Version: SMASH-3.2
grandcan_thermalizer.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2016-2022,2024
3  * SMASH Team
4  *
5  * GNU General Public License (GPLv3 or later)
6  */
7 
9 
10 #include <time.h>
11 
12 #include "smash/angles.h"
14 #include "smash/logging.h"
15 #include "smash/particles.h"
16 #include "smash/quantumnumbers.h"
17 #include "smash/random.h"
18 
19 namespace smash {
20 static constexpr int LGrandcanThermalizer = LogArea::GrandcanThermalizer::id;
21 
23  : Tmu0_(FourVector()),
24  nb_(0.0),
25  ns_(0.0),
26  nq_(0.0),
27  e_(0.0),
28  p_(0.0),
29  v_(ThreeVector()),
30  T_(0.0),
31  mub_(0.0),
32  mus_(0.0),
33  muq_(0.0) {}
34 
35 void ThermLatticeNode::add_particle(const ParticleData &part, double factor) {
36  Tmu0_ += part.momentum() * factor;
37  nb_ += static_cast<double>(part.type().baryon_number()) * factor;
38  ns_ += static_cast<double>(part.type().strangeness()) * factor;
39  nq_ += static_cast<double>(part.type().charge()) * factor;
40 }
41 
44  const int max_iter = 50;
45  v_ = ThreeVector(0.0, 0.0, 0.0);
46  double e_previous_step = 0.0;
47  const double tolerance = 5.e-4;
48  int iter;
49  for (iter = 0; iter < max_iter; iter++) {
50  e_previous_step = e_;
51  e_ = Tmu0_.x0() - Tmu0_.threevec() * v_;
52  if (std::abs(e_ - e_previous_step) < tolerance) {
53  break;
54  }
55  const double gamma_inv = std::sqrt(1.0 - v_.sqr());
56  EosTable::table_element tabulated;
57  eos.from_table(tabulated, e_, gamma_inv * nb_, nq_);
58  if (!eos.is_tabulated() || tabulated.p < 0.0) {
59  auto T_mub_mus_muq =
60  eos.solve_eos(e_, gamma_inv * nb_, gamma_inv * ns_, nq_);
61  T_ = T_mub_mus_muq[0];
62  mub_ = T_mub_mus_muq[1];
63  mus_ = T_mub_mus_muq[2];
64  muq_ = T_mub_mus_muq[3];
66  } else {
67  p_ = tabulated.p;
68  T_ = tabulated.T;
69  mub_ = tabulated.mub;
70  mus_ = tabulated.mus;
71  muq_ = tabulated.muq;
72  }
73  v_ = Tmu0_.threevec() / (Tmu0_.x0() + p_);
74  }
75  if (iter == max_iter) {
76  std::cout << "Warning from solver: max iterations exceeded."
77  << " Accuracy: " << std::abs(e_ - e_previous_step)
78  << " is less than tolerance " << tolerance << std::endl;
79  }
80 }
81 
82 void ThermLatticeNode::set_rest_frame_quantities(double T0, double mub0,
83  double mus0, double muq0,
84  const ThreeVector v0) {
85  T_ = T0;
86  mub_ = mub0;
87  mus_ = mus0;
88  muq_ = muq0;
89  v_ = v0;
95 }
96 
97 std::ostream &operator<<(std::ostream &out, const ThermLatticeNode &node) {
98  return out << "T[mu,0]: " << node.Tmu0() << ", nb: " << node.nb()
99  << ", ns: " << node.ns() << ", v: " << node.v()
100  << ", e: " << node.e() << ", p: " << node.p()
101  << ", T: " << node.T() << ", mub: " << node.mub()
102  << ", mus: " << node.mus() << ", muq: " << node.muq();
103 }
104 
105 GrandCanThermalizer::GrandCanThermalizer(const std::array<double, 3> lat_sizes,
106  const std::array<int, 3> n_cells,
107  const std::array<double, 3> origin,
108  bool periodicity, double e_critical,
109  double t_start, double delta_t,
111  bool BF_microcanonical)
112  : eos_typelist_(list_eos_particles()),
113  N_sorts_(eos_typelist_.size()),
114  e_crit_(e_critical),
115  t_start_(t_start),
116  period_(delta_t),
117  algorithm_(algo),
118  BF_enforce_microcanonical_(BF_microcanonical) {
120  lat_ = std::make_unique<RectangularLattice<ThermLatticeNode>>(
121  lat_sizes, n_cells, origin, periodicity, upd);
122  const std::array<double, 3> abc = lat_->cell_sizes();
123  lat_cell_volume_ = abc[0] * abc[1] * abc[2];
124  cells_to_sample_.resize(50000);
125  mult_sort_.resize(N_sorts_);
126  mult_int_.resize(N_sorts_);
127 }
128 
130  const std::vector<Particles> &ensembles, const DensityParameters &dens_par,
131  bool ignore_cells_under_treshold) {
132  const DensityType dens_type = DensityType::Hadron;
134  update_lattice_accumulating_ensembles(lat_.get(), update, dens_type, dens_par,
135  ensembles, false);
136  for (auto &node : *lat_) {
137  /* If energy density is definitely below e_crit -
138  no need to find T, mu, etc. So if e = T00 - T0i*vi <=
139  T00 + sum abs(T0i) < e_crit, no efforts are necessary. */
140  if (!ignore_cells_under_treshold ||
141  node.Tmu0().x0() + std::abs(node.Tmu0().x1()) +
142  std::abs(node.Tmu0().x2()) + std::abs(node.Tmu0().x3()) >=
143  e_crit_) {
144  node.compute_rest_frame_quantities(eos_);
145  } else {
146  node = ThermLatticeNode();
147  }
148  }
149 }
150 
152  return ThreeVector(random::uniform(-0.5 * lat_->cell_sizes()[0],
153  +0.5 * lat_->cell_sizes()[0]),
154  random::uniform(-0.5 * lat_->cell_sizes()[1],
155  +0.5 * lat_->cell_sizes()[1]),
156  random::uniform(-0.5 * lat_->cell_sizes()[2],
157  +0.5 * lat_->cell_sizes()[2]));
158 }
159 
161  ParticleList &plist, const FourVector required_total_momentum) {
162  // Centralize momenta
163  QuantumNumbers conserved = QuantumNumbers(plist);
164  logg[LGrandcanThermalizer].info("Required 4-momentum: ",
165  required_total_momentum);
166  logg[LGrandcanThermalizer].info("Sampled 4-momentum: ", conserved.momentum());
167  const ThreeVector mom_to_add =
168  (required_total_momentum.threevec() - conserved.momentum().threevec()) /
169  plist.size();
170  logg[LGrandcanThermalizer].info("Adjusting momenta by ", mom_to_add);
171  for (auto &particle : plist) {
172  particle.set_4momentum(particle.type().mass(),
173  particle.momentum().threevec() + mom_to_add);
174  }
175 
176  // Boost every particle to the common center of mass frame
177  conserved = QuantumNumbers(plist);
178  const ThreeVector beta_CM_generated = conserved.momentum().velocity();
179  const ThreeVector beta_CM_required = required_total_momentum.velocity();
180 
181  double E = 0.0;
182  double E_expected = required_total_momentum.abs();
183  for (auto &particle : plist) {
184  particle.boost_momentum(beta_CM_generated);
185  E += particle.momentum().x0();
186  }
187  // Renorm. momenta by factor (1+a) to get the right energy, binary search
188  const double tolerance = really_small;
189  double a, a_min, a_max, er;
190  const int max_iter = 100;
191  int iter = 0;
192  if (E_expected >= E) {
193  a_min = 0.0;
194  a_max = 10.0;
195  } else {
196  a_min = -1.0;
197  a_max = 0.0;
198  }
199  do {
200  a = 0.5 * (a_min + a_max);
201  E = 0.0;
202  for (const auto &particle : plist) {
203  const double p2 = particle.momentum().threevec().sqr();
204  const double E2 = particle.momentum().x0() * particle.momentum().x0();
205  E += std::sqrt(E2 + a * (a + 2.0) * p2);
206  }
207  er = E - E_expected;
208  if (er >= 0.0) {
209  a_max = a;
210  } else {
211  a_min = a;
212  }
213  logg[LGrandcanThermalizer].debug("Iteration ", iter, ": a = ", a,
214  ", Δ = ", er);
215  iter++;
216  } while (std::abs(er) > tolerance && iter < max_iter);
217 
218  logg[LGrandcanThermalizer].info("Renormalizing momenta by factor 1+a, a = ",
219  a);
220  for (auto &particle : plist) {
221  particle.set_4momentum(particle.type().mass(),
222  (1 + a) * particle.momentum().threevec());
223  particle.boost_momentum(-beta_CM_required);
224  }
225 }
226 
228  int N_to_sample) {
229  /* The array mult_sort_ contains real numbers \f$ a_i \f$. The numbers \f$
230  * n_i \f$ are saved in the mult_int_ array. Only particles of class
231  * particle_class are sampled, where particle_class is defined by the
232  * get_class function. */
233  double sum = mult_class(particle_class);
234  for (size_t i_type = 0; (i_type < N_sorts_) && (N_to_sample > 0); i_type++) {
235  if (get_class(i_type) != particle_class) {
236  continue;
237  }
238  const double p = mult_sort_[i_type] / sum;
239  mult_int_[i_type] = random::binomial(N_to_sample, p);
241  /*std::cout << eos_typelist_[i_type]->name() <<
242  ": mult_sort = " << mult_sort_[i_type] <<
243  ", sum = " << sum <<
244  ", p = " << p <<
245  ", N to sample = " << N_to_sample <<
246  ", mult_int_ = " << mult_int_[i_type] << std::endl;*/
247  sum -= mult_sort_[i_type];
248  N_to_sample -= mult_int_[i_type];
249  }
250 }
251 
253  const double time,
254  size_t type_index) {
255  N_in_cells_.clear();
256  N_total_in_cells_ = 0.0;
257  for (auto cell_index : cells_to_sample_) {
258  const ThermLatticeNode cell = (*lat_)[cell_index];
259  const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
260  const double N_this_cell =
261  lat_cell_volume_ * gamma *
262  HadronGasEos::partial_density(*eos_typelist_[type_index], cell.T(),
263  cell.mub(), cell.mus(), cell.muq());
264  N_in_cells_.push_back(N_this_cell);
265  N_total_in_cells_ += N_this_cell;
266  }
267 
268  for (int i = 0; i < mult_int_[type_index]; i++) {
269  // Choose random cell, probability = N_in_cell/N_total
270  double r = random::uniform(0.0, N_total_in_cells_);
271  double partial_sum = 0.0;
272  int index_only_thermalized = -1;
273  while (partial_sum < r) {
274  index_only_thermalized++;
275  partial_sum += N_in_cells_[index_only_thermalized];
276  }
277  const int cell_index = cells_to_sample_[index_only_thermalized];
278  const ThermLatticeNode cell = (*lat_)[cell_index];
279  const ThreeVector cell_center = lat_->cell_center(cell_index);
280 
281  ParticleData particle(*eos_typelist_[type_index]);
282  // Note: it's pole mass for resonances!
283  const double m = eos_typelist_[type_index]->mass();
284  // Position
285  particle.set_4position(FourVector(time, cell_center + uniform_in_cell()));
286  // Momentum
287  double momentum_radial = sample_momenta_from_thermal(cell.T(), m);
288  Angles phitheta;
289  phitheta.distribute_isotropically();
290  particle.set_4momentum(m, phitheta.threevec() * momentum_radial);
291  particle.boost_momentum(-cell.v());
292  particle.set_formation_time(time);
293 
294  plist.push_back(particle);
295  }
296 }
297 
299  double time, int ntest) {
300  std::fill(mult_sort_.begin(), mult_sort_.end(), 0.0);
301  for (auto cell_index : cells_to_sample_) {
302  const ThermLatticeNode cell = (*lat_)[cell_index];
303  const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
304  for (size_t i = 0; i < N_sorts_; i++) {
305  // N_i = n u^mu dsigma_mu = (isochronous hypersurface) n * V * gamma
306  mult_sort_[i] +=
307  lat_cell_volume_ * gamma * ntest *
308  HadronGasEos::partial_density(*eos_typelist_[i], cell.T(), cell.mub(),
309  cell.mus(), cell.muq());
310  }
311  }
312 
313  std::fill(mult_classes_.begin(), mult_classes_.end(), 0.0);
314  for (size_t i = 0; i < N_sorts_; i++) {
315  mult_classes_[static_cast<size_t>(get_class(i))] += mult_sort_[i];
316  }
317 
320  conserved_initial.baryon_number());
321 
322  while (true) {
323  sampled_list_.clear();
324  std::fill(mult_int_.begin(), mult_int_.end(), 0);
325  const auto Nbar_antibar = bessel_sampler_B.sample();
326 
327  sample_multinomial(HadronClass::Baryon, Nbar_antibar.first);
328  sample_multinomial(HadronClass::Antibaryon, Nbar_antibar.second);
329 
330  // Count strangeness of the sampled particles
331  int S_sampled = 0;
332  for (size_t i = 0; i < N_sorts_; i++) {
333  S_sampled += eos_typelist_[i]->strangeness() * mult_int_[i];
334  }
335 
336  std::pair<int, int> NS_antiS;
338  random::BesselSampler bessel_sampler_S(
341  conserved_initial.strangeness() - S_sampled);
342  NS_antiS = bessel_sampler_S.sample();
344  NS_antiS = std::make_pair(
347  if (NS_antiS.first - NS_antiS.second !=
348  conserved_initial.strangeness() - S_sampled) {
349  continue;
350  }
351  }
352 
355  // Count charge of the sampled particles
356  int ch_sampled = 0;
357  for (size_t i = 0; i < N_sorts_; i++) {
358  ch_sampled += eos_typelist_[i]->charge() * mult_int_[i];
359  }
360 
361  std::pair<int, int> NC_antiC;
363  random::BesselSampler bessel_sampler_C(
366  conserved_initial.charge() - ch_sampled);
367  NC_antiC = bessel_sampler_C.sample();
369  NC_antiC = std::make_pair(
372  if (NC_antiC.first - NC_antiC.second !=
373  conserved_initial.charge() - ch_sampled) {
374  continue;
375  }
376  }
377 
383 
384  for (size_t itype = 0; itype < N_sorts_; itype++) {
386  }
388  double e_tot;
389  const double e_init = conserved_initial.momentum().x0();
390  e_tot = 0.0;
391  for (auto &particle : sampled_list_) {
392  e_tot += particle.momentum().x0();
393  }
394  if (std::abs(e_tot - e_init) > 0.01 * e_init) {
395  logg[LGrandcanThermalizer].info("Rejecting: energy ", e_tot,
396  " too far from ", e_init);
397  continue;
398  }
399  }
400  break;
401  }
402 }
403 
405  QuantumNumbers &conserved_initial, double time) {
406  double energy = 0.0;
407  int S_plus = 0, S_minus = 0, B_plus = 0, B_minus = 0, E_plus = 0, E_minus = 0;
408  // Mode 1: sample until energy is conserved, take only strangeness < 0
409  auto condition1 = [](int, int, int) { return true; };
410  compute_N_in_cells_mode_algo(condition1);
411  while (conserved_initial.momentum().x0() > energy ||
412  S_plus < conserved_initial.strangeness()) {
413  ParticleData p = sample_in_random_cell_mode_algo(time, condition1);
414  energy += p.momentum().x0();
415  if (p.pdgcode().strangeness() > 0) {
416  sampled_list_.push_back(p);
417  S_plus += p.pdgcode().strangeness();
418  }
419  }
420 
421  // Mode 2: sample until strangeness is conserved
422  auto condition2 = [](int S, int, int) { return (S < 0); };
423  compute_N_in_cells_mode_algo(condition2);
424  while (S_plus + S_minus > conserved_initial.strangeness()) {
425  ParticleData p = sample_in_random_cell_mode_algo(time, condition2);
426  const int s_part = p.pdgcode().strangeness();
427  // Do not allow particles with S = -2 or -3 spoil the total sum
428  if (S_plus + S_minus + s_part >= conserved_initial.strangeness()) {
429  sampled_list_.push_back(p);
430  S_minus += s_part;
431  }
432  }
433 
434  // Mode 3: sample non-strange baryons
435  auto condition3 = [](int S, int, int) { return (S == 0); };
436  QuantumNumbers conserved_remaining =
437  conserved_initial - QuantumNumbers(sampled_list_);
438  energy = 0.0;
439  compute_N_in_cells_mode_algo(condition3);
440  while (conserved_remaining.momentum().x0() > energy ||
441  B_plus < conserved_remaining.baryon_number()) {
442  ParticleData p = sample_in_random_cell_mode_algo(time, condition3);
443  energy += p.momentum().x0();
444  if (p.pdgcode().baryon_number() > 0) {
445  sampled_list_.push_back(p);
446  B_plus += p.pdgcode().baryon_number();
447  }
448  }
449 
450  // Mode 4: sample non-strange anti-baryons
451  auto condition4 = [](int S, int B, int) { return (S == 0) && (B < 0); };
452  compute_N_in_cells_mode_algo(condition4);
453  while (B_plus + B_minus > conserved_remaining.baryon_number()) {
454  ParticleData p = sample_in_random_cell_mode_algo(time, condition4);
455  const int bar = p.pdgcode().baryon_number();
456  if (B_plus + B_minus + bar >= conserved_remaining.baryon_number()) {
457  sampled_list_.push_back(p);
458  B_minus += bar;
459  }
460  }
461 
462  // Mode 5: sample non_strange mesons, but take only with charge > 0
463  auto condition5 = [](int S, int B, int) { return (S == 0) && (B == 0); };
464  conserved_remaining = conserved_initial - QuantumNumbers(sampled_list_);
465  energy = 0.0;
466  compute_N_in_cells_mode_algo(condition5);
467  while (conserved_remaining.momentum().x0() > energy ||
468  E_plus < conserved_remaining.charge()) {
469  ParticleData p = sample_in_random_cell_mode_algo(time, condition5);
470  energy += p.momentum().x0();
471  if (p.pdgcode().charge() > 0) {
472  sampled_list_.push_back(p);
473  E_plus += p.pdgcode().charge();
474  }
475  }
476 
477  // Mode 6: sample non_strange mesons to conserve charge
478  auto condition6 = [](int S, int B, int C) {
479  return (S == 0) && (B == 0) && (C < 0);
480  };
481  compute_N_in_cells_mode_algo(condition6);
482  while (E_plus + E_minus > conserved_remaining.charge()) {
483  ParticleData p = sample_in_random_cell_mode_algo(time, condition6);
484  const int charge = p.pdgcode().charge();
485  if (E_plus + E_minus + charge >= conserved_remaining.charge()) {
486  sampled_list_.push_back(p);
487  E_minus += charge;
488  }
489  }
490 
491  // Mode 7: sample neutral non-strange mesons to conserve energy
492  auto condition7 = [](int S, int B, int C) {
493  return (S == 0) && (B == 0) && (C == 0);
494  };
495  conserved_remaining = conserved_initial - QuantumNumbers(sampled_list_);
496  energy = 0.0;
497  compute_N_in_cells_mode_algo(condition7);
498  while (conserved_remaining.momentum().x0() > energy) {
499  ParticleData p = sample_in_random_cell_mode_algo(time, condition7);
500  sampled_list_.push_back(p);
501  energy += p.momentum().x0();
502  }
503 }
504 
505 void GrandCanThermalizer::thermalize(const Particles &particles, double time,
506  int ntest) {
507  logg[LGrandcanThermalizer].info("Starting forced thermalization, time ", time,
508  " fm");
509  to_remove_.clear();
510  sampled_list_.clear();
511  /* Remove particles from the cells with e > e_crit_,
512  * sum up their conserved quantities */
513  QuantumNumbers conserved_initial = QuantumNumbers();
514  ThermLatticeNode node;
515  for (auto &particle : particles) {
516  const bool is_on_lattice =
517  lat_->value_at(particle.position().threevec(), node);
518  if (is_on_lattice && node.e() > e_crit_) {
519  to_remove_.push_back(particle);
520  }
521  }
522  /* Do not thermalize too small number of particles: for the number
523  * of particles < 30 the algorithm tends to hang or crash too often. */
524  if (to_remove_.size() > 30) {
525  for (auto &particle : to_remove_) {
526  conserved_initial.add_values(particle);
527  }
528  } else {
529  to_remove_.clear();
530  conserved_initial = QuantumNumbers();
531  }
532  logg[LGrandcanThermalizer].info("Removed ", to_remove_.size(), " particles.");
533 
534  // Exit if there is nothing to thermalize
535  if (conserved_initial == QuantumNumbers()) {
536  return;
537  }
538  // Save the indices of cells inside the volume with e > e_crit_
539  cells_to_sample_.clear();
540  const size_t lattice_total_cells = lat_->size();
541  for (size_t i = 0; i < lattice_total_cells; i++) {
542  if ((*lat_)[i].e() > e_crit_) {
543  cells_to_sample_.push_back(i);
544  }
545  }
547  "Number of cells in the thermalization region = ",
548  cells_to_sample_.size(),
549  ", its total volume [fm^3]: ", cells_to_sample_.size() * lat_cell_volume_,
550  ", in % of lattice: ",
551  100.0 * cells_to_sample_.size() / lattice_total_cells);
552 
553  switch (algorithm_) {
556  thermalize_BF_algo(conserved_initial, time, ntest);
557  break;
559  thermalize_mode_algo(conserved_initial, time);
560  break;
561  default:
562  throw std::invalid_argument(
563  "This thermalization algorithm is"
564  " not yet implemented");
565  }
566  logg[LGrandcanThermalizer].info("Sampled ", sampled_list_.size(),
567  " particles.");
568 
569  // Adjust momenta
570  renormalize_momenta(sampled_list_, conserved_initial.momentum());
571 }
572 
574  struct to_average {
575  double T;
576  double mub;
577  double mus;
578  double muq;
579  double nb;
580  double ns;
581  double nq;
582  };
583  struct to_average on_lattice = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
584  struct to_average in_therm_reg = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
585  double e_sum_on_lattice = 0.0, e_sum_in_therm_reg = 0.0;
586  int node_counter = 0;
587  for (const auto &node : *lat_) {
588  const double e = node.e();
589  on_lattice.T += node.T() * e;
590  on_lattice.mub += node.mub() * e;
591  on_lattice.mus += node.mus() * e;
592  on_lattice.muq += node.muq() * e;
593  on_lattice.nb += node.nb() * e;
594  on_lattice.ns += node.ns() * e;
595  on_lattice.nq += node.nq() * e;
596  e_sum_on_lattice += e;
597  if (e >= e_crit_) {
598  in_therm_reg.T += node.T() * e;
599  in_therm_reg.mub += node.mub() * e;
600  in_therm_reg.mus += node.mus() * e;
601  in_therm_reg.muq += node.muq() * e;
602  in_therm_reg.nb += node.nb() * e;
603  in_therm_reg.ns += node.ns() * e;
604  in_therm_reg.nq += node.nq() * e;
605  e_sum_in_therm_reg += e;
606  node_counter++;
607  }
608  }
609  if (e_sum_on_lattice > really_small) {
610  on_lattice.T /= e_sum_on_lattice;
611  on_lattice.mub /= e_sum_on_lattice;
612  on_lattice.mus /= e_sum_on_lattice;
613  on_lattice.muq /= e_sum_on_lattice;
614  on_lattice.nb /= e_sum_on_lattice;
615  on_lattice.ns /= e_sum_on_lattice;
616  on_lattice.nq /= e_sum_on_lattice;
617  }
618  if (e_sum_in_therm_reg > really_small) {
619  in_therm_reg.T /= e_sum_in_therm_reg;
620  in_therm_reg.mub /= e_sum_in_therm_reg;
621  in_therm_reg.mus /= e_sum_in_therm_reg;
622  in_therm_reg.muq /= e_sum_in_therm_reg;
623  in_therm_reg.nb /= e_sum_in_therm_reg;
624  in_therm_reg.ns /= e_sum_in_therm_reg;
625  in_therm_reg.nq /= e_sum_in_therm_reg;
626  }
627 
628  std::cout << "Current time [fm]: " << clock.current_time() << std::endl;
629  std::cout << "Averages on the lattice - T[GeV], mub[GeV], mus[GeV], muq[GeV] "
630  << "nb[fm^-3], ns[fm^-3], nq[fm^-3]: " << on_lattice.T << " "
631  << on_lattice.mub << " " << on_lattice.mus << " " << on_lattice.muq
632  << " " << on_lattice.nb << " " << on_lattice.ns << " "
633  << on_lattice.nq << std::endl;
634  std::cout
635  << "Averages in therm. region - T[GeV], mub[GeV], mus[GeV], muq[GeV] "
636  << "nb[fm^-3], ns[fm^-3], nq[fm^-3]: " << in_therm_reg.T << " "
637  << in_therm_reg.mub << " " << in_therm_reg.mus << " " << in_therm_reg.muq
638  << " " << in_therm_reg.nb << " " << in_therm_reg.ns << " "
639  << in_therm_reg.nq << std::endl;
640  std::cout << "Volume with e > e_crit [fm^3]: "
641  << lat_cell_volume_ * node_counter << std::endl;
642 }
643 
644 } // namespace smash
Angles provides a common interface for generating directions: i.e., two angles that should be interpr...
Definition: angles.h:59
ThreeVector threevec() const
Definition: angles.h:288
void distribute_isotropically()
Populate the object with a new direction.
Definition: angles.h:199
Clock tracks the time in the simulation.
Definition: clock.h:87
virtual double current_time() const =0
A class to pre-calculate and store parameters relevant for density calculation.
Definition: density.h:92
The FourVector class holds relevant values in Minkowski spacetime with (+, −, −, −) metric signature.
Definition: fourvector.h:33
double abs() const
calculate the lorentz invariant absolute value
Definition: fourvector.h:464
ThreeVector threevec() const
Definition: fourvector.h:329
double x0() const
Definition: fourvector.h:313
ThreeVector velocity() const
Get the velocity (3-vector divided by zero component).
Definition: fourvector.h:333
void thermalize_BF_algo(QuantumNumbers &conserved_initial, double time, int ntest)
Samples particles according to the BF algorithm by making use of the.
void compute_N_in_cells_mode_algo(F &&condition)
Computes average number of particles in each cell for the mode algorithm.
void print_statistics(const Clock &clock) const
Generates standard output with information about the thermodynamic properties of the lattice,...
std::vector< double > mult_sort_
Real number multiplicity for each particle type.
std::vector< int > mult_int_
Integer multiplicity for each particle type.
HadronGasEos eos_
Hadron gas equation of state.
ParticleList to_remove_
Particles to be removed after this thermalization step.
const bool BF_enforce_microcanonical_
Enforce energy conservation as part of BF sampling algorithm or not.
ThreeVector uniform_in_cell() const
std::unique_ptr< RectangularLattice< ThermLatticeNode > > lat_
The lattice on which the thermodynamic quantities are calculated.
double mult_class(const HadronClass cl) const
HadronClass get_class(size_t typelist_index) const
Defines the class of hadrons by quantum numbers.
GrandCanThermalizer(const std::array< double, 3 > lat_sizes, const std::array< int, 3 > n_cells, const std::array< double, 3 > origin, bool periodicity, double e_critical, double t_start, double delta_t, ThermalizationAlgorithm algo, bool BF_microcanonical)
Default constructor for the GranCanThermalizer to allocate the lattice.
const double e_crit_
Critical energy density above which cells are thermalized.
ParticleList sampled_list_
Newly generated particles by thermalizer.
std::array< double, 7 > mult_classes_
The different hadron species according to the enum defined in.
void sample_in_random_cell_BF_algo(ParticleList &plist, const double time, size_t type_index)
The total number of particles of species type_index is defined by mult_int_ array that is returned by...
void update_thermalizer_lattice(const std::vector< Particles > &ensembles, const DensityParameters &par, bool ignore_cells_under_threshold=true)
Compute all the thermodynamical quantities on the lattice from particles.
std::vector< size_t > cells_to_sample_
Cells above critical energy density.
const ThermalizationAlgorithm algorithm_
Algorithm to choose for sampling of particles obeying conservation laws.
const ParticleTypePtrList eos_typelist_
List of particle types from which equation of state is computed.
std::vector< double > N_in_cells_
Number of particles to be sampled in one cell.
ParticleData sample_in_random_cell_mode_algo(const double time, F &&condition)
Samples one particle and the species, cell, momentum and coordinate are chosen from the corresponding...
double lat_cell_volume_
Volume of a single lattice cell, necessary to convert thermal densities to actual particle numbers.
const size_t N_sorts_
Number of different species to be sampled.
double N_total_in_cells_
Total number of particles over all cells in thermalization region.
void thermalize(const Particles &particles, double time, int ntest)
Main thermalize function, that chooses the algorithm to follow (BF or mode sampling).
void renormalize_momenta(ParticleList &plist, const FourVector required_total_momentum)
Changes energy and momenta of the particles in plist to match the required_total_momentum.
void sample_multinomial(HadronClass particle_class, int N)
The sample_multinomial function samples integer numbers n_i distributed according to the multinomial ...
void thermalize_mode_algo(QuantumNumbers &conserved_initial, double time)
Samples particles to the according to the mode algorithm.
Class to handle the equation of state (EoS) of the hadron gas, consisting of all hadrons included in ...
Definition: hadgas_eos.h:125
static double net_charge_density(double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute net charge density.
Definition: hadgas_eos.cc:366
static double partial_density(const ParticleType &ptype, double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute partial density of one hadron sort.
Definition: hadgas_eos.cc:270
std::array< double, 4 > solve_eos(double e, double nb, double ns, double nq, std::array< double, 4 > initial_approximation)
Compute temperature and chemical potentials given energy-, net baryon-, net strangeness- and net char...
Definition: hadgas_eos.cc:586
bool is_tabulated() const
Create an EoS table or not?
Definition: hadgas_eos.h:360
void from_table(EosTable::table_element &res, double e, double nb, double nq) const
Get the element of eos table.
Definition: hadgas_eos.h:349
static double net_baryon_density(double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute net baryon density.
Definition: hadgas_eos.cc:328
static double energy_density(double T, double mub, double mus, double muq)
Compute energy density.
Definition: hadgas_eos.cc:281
static double net_strange_density(double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute net strangeness density.
Definition: hadgas_eos.cc:347
static double pressure(double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute pressure .
Definition: hadgas_eos.h:195
ParticleData contains the dynamic information of a certain particle.
Definition: particledata.h:58
void set_4momentum(const FourVector &momentum_vector)
Set the particle's 4-momentum directly.
Definition: particledata.h:164
const ParticleType & type() const
Get the type of the particle.
Definition: particledata.h:128
void set_4position(const FourVector &pos)
Set the particle's 4-position directly.
Definition: particledata.h:209
const FourVector & momentum() const
Get the particle's 4-momentum.
Definition: particledata.h:158
void set_formation_time(const double &form_time)
Set the absolute formation time.
Definition: particledata.h:251
void boost_momentum(const ThreeVector &v)
Apply a Lorentz-boost to only the momentum.
Definition: particledata.h:332
int strangeness() const
Definition: particletype.h:213
int32_t charge() const
The charge of the particle.
Definition: particletype.h:189
int baryon_number() const
Definition: particletype.h:210
The Particles class abstracts the storage and manipulation of particles.
Definition: particles.h:33
A container for storing conserved values.
void add_values(const ParticleData &p)
Add the quantum numbers of a single particle to the collection.
FourVector momentum() const
The ThermLatticeNode class is intended to compute thermodynamical quantities in a cell given a set of...
void compute_rest_frame_quantities(HadronGasEos &eos)
Temperature, chemical potentials and rest frame velocity are calculated given the hadron gas equation...
double muq() const
Get the net charge chemical potential.
FourVector Tmu0() const
Get Four-momentum flow of the cell.
double ns_
Net strangeness density of the cell in the computational frame.
void set_rest_frame_quantities(double T0, double mub0, double mus0, double muq0, const ThreeVector v0)
Set all the rest frame quantities to some values, this is useful for testing.
double p() const
Get pressure in the rest frame.
double p_
Pressure in the rest frame.
double mus_
Net strangeness chemical potential.
ThreeVector v() const
Get 3-velocity of the rest frame.
double ns() const
Get net strangeness density of the cell in the computational frame.
double e_
Energy density in the rest frame.
double nb_
Net baryon density of the cell in the computational frame.
void add_particle(const ParticleData &p, double factor)
Add particle contribution to Tmu0, nb, ns and nq May look like unused at first glance,...
double muq_
Net charge chemical potential.
double mub_
Net baryon chemical potential.
FourVector Tmu0_
Four-momentum flow of the cell.
double mus() const
Get the net strangeness chemical potential.
ThreeVector v_
Velocity of the rest frame.
ThermLatticeNode()
Default constructor of thermal quantities on the lattice returning thermodynamic quantities in comput...
double mub() const
Get the net baryon chemical potential.
double nb() const
Get net baryon density of the cell in the computational frame.
double nq_
Net charge density of the cell in the computational frame.
double e() const
Get energy density in the rest frame.
double T() const
Get the temperature.
The ThreeVector class represents a physical three-vector with the components .
Definition: threevector.h:31
double sqr() const
Definition: threevector.h:266
The intention of this class is to efficiently sample from the Bessel distribution ,...
Definition: random.h:377
std::pair< int, int > sample()
Sample two numbers from given Poissonians with a fixed difference.
Definition: random.cc:74
ThermalizationAlgorithm
Defines the algorithm used for the forced thermalization.
DensityType
Allows to choose which kind of density to calculate.
std::ostream & operator<<(std::ostream &out, const ActionPtr &action)
Convenience: dereferences the ActionPtr to Action.
Definition: action.h:546
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:40
constexpr int p
Proton.
int poisson(const T &lam)
Returns a Poisson distributed random number.
Definition: random.h:226
int binomial(const int N, const T &p)
Returns a binomially distributed random number.
Definition: random.h:238
T uniform(T min, T max)
Definition: random.h:88
Definition: action.h:24
double sample_momenta_from_thermal(const double temperature, const double mass)
Samples a momentum from the Maxwell-Boltzmann (thermal) distribution in a faster way,...
static constexpr int LGrandcanThermalizer
void update_lattice_accumulating_ensembles(RectangularLattice< T > *lat, const LatticeUpdate update, const DensityType dens_type, const DensityParameters &par, const std::vector< Particles > &ensembles, const bool compute_gradient)
Updates the contents on the lattice when ensembles are used.
Definition: density.h:644
LatticeUpdate
Enumerator option for lattice updates.
Definition: lattice.h:38
constexpr double really_small
Numerical error tolerance.
Definition: constants.h:37
HadronClass
Specifier to classify the different hadron species according to their quantum numbers.
@ Antibaryon
All anti-baryons.
@ ZeroQZeroSMeson
Neutral non-strange mesons.
@ NegativeSMeson
Mesons with strangeness S < 0.
@ NegativeQZeroSMeson
Non-strange mesons (S = 0) with electric cherge Q < 0.
@ PositiveSMeson
Mesons with strangeness S > 0.
@ Baryon
All baryons.
@ PositiveQZeroSMeson
Non-strange mesons (S = 0) with electric cherge Q > 0.
#define S(x, n)
Definition: sha256.cc:54
Define the data structure for one element of the table.
Definition: hadgas_eos.h:58
double mub
Net baryochemical potential.
Definition: hadgas_eos.h:64
double muq
Net charge chemical potential.
Definition: hadgas_eos.h:68
double T
Temperature.
Definition: hadgas_eos.h:62
double mus
Net strangeness potential.
Definition: hadgas_eos.h:66