(QuantumNumbers &conserved_initial, double time, int ntest)
Samples particles according to the BF algorithm by making use of the.
void compute_N_in_cells_mode_algo(F &&condition)
Computes average number of particles in each cell for the mode algorithm.
void print_statistics(const Clock &clock) const
Generates standard output with information about the thermodynamic properties of the lattice,...
std::vector< double > mult_sort_
Real number multiplicity for each particle type.
std::vector< int > mult_int_
Integer multiplicity for each particle type.
HadronGasEos eos_
Hadron gas equation of state.
ParticleList to_remove_
Particles to be removed after this thermalization step.
const bool BF_enforce_microcanonical_
Enforce energy conservation as part of BF sampling algorithm or not.
ThreeVector uniform_in_cell() const
std::unique_ptr< RectangularLattice< ThermLatticeNode > > lat_
The lattice on which the thermodynamic quantities are calculated.
double mult_class(const HadronClass cl) const
HadronClass get_class(size_t typelist_index) const
Defines the class of hadrons by quantum numbers.
GrandCanThermalizer(const std::array< double, 3 > lat_sizes, const std::array< int, 3 > n_cells, const std::array< double, 3 > origin, bool periodicity, double e_critical, double t_start, double delta_t, ThermalizationAlgorithm algo, bool BF_microcanonical)
Default constructor for the GranCanThermalizer to allocate the lattice.
const double e_crit_
Critical energy density above which cells are thermalized.
ParticleList sampled_list_
Newly generated particles by thermalizer.
std::array< double, 7 > mult_classes_
The different hadron species according to the enum defined in.
void sample_in_random_cell_BF_algo(ParticleList &plist, const double time, size_t type_index)
The total number of particles of species type_index is defined by mult_int_ array that is returned by...
void update_thermalizer_lattice(const std::vector< Particles > &ensembles, const DensityParameters &par, bool ignore_cells_under_threshold=true)
Compute all the thermodynamical quantities on the lattice from particles.
std::vector< size_t > cells_to_sample_
Cells above critical energy density.
const ThermalizationAlgorithm algorithm_
Algorithm to choose for sampling of particles obeying conservation laws.
const ParticleTypePtrList eos_typelist_
List of particle types from which equation of state is computed.
std::vector< double > N_in_cells_
Number of particles to be sampled in one cell.
ParticleData sample_in_random_cell_mode_algo(const double time, F &&condition)
Samples one particle and the species, cell, momentum and coordinate are chosen from the corresponding...
double lat_cell_volume_
Volume of a single lattice cell, necessary to convert thermal densities to actual particle numbers.
const size_t N_sorts_
Number of different species to be sampled.
double N_total_in_cells_
Total number of particles over all cells in thermalization region.
void thermalize(const Particles &particles, double time, int ntest)
Main thermalize function, that chooses the algorithm to follow (BF or mode sampling).
void renormalize_momenta(ParticleList &plist, const FourVector required_total_momentum)
Changes energy and momenta of the particles in plist to match the required_total_momentum.
void sample_multinomial(HadronClass particle_class, int N)
The sample_multinomial function samples integer numbers n_i distributed according to the multinomial ...
void thermalize_mode_algo(QuantumNumbers &conserved_initial, double time)
Samples particles to the according to the mode algorithm.
Class to handle the equation of state (EoS) of the hadron gas, consisting of all hadrons included in ...
static double net_charge_density(double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute net charge density.
static double partial_density(const ParticleType &ptype, double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute partial density of one hadron sort.
std::array< double, 4 > solve_eos(double e, double nb, double ns, double nq, std::array< double, 4 > initial_approximation)
Compute temperature and chemical potentials given energy-, net baryon-, net strangeness- and net char...
bool is_tabulated() const
Create an EoS table or not?
void from_table(EosTable::table_element &res, double e, double nb, double nq) const
Get the element of eos table.
static double net_baryon_density(double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute net baryon density.
static double energy_density(double T, double mub, double mus, double muq)
Compute energy density.
static double net_strange_density(double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute net strangeness density.
static double pressure(double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute pressure .
ParticleData contains the dynamic information of a certain particle.
void set_4momentum(const FourVector &momentum_vector)
Set the particle's 4-momentum directly.
const ParticleType & type() const
Get the type of the particle.
void set_4position(const FourVector &pos)
Set the particle's 4-position directly.
const FourVector & momentum() const
Get the particle's 4-momentum.
void set_formation_time(const double &form_time)
Set the absolute formation time.
void boost_momentum(const ThreeVector &v)
Apply a Lorentz-boost to only the momentum.
int32_t charge() const
The charge of the particle.
int baryon_number() const
The Particles class abstracts the storage and manipulation of particles.
A container for storing conserved values.
void add_values(const ParticleData &p)
Add the quantum numbers of a single particle to the collection.
int baryon_number() const
FourVector momentum() const
The ThermLatticeNode class is intended to compute thermodynamical quantities in a cell given a set of...
void compute_rest_frame_quantities(HadronGasEos &eos)
Temperature, chemical potentials and rest frame velocity are calculated given the hadron gas equation...
double muq() const
Get the net charge chemical potential.
FourVector Tmu0() const
Get Four-momentum flow of the cell.
double ns_
Net strangeness density of the cell in the computational frame.
void set_rest_frame_quantities(double T0, double mub0, double mus0, double muq0, const ThreeVector v0)
Set all the rest frame quantities to some values, this is useful for testing.
double p() const
Get pressure in the rest frame.
double p_
Pressure in the rest frame.
double mus_
Net strangeness chemical potential.
ThreeVector v() const
Get 3-velocity of the rest frame.
double ns() const
Get net strangeness density of the cell in the computational frame.
double e_
Energy density in the rest frame.
double nb_
Net baryon density of the cell in the computational frame.
void add_particle(const ParticleData &p, double factor)
Add particle contribution to Tmu0, nb, ns and nq May look like unused at first glance,...
double muq_
Net charge chemical potential.
double mub_
Net baryon chemical potential.
FourVector Tmu0_
Four-momentum flow of the cell.
double mus() const
Get the net strangeness chemical potential.
ThreeVector v_
Velocity of the rest frame.
ThermLatticeNode()
Default constructor of thermal quantities on the lattice returning thermodynamic quantities in comput...
double mub() const
Get the net baryon chemical potential.
double nb() const
Get net baryon density of the cell in the computational frame.
double nq_
Net charge density of the cell in the computational frame.
double e() const
Get energy density in the rest frame.
double T() const
Get the temperature.
The ThreeVector class represents a physical three-vector with the components .
The intention of this class is to efficiently sample from the Bessel distribution ,...
std::pair< int, int > sample()
Sample two numbers from given Poissonians with a fixed difference.
ThermalizationAlgorithm
Defines the algorithm used for the forced thermalization.
DensityType
Allows to choose which kind of density to calculate.
std::ostream & operator<<(std::ostream &out, const ActionPtr &action)
Convenience: dereferences the ActionPtr to Action.
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
int poisson(const T &lam)
Returns a Poisson distributed random number.
int binomial(const int N, const T &p)
Returns a binomially distributed random number.
double sample_momenta_from_thermal(const double temperature, const double mass)
Samples a momentum from the Maxwell-Boltzmann (thermal) distribution in a faster way,...
static constexpr int LGrandcanThermalizer
void update_lattice_accumulating_ensembles(RectangularLattice< T > *lat, const LatticeUpdate update, const DensityType dens_type, const DensityParameters &par, const std::vector< Particles > &ensembles, const bool compute_gradient)
Updates the contents on the lattice when ensembles are used.
LatticeUpdate
Enumerator option for lattice updates.
constexpr double really_small
Numerical error tolerance.
HadronClass
Specifier to classify the different hadron species according to their quantum numbers.
@ Antibaryon
All anti-baryons.
@ ZeroQZeroSMeson
Neutral non-strange mesons.
@ NegativeSMeson
Mesons with strangeness S < 0.
@ NegativeQZeroSMeson
Non-strange mesons (S = 0) with electric cherge Q < 0.
@ PositiveSMeson
Mesons with strangeness S > 0.
@ PositiveQZeroSMeson
Non-strange mesons (S = 0) with electric cherge Q > 0.
Define the data structure for one element of the table.
double mub
Net baryochemical potential.
double muq
Net charge chemical potential.
double mus
Net strangeness potential.