Version: SMASH-3.1
smash::Action Class Referenceabstract

#include <action.h>

Action is the base class for a generic process that takes a number of incoming particles and transforms them into any number of outgoing particles.

Currently such an action can be either a decay, a two-body collision, a wallcrossing or a thermalization. (see derived classes).

Definition at line 35 of file action.h.

Inheritance diagram for smash::Action:
smash::DecayAction smash::FreeforallAction smash::HypersurfacecrossingAction smash::ScatterAction smash::ScatterActionMulti smash::ThermalizationAction smash::WallcrossingAction smash::DecayActionDilepton smash::BremsstrahlungAction smash::ScatterActionPhoton

Classes

class  InvalidResonanceFormation
 Thrown for example when ScatterAction is called to perform with a wrong number of final-state particles or when the energy is too low to produce the resonance. More...
 
class  StochasticBelowEnergyThreshold
 Exception for a temporary bugfix for when multiparticle interactions do not have the necessary energy to create the final state. More...
 

Public Member Functions

 Action (const ParticleList &in_part, double time)
 Construct an action object with incoming particles and relative time. More...
 
 Action (const ParticleData &in_part, const ParticleData &out_part, double time, ProcessType type)
 Construct an action object with the incoming particles, relative time, and the already known outgoing particles and type of the process. More...
 
 Action (const ParticleList &in_part, const ParticleList &out_part, double absolute_execution_time, ProcessType type)
 Construct an action object with the incoming particles, absolute time, and the already known outgoing particles and type of the process. More...
 
 Action (const Action &)=delete
 Copying is disabled. Use pointers or create a new Action. More...
 
virtual ~Action ()
 Virtual Destructor. More...
 
bool operator< (const Action &rhs) const
 Determine whether one action takes place before another in time. More...
 
virtual double get_total_weight () const =0
 Return the total weight value, which is mainly used for the weight output entry. More...
 
virtual double get_partial_weight () const =0
 Return the specific weight for the chosen outgoing channel, which is mainly used for the partial weight output entry. More...
 
virtual ProcessType get_type () const
 Get the process type. More...
 
template<typename Branch >
void add_process (ProcessBranchPtr< Branch > &p, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add a new subprocess. More...
 
template<typename Branch >
void add_processes (ProcessBranchList< Branch > pv, ProcessBranchList< Branch > &subprocesses, double &total_weight)
 Add several new subprocesses at once. More...
 
virtual void generate_final_state ()=0
 Generate the final state for this action. More...
 
virtual double perform (Particles *particles, uint32_t id_process)
 Actually perform the action, e.g. More...
 
bool is_valid (const Particles &particles) const
 Check whether the action still applies. More...
 
bool is_pauli_blocked (const std::vector< Particles > &ensembles, const PauliBlocker &p_bl) const
 Check if the action is Pauli-blocked. More...
 
const ParticleList & incoming_particles () const
 Get the list of particles that go into the action. More...
 
void update_incoming (const Particles &particles)
 Update the incoming particles that are stored in this action to the state they have in the global particle list. More...
 
const ParticleList & outgoing_particles () const
 Get the list of particles that resulted from the action. More...
 
double time_of_execution () const
 Get the time at which the action is supposed to be performed. More...
 
virtual double check_conservation (const uint32_t id_process) const
 Check various conservation laws. More...
 
double sqrt_s () const
 Determine the total energy in the center-of-mass frame [GeV]. More...
 
FourVector total_momentum_of_outgoing_particles () const
 Calculate the total kinetic momentum of the outgoing particles. More...
 
FourVector get_interaction_point () const
 Get the interaction point. More...
 
std::pair< FourVector, FourVectorget_potential_at_interaction_point () const
 Get the skyrme and asymmetry potential at the interaction point. More...
 
void set_stochastic_pos_idx ()
 Setter function that stores a random incoming particle index latter used to determine the interaction point. More...
 

Static Public Member Functions

static double lambda_tilde (double a, double b, double c)
 Little helper function that calculates the lambda function (sometimes written with a tilde to better distinguish it) that appears e.g. More...
 
static void sample_manybody_phasespace_impl (double sqrts, const std::vector< double > &m, std::vector< FourVector > &sampled_momenta)
 Implementation of the full n-body phase-space sampling (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 

Protected Member Functions

FourVector total_momentum () const
 Sum of 4-momenta of incoming particles. More...
 
template<typename Branch >
const Branch * choose_channel (const ProcessBranchList< Branch > &subprocesses, double total_weight)
 Decide for a particular final-state channel via Monte-Carlo and return it as a ProcessBranch. More...
 
virtual std::pair< double, double > sample_masses (double kinetic_energy_cm) const
 Sample final-state masses in general X->2 processes (thus also fixing the absolute c.o.m. More...
 
virtual void sample_angles (std::pair< double, double > masses, double kinetic_energy_cm)
 Sample final-state momenta in general X->2 processes (here: using an isotropical angular distribution). More...
 
void sample_2body_phasespace ()
 Sample the full 2-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
virtual void sample_manybody_phasespace ()
 Sample the full n-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles. More...
 
void assign_formation_time_to_outgoing_particles ()
 Assign the formation time to the outgoing particles. More...
 
virtual void format_debug_output (std::ostream &out) const =0
 Writes information about this action to the out stream. More...
 

Protected Attributes

ParticleList incoming_particles_
 List with data of incoming particles. More...
 
ParticleList outgoing_particles_
 Initially this stores only the PDG codes of final-state particles. More...
 
const double time_of_execution_
 Time at which the action is supposed to be performed (absolute time in the lab frame in fm). More...
 
ProcessType process_type_
 type of process More...
 
double box_length_ = -1.0
 Box length: needed to determine coordinates of collision correctly in case of collision through the wall. More...
 
int stochastic_position_idx_ = -1
 This stores a randomly-chosen index to an incoming particle. More...
 

Private Member Functions

const ParticleTypetype_of_pout (const ParticleData &p_out) const
 Get the type of a given particle. More...
 
const ParticleTypetype_of_pout (const ParticleTypePtr &p_out) const
 Get the particle type for given pointer to a particle type. More...
 

Friends

std::ostream & operator<< (std::ostream &out, const Action &action)
 Dispatches formatting to the virtual Action::format_debug_output function. More...
 

Constructor & Destructor Documentation

◆ Action() [1/4]

smash::Action::Action ( const ParticleList &  in_part,
double  time 
)
inline

Construct an action object with incoming particles and relative time.

Parameters
[in]in_partlist of incoming particles
[in]timetime at which the action is supposed to take place (relative to the current time of the incoming particles)

Definition at line 44 of file action.h.

45  : incoming_particles_(in_part),
46  time_of_execution_(time + in_part[0].position().x0()) {}
const double time_of_execution_
Time at which the action is supposed to be performed (absolute time in the lab frame in fm).
Definition: action.h:369
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:355

◆ Action() [2/4]

smash::Action::Action ( const ParticleData in_part,
const ParticleData out_part,
double  time,
ProcessType  type 
)
inline

Construct an action object with the incoming particles, relative time, and the already known outgoing particles and type of the process.

Parameters
[in]in_partlist of incoming particles
[in]out_partlist of outgoing particles
[in]timetime at which the action is supposed to take place (relative to the current time of the incoming particles)
[in]typetype of the interaction

Definition at line 58 of file action.h.

60  : incoming_particles_({in_part}),
61  outgoing_particles_({out_part}),
62  time_of_execution_(time + in_part.position().x0()),
63  process_type_(type) {}
ParticleList outgoing_particles_
Initially this stores only the PDG codes of final-state particles.
Definition: action.h:363
ProcessType process_type_
type of process
Definition: action.h:372

◆ Action() [3/4]

smash::Action::Action ( const ParticleList &  in_part,
const ParticleList &  out_part,
double  absolute_execution_time,
ProcessType  type 
)
inline

Construct an action object with the incoming particles, absolute time, and the already known outgoing particles and type of the process.

Parameters
[in]in_partlist of incoming particles
[in]out_partlist of outgoing particles
[in]absolute_execution_timeabsolute time at which the action is supposed to take place
[in]typetype of the interaction

Definition at line 75 of file action.h.

77  : incoming_particles_(std::move(in_part)),
78  outgoing_particles_(std::move(out_part)),
79  time_of_execution_(absolute_execution_time),
80  process_type_(type) {}

◆ Action() [4/4]

smash::Action::Action ( const Action )
delete

Copying is disabled. Use pointers or create a new Action.

◆ ~Action()

smash::Action::~Action ( )
virtualdefault

Virtual Destructor.

Destructor.

The declaration of the destructor is necessary to make it virtual.

Member Function Documentation

◆ operator<()

bool smash::Action::operator< ( const Action rhs) const
inline

Determine whether one action takes place before another in time.

Returns
if the first argument action takes place before the other

Definition at line 96 of file action.h.

96  {
97  return time_of_execution_ < rhs.time_of_execution_;
98  }

◆ get_total_weight()

virtual double smash::Action::get_total_weight ( ) const
pure virtual

Return the total weight value, which is mainly used for the weight output entry.

It has different meanings depending of the type of action. It is the total cross section in case of a ScatterAction, the total decay width in case of a DecayAction and the shining weight in case of a DecayActionDilepton.

Prefer to use a more specific function. If there is no weight for the action type, 0 should be returned.

Returns
total cross section, decay width or shining weight

Implemented in smash::WallcrossingAction, smash::ThermalizationAction, smash::ScatterActionPhoton, smash::ScatterActionMulti, smash::ScatterAction, smash::HypersurfacecrossingAction, smash::FreeforallAction, smash::DecayActionDilepton, smash::DecayAction, and smash::BremsstrahlungAction.

◆ get_partial_weight()

virtual double smash::Action::get_partial_weight ( ) const
pure virtual

Return the specific weight for the chosen outgoing channel, which is mainly used for the partial weight output entry.

For scatterings it will be the partial cross section, for decays (including dilepton decays) the partial decay width.

If there is no weight for the action type, 0 should be returned.

Returns
specific weight for the chosen output channel.

Implemented in smash::WallcrossingAction, smash::ThermalizationAction, smash::ScatterActionMulti, smash::ScatterAction, smash::HypersurfacecrossingAction, smash::FreeforallAction, and smash::DecayAction.

◆ get_type()

virtual ProcessType smash::Action::get_type ( ) const
inlinevirtual

Get the process type.

Returns
type of the process

Definition at line 131 of file action.h.

131 { return process_type_; }

◆ add_process()

template<typename Branch >
void smash::Action::add_process ( ProcessBranchPtr< Branch > &  p,
ProcessBranchList< Branch > &  subprocesses,
double &  total_weight 
)
inline

Add a new subprocess.

Parameters
[in]pprocess to be added
[out]subprocessesprocesses, where p is added to
[out]total_weightsummed weights of all the subprocesses

Definition at line 141 of file action.h.

143  {
144  if (p->weight() > 0) {
145  total_weight += p->weight();
146  subprocesses.emplace_back(std::move(p));
147  }
148  }
constexpr int p
Proton.

◆ add_processes()

template<typename Branch >
void smash::Action::add_processes ( ProcessBranchList< Branch >  pv,
ProcessBranchList< Branch > &  subprocesses,
double &  total_weight 
)
inline

Add several new subprocesses at once.

Parameters
[in]pvprocesses list to be added
[out]subprocessesprocesses, where pv are added to
[out]total_weightsummed weights of all the subprocesses

Definition at line 158 of file action.h.

160  {
161  subprocesses.reserve(subprocesses.size() + pv.size());
162  for (auto &proc : pv) {
163  if (proc->weight() > 0) {
164  total_weight += proc->weight();
165  subprocesses.emplace_back(std::move(proc));
166  }
167  }
168  }

◆ generate_final_state()

virtual void smash::Action::generate_final_state ( )
pure virtual

Generate the final state for this action.

This function selects a subprocess by Monte-Carlo decision and sets up the final-state particles in phase space.

Implemented in smash::WallcrossingAction, smash::ThermalizationAction, smash::ScatterActionPhoton, smash::ScatterActionMulti, smash::ScatterAction, smash::HypersurfacecrossingAction, smash::FreeforallAction, smash::DecayAction, and smash::BremsstrahlungAction.

◆ perform()

double smash::Action::perform ( Particles particles,
uint32_t  id_process 
)
virtual

Actually perform the action, e.g.

carry out a decay or scattering by updating the particle list.

This function removes the initial-state particles from the particle list and then inserts the final-state particles. It does not do any sanity checks, but assumes that is_valid has been called to determine if the action is still valid.

Parameters
[in]id_processunique id of the performed process
[out]particlesparticle list that is updated
Returns
the amount of energy violated in Pythia processes (if any)

Note that you are required to increase id_process before the next call, such that you get unique numbers.

Definition at line 128 of file action.cc.

128  {
129  assert(id_process != 0);
130  double energy_violation = 0.;
131  for (ParticleData &p : outgoing_particles_) {
132  // store the history info
134  p.set_history(p.get_history().collisions_per_particle + 1, id_process,
136  }
137  }
138 
139  /* For elastic collisions and box wall crossings it is not necessary to remove
140  * particles from the list and insert new ones, it is enough to update their
141  * properties. */
142  particles->update(incoming_particles_, outgoing_particles_,
145 
146  logg[LAction].debug("Particle map now has ", particles->size(), " elements.");
147 
148  /* Check the conservation laws if the modifications of the total kinetic
149  * energy of the outgoing particles by the mean field potentials are not
150  * taken into account. */
151  if (UB_lat_pointer == nullptr && UI3_lat_pointer == nullptr) {
152  energy_violation = check_conservation(id_process);
153  }
154  return energy_violation;
155 }
virtual double check_conservation(const uint32_t id_process) const
Check various conservation laws.
Definition: action.cc:475
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
static constexpr int LAction
Definition: action.h:25
@ Wall
See here for a short description.
@ Elastic
See here for a short description.
RectangularLattice< FourVector > * UB_lat_pointer
Pointer to the skyrme potential on the lattice.
RectangularLattice< FourVector > * UI3_lat_pointer
Pointer to the symmmetry potential on the lattice.

◆ is_valid()

bool smash::Action::is_valid ( const Particles particles) const

Check whether the action still applies.

It can happen that a different action removed the incoming_particles from the set of existing particles in the experiment, or that the particle has scattered elastically in the meantime. In this case the Action doesn't apply anymore and should be discarded.

Parameters
[in]particlescurrent particle list
Returns
true, if action still applies; false otherwise

Definition at line 29 of file action.cc.

29  {
30  return std::all_of(
32  [&particles](const ParticleData &p) { return particles.is_valid(p); });
33 }
bool all_of(Container &&c, UnaryPredicate &&p)
Convenience wrapper for std::all_of that operates on a complete container.
Definition: algorithms.h:80

◆ is_pauli_blocked()

bool smash::Action::is_pauli_blocked ( const std::vector< Particles > &  ensembles,
const PauliBlocker p_bl 
) const

Check if the action is Pauli-blocked.

If there are baryons in the final state then blocking probability is \( 1 - \Pi (1-f_i) \), where the product is taken by all fermions in the final state and \( f_i \) denotes the phase-space density at the position of i-th final-state fermion.

Parameters
[in]ensemblescurrent particle list, all ensembles
[in]p_blPauliBlocker that stores the configurations concerning Pauli-blocking.
Returns
true, if the action is Pauli-blocked, false otherwise

Definition at line 35 of file action.cc.

36  {
37  // Wall-crossing actions should never be blocked: currently
38  // if the action is blocked, a particle continues to propagate in a straight
39  // line. This would simply bring it out of the box.
41  return false;
42  }
43  for (const auto &p : outgoing_particles_) {
44  if (p.is_baryon()) {
45  const auto f =
46  p_bl.phasespace_dens(p.position().threevec(), p.momentum().threevec(),
47  ensembles, p.pdgcode(), incoming_particles_);
48  if (f > random::uniform(0., 1.)) {
49  logg[LPauliBlocking].debug("Action ", *this,
50  " is pauli-blocked with f = ", f);
51  return true;
52  }
53  }
54  }
55  return false;
56 }
T uniform(T min, T max)
Definition: random.h:88
static constexpr int LPauliBlocking
Definition: action.cc:27

◆ incoming_particles()

const ParticleList & smash::Action::incoming_particles ( ) const

Get the list of particles that go into the action.

Returns
a list of incoming particles

Definition at line 58 of file action.cc.

58  {
59  return incoming_particles_;
60 }

◆ update_incoming()

void smash::Action::update_incoming ( const Particles particles)

Update the incoming particles that are stored in this action to the state they have in the global particle list.

Parameters
[in]particlescurrent particle list

Definition at line 62 of file action.cc.

62  {
63  for (auto &p : incoming_particles_) {
64  p = particles.lookup(p);
65  }
66 }

◆ outgoing_particles()

const ParticleList& smash::Action::outgoing_particles ( ) const
inline

Get the list of particles that resulted from the action.

Returns
list of outgoing particles

Definition at line 247 of file action.h.

247 { return outgoing_particles_; }

◆ time_of_execution()

double smash::Action::time_of_execution ( ) const
inline

Get the time at which the action is supposed to be performed.

Returns
absolute time in the calculation frame in fm

Definition at line 254 of file action.h.

254 { return time_of_execution_; }

◆ check_conservation()

double smash::Action::check_conservation ( const uint32_t  id_process) const
virtual

Check various conservation laws.

Parameters
[in]id_processprocess id only used for debugging output
Returns
the amount of energy conservation violated by Pythia processes (if any)

Reimplemented in smash::HypersurfacecrossingAction.

Definition at line 475 of file action.cc.

475  {
476  QuantumNumbers before(incoming_particles_);
477  QuantumNumbers after(outgoing_particles_);
478  double energy_violation = 0.;
479  if (before != after) {
480  std::stringstream particle_names;
481  for (const auto &p : incoming_particles_) {
482  particle_names << p.type().name();
483  }
484  particle_names << " vs. ";
485  for (const auto &p : outgoing_particles_) {
486  particle_names << p.type().name();
487  }
488  particle_names << "\n";
489  std::string err_msg = before.report_deviations(after);
490  /* Pythia does not conserve energy and momentum at high energy, so we just
491  * print the warning and continue. */
494  logg[LAction].warn() << "Conservation law violations due to Pythia\n"
495  << particle_names.str() << err_msg;
496  energy_violation = after.momentum()[0] - before.momentum()[0];
497  return energy_violation;
498  }
499  /* We allow decay of particles stable under the strong interaction to decay
500  * at the end, so just warn about such a "weak" process violating
501  * conservation laws */
503  incoming_particles_[0].type().is_stable()) {
504  logg[LAction].warn()
505  << "Conservation law violations of strong interaction in weak or "
506  "e.m. decay\n"
507  << particle_names.str() << err_msg;
508  return energy_violation;
509  }
510  /* If particles are added or removed, it is not surprising that conservation
511  * laws are potentially violated. Do not warn the user but print some
512  * information for debug */
514  logg[LAction].debug()
515  << "Conservation law violation, but we want it (Freeforall Action).\n"
516  << particle_names.str() << err_msg;
517  return energy_violation;
518  }
519  logg[LAction].error() << "Conservation law violations detected\n"
520  << particle_names.str() << err_msg;
521  if (id_process == ID_PROCESS_PHOTON) {
522  throw std::runtime_error("Conservation laws violated in photon process");
523  } else {
524  throw std::runtime_error("Conservation laws violated in process " +
525  std::to_string(id_process));
526  }
527  }
528  return energy_violation;
529 }
constexpr std::uint32_t ID_PROCESS_PHOTON
Process ID for any photon process.
Definition: constants.h:118
@ Freeforall
See here for a short description.
@ Decay
See here for a short description.
@ StringHard
See here for a short description.
bool is_string_soft_process(ProcessType p)
Check if a given process type is a soft string excitation.

◆ sqrt_s()

double smash::Action::sqrt_s ( ) const
inline

Determine the total energy in the center-of-mass frame [GeV].

Returns
\( \sqrt{s}\) of incoming particles

Definition at line 271 of file action.h.

271 { return total_momentum().abs(); }
FourVector total_momentum() const
Sum of 4-momenta of incoming particles.
Definition: action.h:389
double abs() const
calculate the lorentz invariant absolute value
Definition: fourvector.h:464

◆ total_momentum_of_outgoing_particles()

FourVector smash::Action::total_momentum_of_outgoing_particles ( ) const

Calculate the total kinetic momentum of the outgoing particles.

Use this to determine the momemtum and boost of the outgoing particles by calcluating the total momentum of the incoming particles and correcting it for the effect of potentials. This function is used when the species of the outgoing particles are already determined.

Returns
total kinetic momentum of the outgoing particles [GeV]

Definition at line 157 of file action.cc.

157  {
158  const auto potentials = get_potential_at_interaction_point();
159  /* scale_B returns the difference of the total force scales of the skyrme
160  * potential between the initial and final states. */
161  double scale_B = 0.0;
162  /* scale_I3 returns the difference of the total force scales of the symmetry
163  * potential between the initial and final states. */
164  double scale_I3 = 0.0;
165  for (const auto &p_in : incoming_particles_) {
166  // Get the force scale of the incoming particle.
167  const auto scale =
168  ((pot_pointer != nullptr) ? pot_pointer->force_scale(p_in.type())
169  : std::make_pair(0.0, 0));
170  scale_B += scale.first;
171  scale_I3 += scale.second * p_in.type().isospin3_rel();
172  }
173  for (const auto &p_out : outgoing_particles_) {
174  // Get the force scale of the outgoing particle.
175  const auto scale = ((pot_pointer != nullptr)
177  : std::make_pair(0.0, 0));
178  scale_B -= scale.first;
179  scale_I3 -= scale.second * type_of_pout(p_out).isospin3_rel();
180  }
181  /* Rescale to get the potential difference between the
182  * initial and final state, and thus get the total momentum
183  * of the outgoing particles*/
184  return total_momentum() + potentials.first * scale_B +
185  potentials.second * scale_I3;
186 }
std::pair< FourVector, FourVector > get_potential_at_interaction_point() const
Get the skyrme and asymmetry potential at the interaction point.
Definition: action.cc:112
const ParticleType & type_of_pout(const ParticleData &p_out) const
Get the type of a given particle.
Definition: action.h:509
double isospin3_rel() const
Definition: particletype.h:180
static std::pair< double, int > force_scale(const ParticleType &data)
Evaluates the scaling factor of the forces acting on the particles.
Definition: potentials.cc:156
Potentials * pot_pointer
Pointer to a Potential class.

◆ get_interaction_point()

FourVector smash::Action::get_interaction_point ( ) const

Get the interaction point.

Returns
four vector of interaction point

Definition at line 68 of file action.cc.

68  {
69  // Estimate for the interaction point in the calculational frame
70  ThreeVector interaction_point = ThreeVector(0., 0., 0.);
71  std::vector<ThreeVector> propagated_positions;
72  for (const auto &part : incoming_particles_) {
73  ThreeVector propagated_position =
74  part.position().threevec() +
75  part.velocity() * (time_of_execution_ - part.position().x0());
76  propagated_positions.push_back(propagated_position);
77  interaction_point += propagated_position;
78  }
79  interaction_point /= incoming_particles_.size();
80  /*
81  * In case of periodic boundaries interaction point is not necessarily
82  * (x1 + x2)/2. Consider only one dimension, e.g. x, the rest are analogous.
83  * Instead of x, there can be x + k * L, where k is any integer and L
84  * is period.Interaction point is either. Therefore, interaction point is
85  * (x1 + k * L + x2 + m * L) / 2 = (x1 + x2) / 2 + n * L / 2. We need
86  * this interaction point to be with [0, L], so n can be {-1, 0, 1}.
87  * Which n to choose? Our guiding principle is that n should be such that
88  * interaction point is closest to interacting particles.
89  */
90  if (box_length_ > 0 && stochastic_position_idx_ < 0) {
91  assert(incoming_particles_.size() == 2);
92  const ThreeVector r = propagated_positions[0] - propagated_positions[1];
93  for (int i = 0; i < 3; i++) {
94  const double d = std::abs(r[i]);
95  if (d > 0.5 * box_length_) {
96  if (interaction_point[i] >= 0.5 * box_length_) {
97  interaction_point[i] -= 0.5 * box_length_;
98  } else {
99  interaction_point[i] += 0.5 * box_length_;
100  }
101  }
102  }
103  }
104  /* In case of scatterings via the stochastic criterion, use postion of random
105  * incoming particle to prevent density hotspots in grid cell centers. */
106  if (stochastic_position_idx_ >= 0) {
108  }
109  return FourVector(time_of_execution_, interaction_point);
110 }
int stochastic_position_idx_
This stores a randomly-chosen index to an incoming particle.
Definition: action.h:386
double box_length_
Box length: needed to determine coordinates of collision correctly in case of collision through the w...
Definition: action.h:379

◆ get_potential_at_interaction_point()

std::pair< FourVector, FourVector > smash::Action::get_potential_at_interaction_point ( ) const

Get the skyrme and asymmetry potential at the interaction point.

Returns
skyrme and asymmetry potential [GeV]

Definition at line 112 of file action.cc.

113  {
114  const ThreeVector r = get_interaction_point().threevec();
115  FourVector UB = FourVector();
116  FourVector UI3 = FourVector();
117  /* Check:
118  * Lattice is turned on. */
119  if (UB_lat_pointer != nullptr) {
120  UB_lat_pointer->value_at(r, UB);
121  }
122  if (UI3_lat_pointer != nullptr) {
123  UI3_lat_pointer->value_at(r, UI3);
124  }
125  return std::make_pair(UB, UI3);
126 }
FourVector get_interaction_point() const
Get the interaction point.
Definition: action.cc:68
ThreeVector threevec() const
Definition: fourvector.h:329

◆ set_stochastic_pos_idx()

void smash::Action::set_stochastic_pos_idx ( )
inline

Setter function that stores a random incoming particle index latter used to determine the interaction point.

Definition at line 303 of file action.h.

303  {
304  const int max_inc_idx = incoming_particles_.size() - 1;
306  }
T uniform_int(T min, T max)
Definition: random.h:100

◆ lambda_tilde()

static double smash::Action::lambda_tilde ( double  a,
double  b,
double  c 
)
inlinestatic

Little helper function that calculates the lambda function (sometimes written with a tilde to better distinguish it) that appears e.g.

in the relative velocity or 3-to-2 probability calculation, where it is used with a=s, b=m1^2 and c=m2^2. Defintion found e.g. in Seifert:2017oyb [50], eq. (5).

Definition at line 315 of file action.h.

315  {
316  const double res = (a - b - c) * (a - b - c) - 4. * b * c;
317  if (res < 0.0) {
318  // floating point precision problem
319  return 0.0;
320  }
321  return res;
322  }

◆ sample_manybody_phasespace_impl()

void smash::Action::sample_manybody_phasespace_impl ( double  sqrts,
const std::vector< double > &  m,
std::vector< FourVector > &  sampled_momenta 
)
static

Implementation of the full n-body phase-space sampling (masses, momenta, angles) in the center-of-mass frame for the final state particles.

Function is static for convenient testing.

Using the M-method from CERN-68-15 report, paragraph 9.6 1) Generate invariant masses M12, M123, M1234, etc from distribution dM12 x dM123 x dM1234 x ... This is not trivial because of the integration limits. Here the idea is to change variables to T12 = M12 - (m1 + m2), T123 = M123 - (m1 + m2 + m3), etc. Then we need to generate uniform T such that 0 <= T12 <= T123 <= T1234 <= ... <= sqrts - sum (m_i). For the latter there is a trick: generate values uniformly in [0, sqrts - sum (m_i)] and then sort the values. 2) accept or reject this combination of invariant masses with weight proportional to R2(sqrt, M_{n-1}, m_n) x R2(M_{n-1}, M_{n-2}, m_{n-1}) x ... x R2(M2, m1, m2) x (prod M_i). Maximum weight is estmated heuristically, here I'm using an idea by Scott Pratt that maximum is close to T12 = T123 = T1234 = ... = (sqrts - sum (m_i)) / (n - 1)

Definition at line 313 of file action.cc.

315  {
332  const size_t n = m.size();
333  assert(n > 1);
334  sampled_momenta.resize(n);
335 
336  // Arrange a convenient vector of m1, m1 + m2, m1 + m2 + m3, ...
337  std::vector<double> msum(n);
338  std::partial_sum(m.begin(), m.end(), msum.begin());
339  const double msum_all = msum[n - 1];
340  int rejection_counter = -1;
341  if (sqrts <= msum_all) {
342  logg[LAction].error()
343  << "An interaction requiring " << sqrts
344  << "GeV was attempted below the minimum energy threshold" << msum_all
345  << " GeV, but was ignored.\nThis is a known internal error which does "
346  "not significantly affect physical results, and will be fixed in a "
347  "near-future release.";
348  throw StochasticBelowEnergyThreshold("Ignoring this action.");
349  }
350 
351  double w, r01;
352  std::vector<double> Minv(n);
353 
354  double weight_sqr_max = 1;
355  const double Ekin_share = (sqrts - msum_all) / (n - 1);
356  for (size_t i = 1; i < n; i++) {
357  // This maximum estimate idea is due Scott Pratt: maximum should be
358  // roughly at equal kinetic energies
359  weight_sqr_max *= pCM_sqr(i * Ekin_share + msum[i],
360  (i - 1) * Ekin_share + msum[i - 1], m[i]);
361  }
362  // Maximum estimate is rough and can be wrong. We multiply it by additional
363  // factor to be on the safer side.
364  const double safety_factor = 1.1 + (n - 2) * 0.2;
365  weight_sqr_max *= (safety_factor * safety_factor);
366  bool first_warning = true;
367 
368  do {
369  // Generate invariant masses of 1, 12, 123, 1243, etc.
370  // Minv = {m1, M12, M123, ..., M123n-1, sqrts}
371  Minv[0] = 0.0;
372  Minv[n - 1] = sqrts - msum_all;
373  for (size_t i = 1; i < n - 1; i++) {
374  Minv[i] = random::uniform(0.0, sqrts - msum_all);
375  }
376  std::sort(Minv.begin(), Minv.end());
377  for (size_t i = 0; i < n; i++) {
378  Minv[i] += msum[i];
379  }
380 
381  double weight_sqr = 1;
382  for (size_t i = 1; i < n; i++) {
383  weight_sqr *= pCM_sqr(Minv[i], Minv[i - 1], m[i]);
384  }
385 
386  rejection_counter++;
387  r01 = random::canonical();
388  w = weight_sqr / weight_sqr_max;
389  if (w > 1.0) {
390  logg[LAction].warn()
391  << "sample_manybody_phasespace_impl: alarm, weight > 1, w^2 = " << w
392  << ". Increase safety factor." << std::endl;
393  }
394  if (rejection_counter > 20 && first_warning) {
395  logg[LAction].warn() << "sample_manybody_phasespace_impl: "
396  << "likely hanging, way too many rejections,"
397  << " n = " << n << ", sqrts = " << sqrts
398  << ", msum = " << msum_all;
399  first_warning = false;
400  }
401  } while (w < r01 * r01);
402 
403  // Boost particles to the right frame
404  std::vector<ThreeVector> beta(n);
405  for (size_t i = n - 1; i > 0; i--) {
406  const double pcm = pCM(Minv[i], Minv[i - 1], m[i]);
407  Angles phitheta;
408  phitheta.distribute_isotropically();
409  const ThreeVector isotropic_unitvector = phitheta.threevec();
410  sampled_momenta[i] = FourVector(std::sqrt(m[i] * m[i] + pcm * pcm),
411  pcm * isotropic_unitvector);
412  if (i >= 2) {
413  beta[i - 2] = pcm * isotropic_unitvector /
414  std::sqrt(pcm * pcm + Minv[i - 1] * Minv[i - 1]);
415  }
416  if (i == 1) {
417  sampled_momenta[0] = FourVector(std::sqrt(m[0] * m[0] + pcm * pcm),
418  -pcm * isotropic_unitvector);
419  }
420  }
421 
422  for (size_t i = 0; i < n - 2; i++) {
423  // After each boost except the last one the sum of 3-momenta should be 0
424  FourVector ptot = FourVector(0.0, 0.0, 0.0, 0.0);
425  for (size_t j = 0; j <= i + 1; j++) {
426  ptot += sampled_momenta[j];
427  }
428  logg[LAction].debug() << "Total momentum of 0.." << i + 1 << " = "
429  << ptot.threevec() << " and should be (0, 0, 0). "
430  << std::endl;
431 
432  // Boost the first i+1 particles to the next CM frame
433  for (size_t j = 0; j <= i + 1; j++) {
434  sampled_momenta[j] = sampled_momenta[j].lorentz_boost(beta[i]);
435  }
436  }
437 
438  FourVector ptot_all = FourVector(0.0, 0.0, 0.0, 0.0);
439  for (size_t j = 0; j < n; j++) {
440  ptot_all += sampled_momenta[j];
441  }
442  logg[LAction].debug() << "Total 4-momentum = " << ptot_all << ", should be ("
443  << sqrts << ", 0, 0, 0)" << std::endl;
444 }
constexpr int n
Neutron.
T beta(T a, T b)
Draws a random number from a beta-distribution, where probability density of is .
Definition: random.h:329
T canonical()
Definition: random.h:113
T pCM(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:79
T pCM_sqr(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:91

◆ total_momentum()

FourVector smash::Action::total_momentum ( ) const
inlineprotected

Sum of 4-momenta of incoming particles.

Definition at line 389 of file action.h.

389  {
390  FourVector mom(0.0, 0.0, 0.0, 0.0);
391  for (const auto &p : incoming_particles_) {
392  mom += p.momentum();
393  }
394  return mom;
395  }

◆ choose_channel()

template<typename Branch >
const Branch* smash::Action::choose_channel ( const ProcessBranchList< Branch > &  subprocesses,
double  total_weight 
)
inlineprotected

Decide for a particular final-state channel via Monte-Carlo and return it as a ProcessBranch.

Template Parameters
BranchType of processbranch
Parameters
[in]subprocesseslist of possible processes
[in]total_weightsummed weight of all processes
Returns
ProcessBranch that is sampled

Definition at line 407 of file action.h.

408  {
409  double random_weight = random::uniform(0., total_weight);
410  double weight_sum = 0.;
411  /* Loop through all subprocesses and select one by Monte Carlo, based on
412  * their weights. */
413  for (const auto &proc : subprocesses) {
414  weight_sum += proc->weight();
415  if (random_weight <= weight_sum) {
416  /* Return the full process information. */
417  return proc.get();
418  }
419  }
420  /* Should never get here. */
422  "Problem in choose_channel: ", subprocesses.size(), " ",
423  weight_sum, " ", total_weight, " ",
424  // random_weight, "\n", *this);
425  random_weight, "\n");
426  std::abort();
427  }
#define SMASH_SOURCE_LOCATION
Hackery that is required to output the location in the source code where the log statement occurs.
Definition: logging.h:153

◆ sample_masses()

std::pair< double, double > smash::Action::sample_masses ( double  kinetic_energy_cm) const
protectedvirtual

Sample final-state masses in general X->2 processes (thus also fixing the absolute c.o.m.

momentum).

Parameters
[in]kinetic_energy_cmtotal kinetic energy of the outgoing particles in their center of mass frame [GeV]
Exceptions
InvalidResonanceFormation
Returns
masses of final state particles

Reimplemented in smash::DecayAction.

Definition at line 250 of file action.cc.

251  {
252  const ParticleType &t_a = outgoing_particles_[0].type();
253  const ParticleType &t_b = outgoing_particles_[1].type();
254  // start with pole masses
255  std::pair<double, double> masses = {t_a.mass(), t_b.mass()};
256 
257  if (kinetic_energy_cm < t_a.min_mass_kinematic() + t_b.min_mass_kinematic()) {
258  const std::string reaction = incoming_particles_[0].type().name() +
259  incoming_particles_[1].type().name() + "→" +
260  t_a.name() + t_b.name();
261  throw InvalidResonanceFormation(
262  reaction + ": not enough energy, " + std::to_string(kinetic_energy_cm) +
263  " < " + std::to_string(t_a.min_mass_kinematic()) + " + " +
264  std::to_string(t_b.min_mass_kinematic()));
265  }
266 
267  /* If one of the particles is a resonance, sample its mass. */
268  if (!t_a.is_stable() && t_b.is_stable()) {
269  masses.first = t_a.sample_resonance_mass(t_b.mass(), kinetic_energy_cm);
270  } else if (!t_b.is_stable() && t_a.is_stable()) {
271  masses.second = t_b.sample_resonance_mass(t_a.mass(), kinetic_energy_cm);
272  } else if (!t_a.is_stable() && !t_b.is_stable()) {
273  // two resonances in final state
274  masses = t_a.sample_resonance_masses(t_b, kinetic_energy_cm);
275  }
276  return masses;
277 }

◆ sample_angles()

void smash::Action::sample_angles ( std::pair< double, double >  masses,
double  kinetic_energy_cm 
)
protectedvirtual

Sample final-state momenta in general X->2 processes (here: using an isotropical angular distribution).

Parameters
[in]kinetic_energy_cmtotal kinetic energy of the outgoing particles in their center of mass frame [GeV]
[in]massesmasses of each of the final state particles

Reimplemented in smash::ScatterAction.

Definition at line 279 of file action.cc.

280  {
281  ParticleData *p_a = &outgoing_particles_[0];
282  ParticleData *p_b = &outgoing_particles_[1];
283 
284  const double pcm = pCM(kinetic_energy_cm, masses.first, masses.second);
285  if (!(pcm > 0.0)) {
286  logg[LAction].warn("Particle: ", p_a->pdgcode(), " radial momentum: ", pcm);
287  logg[LAction].warn("Ektot: ", kinetic_energy_cm, " m_a: ", masses.first,
288  " m_b: ", masses.second);
289  }
290  /* Here we assume an isotropic angular distribution. */
291  Angles phitheta;
292  phitheta.distribute_isotropically();
293 
294  p_a->set_4momentum(masses.first, phitheta.threevec() * pcm);
295  p_b->set_4momentum(masses.second, -phitheta.threevec() * pcm);
296  /* Debug message is printed before boost, so that p_a and p_b are
297  * the momenta in the center of mass frame and thus opposite to
298  * each other.*/
299  logg[LAction].debug("p_a: ", *p_a, "\np_b: ", *p_b);
300 }

◆ sample_2body_phasespace()

void smash::Action::sample_2body_phasespace ( )
protected

Sample the full 2-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles.

Definition at line 302 of file action.cc.

302  {
303  /* This function only operates on 2-particle final states. */
304  assert(outgoing_particles_.size() == 2);
305  const FourVector p_tot = total_momentum_of_outgoing_particles();
306  const double cm_kin_energy = p_tot.abs();
307  // first sample the masses
308  const std::pair<double, double> masses = sample_masses(cm_kin_energy);
309  // after the masses are fixed (and thus also pcm), sample the angles
310  sample_angles(masses, cm_kin_energy);
311 }
FourVector total_momentum_of_outgoing_particles() const
Calculate the total kinetic momentum of the outgoing particles.
Definition: action.cc:157
virtual void sample_angles(std::pair< double, double > masses, double kinetic_energy_cm)
Sample final-state momenta in general X->2 processes (here: using an isotropical angular distribution...
Definition: action.cc:279
virtual std::pair< double, double > sample_masses(double kinetic_energy_cm) const
Sample final-state masses in general X->2 processes (thus also fixing the absolute c....
Definition: action.cc:250

◆ sample_manybody_phasespace()

void smash::Action::sample_manybody_phasespace ( )
protectedvirtual

Sample the full n-body phase-space (masses, momenta, angles) in the center-of-mass frame for the final state particles.

Exceptions
std::invalid_argumentif one outgoing particle is a resonance

Reimplemented in smash::DecayActionDilepton.

Definition at line 446 of file action.cc.

446  {
447  const size_t n = outgoing_particles_.size();
448  if (n < 3) {
449  throw std::invalid_argument(
450  "sample_manybody_phasespace: number of outgoing particles should be 3 "
451  "or more");
452  }
453  bool all_stable = true;
454  for (size_t i = 0; i < n; i++) {
455  all_stable = all_stable && outgoing_particles_[i].type().is_stable();
456  }
457  if (!all_stable) {
458  throw std::invalid_argument(
459  "sample_manybody_phasespace: Found resonance in to be sampled outgoing "
460  "particles, but assumes stable particles.");
461  }
462 
463  std::vector<double> m(n);
464  for (size_t i = 0; i < n; i++) {
465  m[i] = outgoing_particles_[i].type().mass();
466  }
467  std::vector<FourVector> p(n);
468 
470  for (size_t i = 0; i < n; i++) {
471  outgoing_particles_[i].set_4momentum(p[i]);
472  }
473 }
double sqrt_s() const
Determine the total energy in the center-of-mass frame [GeV].
Definition: action.h:271
static void sample_manybody_phasespace_impl(double sqrts, const std::vector< double > &m, std::vector< FourVector > &sampled_momenta)
Implementation of the full n-body phase-space sampling (masses, momenta, angles) in the center-of-mas...
Definition: action.cc:313

◆ assign_formation_time_to_outgoing_particles()

void smash::Action::assign_formation_time_to_outgoing_particles ( )
protected

Assign the formation time to the outgoing particles.

The formation time is set to the largest formation time of the incoming particles, if it is larger than the execution time. The newly produced particles are supposed to continue forming exactly like the latest forming ingoing particle. Therefore the details on the formation are adopted. The initial cross section scaling factor of the incoming particles is considered to also be the scaling factor of the newly produced outgoing particles. If the formation time is smaller than the exectution time, the execution time is taken to be the formation time.

Note: Make sure to assign the formation times before boosting the outgoing particles to the computational frame.

Definition at line 188 of file action.cc.

188  {
189  /* Find incoming particle with largest formation time i.e. the last formed
190  * incoming particle. If all particles form at the same time, take the one
191  * with the lowest cross section scaling factor */
192  ParticleList::iterator last_formed_in_part;
193  bool all_incoming_same_formation_time =
195  [&](const ParticleData &data_comp) {
196  return std::abs(incoming_particles_[0].formation_time() -
197  data_comp.formation_time()) < really_small;
198  });
199  if (all_incoming_same_formation_time) {
200  last_formed_in_part =
201  std::min_element(incoming_particles_.begin(), incoming_particles_.end(),
202  [](const ParticleData &a, const ParticleData &b) {
203  return a.initial_xsec_scaling_factor() <
204  b.initial_xsec_scaling_factor();
205  });
206  } else {
207  last_formed_in_part =
208  std::max_element(incoming_particles_.begin(), incoming_particles_.end(),
209  [](const ParticleData &a, const ParticleData &b) {
210  return a.formation_time() < b.formation_time();
211  });
212  }
213 
214  const double form_time_begin = last_formed_in_part->begin_formation_time();
215  const double sc = last_formed_in_part->initial_xsec_scaling_factor();
216 
217  if (last_formed_in_part->formation_time() > time_of_execution_) {
218  for (ParticleData &new_particle : outgoing_particles_) {
219  if (new_particle.initial_xsec_scaling_factor() < 1.0) {
220  /* The new cross section scaling factor will be the product of the
221  * cross section scaling factor of the ingoing particles and of the
222  * outgoing ones (since the outgoing ones are also string fragments
223  * and thus take time to form). */
224  double sc_out = new_particle.initial_xsec_scaling_factor();
225  new_particle.set_cross_section_scaling_factor(sc * sc_out);
226  if (last_formed_in_part->formation_time() >
227  new_particle.formation_time()) {
228  /* If the unformed incoming particles' formation time is larger than
229  * the current outgoing particle's formation time, then the latter
230  * is overwritten by the former*/
231  new_particle.set_slow_formation_times(
232  time_of_execution_, last_formed_in_part->formation_time());
233  }
234  } else {
235  // not a string product
236  new_particle.set_slow_formation_times(
237  form_time_begin, last_formed_in_part->formation_time());
238  new_particle.set_cross_section_scaling_factor(sc);
239  }
240  }
241  } else {
242  for (ParticleData &new_particle : outgoing_particles_) {
243  if (new_particle.initial_xsec_scaling_factor() == 1.0) {
244  new_particle.set_formation_time(time_of_execution_);
245  }
246  }
247  }
248 }

◆ type_of_pout() [1/2]

const ParticleType& smash::Action::type_of_pout ( const ParticleData p_out) const
inlineprivate

Get the type of a given particle.

Parameters
[in]p_outparticle of which the type will be returned
Returns
type of given particle

Definition at line 509 of file action.h.

509  {
510  return p_out.type();
511  }

◆ type_of_pout() [2/2]

const ParticleType& smash::Action::type_of_pout ( const ParticleTypePtr p_out) const
inlineprivate

Get the particle type for given pointer to a particle type.

Helper function for total_momentum_of_outgoing_particles

Parameters
[in]p_outpointer to a particle type
Returns
particle type

Definition at line 520 of file action.h.

520  {
521  return *p_out;
522  }

Member Data Documentation

◆ incoming_particles_

ParticleList smash::Action::incoming_particles_
protected

List with data of incoming particles.

Definition at line 355 of file action.h.

◆ outgoing_particles_

ParticleList smash::Action::outgoing_particles_
protected

Initially this stores only the PDG codes of final-state particles.

After perform was called it contains the complete particle data of the outgoing particles.

Definition at line 363 of file action.h.

◆ time_of_execution_

const double smash::Action::time_of_execution_
protected

Time at which the action is supposed to be performed (absolute time in the lab frame in fm).

Definition at line 369 of file action.h.

◆ process_type_

ProcessType smash::Action::process_type_
protected

type of process

Definition at line 372 of file action.h.

◆ box_length_

double smash::Action::box_length_ = -1.0
protected

Box length: needed to determine coordinates of collision correctly in case of collision through the wall.

Ignored if negative.

Definition at line 379 of file action.h.

◆ stochastic_position_idx_

int smash::Action::stochastic_position_idx_ = -1
protected

This stores a randomly-chosen index to an incoming particle.

If non-negative, the the interaction point equals the postion of the chosen particle (index). This is done for the stochastic criterion.

Definition at line 386 of file action.h.


The documentation for this class was generated from the following files: