Version: SMASH-3.1
smash::Nucleus Class Reference

#include <nucleus.h>

A nucleus is a collection of particles that are initialized, before the beginning of the simulation and all have the same velocity.

Definition at line 27 of file nucleus.h.

Inheritance diagram for smash::Nucleus:
smash::CustomNucleus smash::DeformedNucleus

Classes

struct  TestparticleConfusion
 

Public Member Functions

 Nucleus ()=default
 default constructor More...
 
 Nucleus (Configuration &config, int nTest)
 Constructor for Nucleus, that needs the configuration parameters from the inputfile and the number of testparticles. More...
 
 Nucleus (const std::map< PdgCode, int > &particle_list, int nTest)
 Constructor which directly initializes the Nucleus with particles and respective counts. More...
 
virtual ~Nucleus ()=default
 
double mass () const
 
virtual ThreeVector distribute_nucleon ()
 The distribution of return values from this function is according to a spherically symmetric Woods-Saxon distribution suitable for this nucleus. More...
 
double woods_saxon (double x)
 Woods-Saxon distribution. More...
 
virtual void arrange_nucleons ()
 Sets the positions of the nucleons inside a nucleus. More...
 
virtual void set_parameters_automatic ()
 Sets the deformation parameters of the Woods-Saxon distribution according to the current mass number. More...
 
virtual void set_parameters_from_config (Configuration &config)
 Sets the parameters of the Woods-Saxon according to manually added values in the configuration file. More...
 
virtual void generate_fermi_momenta ()
 Generates momenta according to Fermi motion for the nucleons. More...
 
void boost (double beta_scalar)
 Boosts the nuclei into the computational frame, such that the nucleons have the appropriate momentum and the nuclei are lorentz-contracted. More...
 
void fill_from_list (const std::map< PdgCode, int > &particle_list, int testparticles)
 Adds particles from a map PDG code => Number_of_particles_with_that_PDG_code to the nucleus. More...
 
void shift (double z_offset, double x_offset, double simulation_time)
 Shifts the nucleus to correct impact parameter and z displacement. More...
 
virtual void rotate ()
 Rotates the nucleus. More...
 
void copy_particles (Particles *particles)
 Copies the particles from this nucleus into the particle list. More...
 
size_t size () const
 Number of numerical (=test-)particles in the nucleus: More...
 
size_t number_of_particles () const
 Number of physical particles in the nucleus: More...
 
size_t number_of_protons () const
 Number of physical protons in the nucleus: More...
 
FourVector center () const
 Calculate geometrical center of the nucleus. More...
 
void set_label (BelongsTo label)
 Sets target / projectile labels on nucleons. More...
 
void align_center ()
 Shifts the nucleus so that its center is at (0,0,0) More...
 
virtual double nucleon_density (double r, double, double) const
 Return the Woods-Saxon probability density for the given position. More...
 
virtual double nucleon_density_unnormalized (double r, double, double) const
 Return the unnormalized Woods-Saxon distribution for the given position without deformation. More...
 
virtual double calculate_saturation_density () const
 
virtual void set_saturation_density (double density)
 Sets the saturation density of the nucleus. More...
 
std::vector< ParticleData >::iterator begin ()
 For iterators over the particle list: More...
 
std::vector< ParticleData >::iterator end ()
 For iterators over the particle list: More...
 
std::vector< ParticleData >::const_iterator cbegin () const
 For const iterators over the particle list: More...
 
std::vector< ParticleData >::const_iterator cend () const
 For const iterators over the particle list: More...
 
void set_diffusiveness (double diffuse)
 Sets the diffusiveness of the nucleus. More...
 
double get_diffusiveness () const
 
double get_saturation_density () const
 
double default_nuclear_radius ()
 Default nuclear radius calculated as: More...
 
void set_nuclear_radius (double rad)
 Sets the nuclear radius. More...
 
double get_nuclear_radius () const
 

Protected Member Functions

void random_euler_angles ()
 Randomly generate Euler angles. More...
 

Protected Attributes

std::vector< ParticleDataparticles_
 Particles associated with this nucleus. More...
 
double saturation_density_ = nuclear_density
 Saturation density of this nucleus. More...
 
double euler_phi_
 Euler angel phi. More...
 
double euler_theta_
 Euler angel theta. More...
 
double euler_psi_
 Euler angel psi. More...
 

Private Attributes

double diffusiveness_
 Diffusiveness of Woods-Saxon distribution of this nucleus in fm (for diffusiveness_ == 0, we obtain a hard sphere). More...
 
double nuclear_radius_
 Nuclear radius of this nucleus. More...
 
double proton_radius_ = 1.2
 Single proton radius in fm. More...
 
size_t testparticles_ = 1
 Number of testparticles per physical particle. More...
 

Friends

std::ostream & operator<< (std::ostream &, const Nucleus &)
 Writes the state of the Nucleus object to the output stream. More...
 

Constructor & Destructor Documentation

◆ Nucleus() [1/3]

smash::Nucleus::Nucleus ( )
default

default constructor

◆ Nucleus() [2/3]

smash::Nucleus::Nucleus ( Configuration config,
int  nTest 
)

Constructor for Nucleus, that needs the configuration parameters from the inputfile and the number of testparticles.

Parameters
[in]configcontains the parameters from the inputfile on the numbers of particles with a certain PDG code
[in]nTestnumber of testparticles

Definition at line 31 of file nucleus.cc.

31  {
32  // Fill nuclei with particles.
33  std::map<PdgCode, int> part = config.take({"Particles"});
34  fill_from_list(part, nTest);
35  // Look for user-defined values or take the default parameters.
36  if (config.has_value({"Diffusiveness"}) && config.has_value({"Radius"}) &&
37  config.has_value({"Saturation_Density"})) {
39  } else if (!config.has_value({"Diffusiveness"}) &&
40  !config.has_value({"Radius"}) &&
41  !config.has_value({"Saturation_Density"})) {
44  } else {
45  throw std::invalid_argument(
46  "Diffusiveness, Radius and Saturation_Density "
47  "required to manually configure the Woods-Saxon"
48  " distribution. Only one/two were provided. \n"
49  "Providing none of the above mentioned "
50  "parameters automatically configures the "
51  "distribution based on the atomic number.");
52  }
53 }
virtual double calculate_saturation_density() const
Definition: nucleus.cc:496
virtual void set_parameters_automatic()
Sets the deformation parameters of the Woods-Saxon distribution according to the current mass number.
Definition: nucleus.cc:282
virtual void set_parameters_from_config(Configuration &config)
Sets the parameters of the Woods-Saxon according to manually added values in the configuration file.
Definition: nucleus.cc:340
void fill_from_list(const std::map< PdgCode, int > &particle_list, int testparticles)
Adds particles from a map PDG code => Number_of_particles_with_that_PDG_code to the nucleus.
Definition: nucleus.cc:439
virtual void set_saturation_density(double density)
Sets the saturation density of the nucleus.
Definition: nucleus.h:261

◆ Nucleus() [3/3]

smash::Nucleus::Nucleus ( const std::map< PdgCode, int > &  particle_list,
int  nTest 
)

Constructor which directly initializes the Nucleus with particles and respective counts.

Only used for testing.

Parameters
[in]particle_liststd::map, which maps PdgCode and count of this particle.
[in]nTestNumber of test particles.

Definition at line 25 of file nucleus.cc.

25  {
26  fill_from_list(particle_list, nTest);
29 }

◆ ~Nucleus()

virtual smash::Nucleus::~Nucleus ( )
virtualdefault

Member Function Documentation

◆ mass()

double smash::Nucleus::mass ( ) const
Returns
Mass of the nucleus [GeV]. It needs to be double to allow for calculations at LHC energies.

Definition at line 55 of file nucleus.cc.

55  {
56  double total_mass = 0.;
57  for (auto i = cbegin(); i != cend(); i++) {
58  total_mass += i->momentum().abs();
59  }
60  return total_mass / (testparticles_ + 0.0);
61 }
std::vector< ParticleData >::const_iterator cbegin() const
For const iterators over the particle list:
Definition: nucleus.h:315
std::vector< ParticleData >::const_iterator cend() const
For const iterators over the particle list:
Definition: nucleus.h:319
size_t testparticles_
Number of testparticles per physical particle.
Definition: nucleus.h:284

◆ distribute_nucleon()

ThreeVector smash::Nucleus::distribute_nucleon ( )
virtual

The distribution of return values from this function is according to a spherically symmetric Woods-Saxon distribution suitable for this nucleus.

\(\frac{dN}{dr} = \frac{r^2}{\exp\left(\frac{r-r_0}{d}\right) + 1}\) where \(d\) is the diffusiveness_ parameter and \(r_0\) is nuclear_radius_.

Returns
Woods-Saxon distributed position.

Woods-Saxon-distribution

The distribution

Nucleons in nuclei are distributed according to a Woods-Saxon-distribution (see Woods:1954zz [62])

\[\frac{dN}{d^3r} = \frac{\rho_0}{\exp\left(\frac{r-r_0}{d}\right) +1},\]

where \(d\) is the diffusiveness of the nucleus. For \(d=0\), the nucleus is a hard sphere. \(\rho_0\) and \(r_0\) are, in this limit, the nuclear ground state density and nuclear radius, respectively. For small \(d\), this is still approximately true.

This distribution is obviously spherically symmetric, hence we can rewrite \(d^3r = 4\pi r^2 dr\) and obtain

\[\frac{dN}{4\pi\rho_0dr} = \frac{r^2}{\exp\left(\frac{r-r_0}{d}\right) + 1}.\]

Let us rewrite that in units of \(d\) (that's the diffusiveness) and drop any constraints on normalization (since in the end we only care about relative probabilities: we create as many nucleons as we need). Now, \(p(B)\) is the un-normalized probability to obtain a point at \(r = Bd\) (with \(R = r_0/d\)):

\[p(B) = \frac{B^2}{\exp(B-R) + 1}.\]

Splitting it up in two regimes

We shift the distribution so that \(B-R\) is 0 at \(t = 0\): \(t = B-R\):

\[p^{(1)}(t)= \frac{(t+R)^2}{\exp(t)+1}\]

and observe

\[\frac{1}{\exp(x)+1} = \frac{e^{-x}}{e^{-x}e^{x}+e^{-x}} = \frac{e^{-x}}{e^{-x}+1}.\]

The distribution function can now be split into two cases. For negative t (first case), \(-|t| = t\), and for positive t (second case), \(-|t| = -t\):

\[p^{(1)}(t) = \frac{1}{e^{-|t|}+1} \cdot (t+R)^2 \cdot \begin{cases} 1 & -R \le t < 0 \\ e^{-t} & t \ge 0 \end{cases}.\]

Apart from the first term, all that remains here can easily and exactly be generated from unrejected uniform random numbers (see below). The first term itself - \((1+e^{-|t|})^{-1}\) - is a number between 1/2 and 1.

If we now have a variable \(t\) distributed according to the remainder, \(p^{(2)}(t)\), and reject \(t\) with a probability \(p^{(rej)}(t) = 1 - p^{(survive)}(t) = 1 - (1+e^{-|t|})^{-1}\), the resulting distribution is \(p^{(combined)}(t) = p^{(2)}(t) \cdot p^{(survive)}(t)\). Hence, we need to generate \(p^{(2)}(t)\), which we can normalize to

\[\tilde{p}^{(2)}(t) = \frac{1}{1+3/R+6/R^2+6/R^3} \cdot \begin{cases} \frac{3}{R^3} (t+R)^2 & -R \le t < 0 \\ e^{-t} \left( \frac{3}{R}+\frac{6}{R^2}t+\frac{6}{R^3}\frac{1}{2}t^2 \right) & t \ge 0 \end{cases}.\]

(the tilde \(\tilde{p}\) means that this is normalized).

Four parts inside the rejection

Let \(c_1 = 1+3/R+6/R^2+6/R^3\). The above means:

\[\mbox{Choose: } \begin{cases} \tilde p^{({\rm I})} = \frac{3}{R^3}(t+R)^2 \Theta(-t) \Theta(t+R) \\ \tilde p^{({\rm II})}= e^{-t}\Theta(t) \\ \tilde p^{({\rm III})}=e^{-t}\Theta(t) t \\ \tilde p^{({\rm IV})} =e^{-t}\Theta(t) \frac{1}{2} t^2 \end{cases} \mbox{ with a probability of }\begin{cases} \frac{1}{c_1} \cdot 1 \\ \frac{1}{c_1} \cdot \frac{3}{R} \\ \frac{1}{c_1} \cdot \frac{6}{R^2} \\ \frac{1}{c_1} \cdot \frac{6}{R^3} \end{cases}.\]

Let us see how those are generated. \(\chi_i\) are uniformly distributed numbers between 0 and 1.

\[p(\chi_i) = \Theta(\chi_i)\Theta(1-\chi_i)\]

For simple distributions (only one \(\chi\) involved), we invert \(t(\chi)\), derive it w.r.t. \(t\) and normalize.

Case I: \f$p^{({\rm I})}\f$

Simply from one random number:

\[t = R\left( \sqrt[ 3 ]{\chi} - 1 \right)\]

\[\tilde p^{({\rm I})} = \frac{3}{R^3}(t+R)^2 \mbox{ for } -R \le t \le 0\]

Case II: \f$p^{({\rm II})}\f$

Again, from one only:

\[t = -\log(\chi)\]

\[p(t) = \frac{d\chi}{dt}\]

\[p^{({\rm II})} = e^{-t} \mbox{ for } t > 0\]

Case III: \f$p^{({\rm III})}\f$

Here, we need two variables:

\[t = -\log{\chi_1} -\log{\chi_2}\]

\(p^{({\rm III})}\) is now the folding of \(p^{({\rm II})}\) with itself[1]:

\[p^{({\rm III})} = \int_{-\infty}^{\infty} d\tau e^{-\tau} e^{-(t-\tau)} \Theta(\tau) \Theta(t-\tau) = t e^{-t} \mbox{ for } t > 0\]

Case IV: \f$p^{({\rm IV})}\f$

Three variables needed:

\[t = -\log{\chi_1} -\log{\chi_2} -\log{\chi_3}\]

\(p^{({\rm IV})}\) is now the folding of \(p^{({\rm II})}\) with \(p^{({\rm III})}\):

\[p^{({\rm IV})} = \int_{ - \infty}^{\infty} d\tau e^{- \tau} \left( t - \tau \right) e^{ - (t - \tau)} \Theta(\tau) \Theta(t - \tau) = \frac{1}{2} t^2 e^{ -t} \mbox{ for } t > 0\]

[1]: This is [the probability to find a \(\tau\)] times [the probability to find the value \(\tau_2 = t-\tau\) that added to \(\tau\) yields \(t\)], integrated over all possible combinations that have that property.

From the beginning

So, the algorithm needs to do all this from the end:

  • Decide which branch \(\tilde p^{({\rm I - IV})}\) to go into
  • Generate \(t\) from the distribution in the respective branches
  • Reject that number with a probability \(1-(1+\exp(-|t|))^{-1}\) (the efficiency of this should be \(\gg \frac{1}{2}\))
  • Shift and rescale \(t\) to \(r = d\cdot t + r_0\)

Reimplemented in smash::DeformedNucleus, and smash::CustomNucleus.

Definition at line 215 of file nucleus.cc.

215  {
216  // Get the solid angle of the nucleon.
217  Angles dir;
218  dir.distribute_isotropically();
219  // diffusiveness_ zero or negative? Use hard sphere.
220  if (almost_equal(diffusiveness_, 0.)) {
221  return dir.threevec() * nuclear_radius_ * std::cbrt(random::canonical());
222  }
223  if (almost_equal(nuclear_radius_, 0.)) {
224  return smash::ThreeVector();
225  }
226  double radius_scaled = nuclear_radius_ / diffusiveness_;
227  double prob_range1 = 1.0;
228  double prob_range2 = 3. / radius_scaled;
229  double prob_range3 = 2. * prob_range2 / radius_scaled;
230  double prob_range4 = 1. * prob_range3 / radius_scaled;
231  double ranges234 = prob_range2 + prob_range3 + prob_range4;
232  double t;
234  do {
235  double which_range = random::uniform(-prob_range1, ranges234);
236  if (which_range < 0.0) {
237  t = radius_scaled * (std::cbrt(random::canonical()) - 1.);
238  } else {
239  t = -std::log(random::canonical());
240  if (which_range >= prob_range2) {
241  t -= std::log(random::canonical());
242  if (which_range >= prob_range2 + prob_range3) {
243  t -= std::log(random::canonical());
244  }
245  }
246  }
254  } while (random::canonical() > 1. / (1. + std::exp(-std::abs(t))));
256  double position_scaled = t + radius_scaled;
257  double position = position_scaled * diffusiveness_;
258  return dir.threevec() * position;
259 }
double diffusiveness_
Diffusiveness of Woods-Saxon distribution of this nucleus in fm (for diffusiveness_ == 0,...
Definition: nucleus.h:275
double nuclear_radius_
Nuclear radius of this nucleus.
Definition: nucleus.h:277
The ThreeVector class represents a physical three-vector with the components .
Definition: threevector.h:31
T uniform(T min, T max)
Definition: random.h:88
T canonical()
Definition: random.h:113
bool almost_equal(const N x, const N y)
Checks two numbers for relative approximate equality.
Definition: numerics.h:44

◆ woods_saxon()

double smash::Nucleus::woods_saxon ( double  x)

Woods-Saxon distribution.

Parameters
[in]xthe position at which to evaluate the function
Returns
un-normalized Woods-saxon probability

Definition at line 261 of file nucleus.cc.

261  {
262  return r * r / (std::exp((r - nuclear_radius_) / diffusiveness_) + 1);
263 }

◆ arrange_nucleons()

void smash::Nucleus::arrange_nucleons ( )
virtual

Sets the positions of the nucleons inside a nucleus.

Reimplemented in smash::CustomNucleus.

Definition at line 265 of file nucleus.cc.

265  {
266  for (auto i = begin(); i != end(); i++) {
267  // Initialize momentum
268  i->set_4momentum(i->pole_mass(), 0.0, 0.0, 0.0);
269  /* Sampling the Woods-Saxon, get the radial
270  * position and solid angle for the nucleon. */
271  ThreeVector pos = distribute_nucleon();
272 
273  // Set the position of the nucleon.
274  i->set_4position(FourVector(0.0, pos));
275  }
276 
277  // Recenter and rotate
278  align_center();
279  rotate();
280 }
virtual void rotate()
Rotates the nucleus.
Definition: nucleus.h:147
void align_center()
Shifts the nucleus so that its center is at (0,0,0)
Definition: nucleus.h:223
std::vector< ParticleData >::iterator begin()
For iterators over the particle list:
Definition: nucleus.h:309
virtual ThreeVector distribute_nucleon()
The distribution of return values from this function is according to a spherically symmetric Woods-Sa...
Definition: nucleus.cc:215
std::vector< ParticleData >::iterator end()
For iterators over the particle list:
Definition: nucleus.h:313

◆ set_parameters_automatic()

void smash::Nucleus::set_parameters_automatic ( )
virtual

Sets the deformation parameters of the Woods-Saxon distribution according to the current mass number.

The values are taken from DeVries:1987atn [19] and Loizides:2014vua [35]. They are in agreement with MC-Glauber models such as GLISSANDO (see Rybczynski:2013yba [46]) and TGlauber MC (see Loizides:2017ack [36]).

Definition at line 282 of file nucleus.cc.

282  {
284  int Z = Nucleus::number_of_protons();
285  if (A == 1) { // single particle
286  /* In case of testparticles, an infinite reaction loop will be
287  * avoided by a small finite spread according to a single particles
288  * 'nucleus'. The proper solution will be to introduce parallel
289  * ensembles. */
291  testparticles_ == 1 ? 0. : 1. - std::exp(-(testparticles_ - 1.) * 0.1));
292  set_diffusiveness(testparticles_ == 1 ? -1. : 0.02);
293  } else if ((A == 238) && (Z == 92)) { // Uranium
294  // Default values.
295  set_diffusiveness(0.556);
296  set_nuclear_radius(6.86);
297  } else if ((A == 208) && (Z == 82)) { // Lead
298  // Default values.
299  set_diffusiveness(0.54);
300  set_nuclear_radius(6.67);
301  } else if ((A == 197) && (Z == 79)) { // Gold
302  // Default values from \iref{Schopper:2004qco}
303  set_diffusiveness(0.523);
304  set_nuclear_radius(6.55);
305  } else if ((A == 129) && (Z == 54)) { // Xenon
306  // Default values.
307  set_diffusiveness(0.59);
308  set_nuclear_radius(5.36);
309  } else if ((A == 63) && (Z == 29)) { // Copper
310  // Default values.
311  set_diffusiveness(0.5977);
312  set_nuclear_radius(4.20641);
313  } else if (A == 96) {
314  if (Z == 40) { // Zirconium
315  // Default values.
316  set_diffusiveness(0.46);
317  set_nuclear_radius(5.02);
318  } else if (Z == 44) { // Ruthenium
319  // Default values.
320  set_diffusiveness(0.46);
321  set_nuclear_radius(5.085);
322  } else {
323  // radius and diffusiveness taken from \iref{Rybczynski:2013yba}
324  set_diffusiveness(0.54);
325  set_nuclear_radius(1.12 * std::pow(A, 1.0 / 3.0) -
326  0.86 * std::pow(A, -1.0 / 3.0));
327  }
328  } else {
329  // saturation density already has reasonable default
331  if (A <= 16) {
332  set_diffusiveness(0.545);
333  } else {
334  // diffusiveness taken from \iref{Rybczynski:2013yba}
335  set_diffusiveness(0.54);
336  }
337  }
338 }
double default_nuclear_radius()
Default nuclear radius calculated as:
Definition: nucleus.h:344
void set_nuclear_radius(double rad)
Sets the nuclear radius.
Definition: nucleus.h:359
void set_diffusiveness(double diffuse)
Sets the diffusiveness of the nucleus.
Definition: nucleus.h:326
size_t number_of_protons() const
Number of physical protons in the nucleus:
Definition: nucleus.h:184
size_t number_of_particles() const
Number of physical particles in the nucleus:
Definition: nucleus.h:165

◆ set_parameters_from_config()

void smash::Nucleus::set_parameters_from_config ( Configuration config)
virtual

Sets the parameters of the Woods-Saxon according to manually added values in the configuration file.

Parameters
configThe configuration for this nucleus (projectile or target).

Definition at line 340 of file nucleus.cc.

340  {
341  set_diffusiveness(static_cast<double>(config.take({"Diffusiveness"})));
342  set_nuclear_radius(static_cast<double>(config.take({"Radius"})));
343  // Saturation density (normalization for accept/reject sampling)
345  static_cast<double>(config.take({"Saturation_Density"})));
346 }

◆ generate_fermi_momenta()

void smash::Nucleus::generate_fermi_momenta ( )
virtual

Generates momenta according to Fermi motion for the nucleons.

For neutrons and protons Fermi momenta are calculated as \( p_{F} = (3 \pi^2 \rho)^{1/3}\), where \( rho \) is neutron density for neutrons and proton density for protons. The actual momenta \(p_x\), \(p_y\), \(p_z\) are uniformly distributed in the sphere with radius \(p_F\).

Reimplemented in smash::CustomNucleus.

Definition at line 348 of file nucleus.cc.

348  {
349  const int N_n = std::count_if(begin(), end(), [](const ParticleData i) {
350  return i.pdgcode() == pdg::n;
351  });
352  const int N_p = std::count_if(begin(), end(), [](const ParticleData i) {
353  return i.pdgcode() == pdg::p;
354  });
355  const FourVector nucleus_center = center();
356  const int A = N_n + N_p;
357  constexpr double pi2_3 = 3.0 * M_PI * M_PI;
358  logg[LNucleus].debug() << N_n << " neutrons, " << N_p << " protons.";
359 
360  ThreeVector ptot = ThreeVector(0.0, 0.0, 0.0);
361  for (auto i = begin(); i != end(); i++) {
362  // Only protons and neutrons get Fermi momenta
363  if (i->pdgcode() != pdg::p && i->pdgcode() != pdg::n) {
364  if (i->is_baryon()) {
365  logg[LNucleus].warn() << "No rule to calculate Fermi momentum "
366  << "for particle " << i->pdgcode();
367  }
368  continue;
369  }
370  const double r = (i->position() - nucleus_center).abs3();
371  const double theta = (i->position().threevec().get_theta());
372  const double phi = (i->position().threevec().get_phi());
373  double rho = nucleon_density(r, std::cos(theta), phi);
374 
375  if (i->pdgcode() == pdg::p) {
376  rho = rho * N_p / A;
377  }
378  if (i->pdgcode() == pdg::n) {
379  rho = rho * N_n / A;
380  }
381  const double p =
382  hbarc * std::pow(pi2_3 * rho * random::uniform(0.0, 1.0), 1.0 / 3.0);
383  Angles phitheta;
384  phitheta.distribute_isotropically();
385  const ThreeVector ith_3momentum = phitheta.threevec() * p;
386  ptot += ith_3momentum;
387  i->set_3momentum(ith_3momentum);
388  logg[LNucleus].debug() << "Particle: " << *i << ", pF[GeV]: "
389  << hbarc * std::pow(pi2_3 * rho, 1.0 / 3.0)
390  << " r[fm]: " << r
391  << " Nuclear radius[fm]: " << nuclear_radius_;
392  }
393  if (A == 0) {
394  // No Fermi momenta should be assigned
395  assert(ptot.x1() == 0.0 && ptot.x2() == 0.0 && ptot.x3() == 0.0);
396  } else {
397  /* Ensure zero total momentum of nucleus - redistribute ptot equally
398  * among protons and neutrons */
399  const ThreeVector centralizer = ptot / A;
400  for (auto i = begin(); i != end(); i++) {
401  if (i->pdgcode() == pdg::p || i->pdgcode() == pdg::n) {
402  i->set_4momentum(i->pole_mass(),
403  i->momentum().threevec() - centralizer);
404  }
405  }
406  }
407 }
FourVector center() const
Calculate geometrical center of the nucleus.
Definition: nucleus.cc:471
virtual double nucleon_density(double r, double, double) const
Return the Woods-Saxon probability density for the given position.
Definition: nucleus.cc:487
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
constexpr int p
Proton.
constexpr int n
Neutron.
constexpr double hbarc
GeV <-> fm conversion factor.
Definition: constants.h:25
static constexpr int LNucleus
Definition: nucleus.cc:23

◆ boost()

void smash::Nucleus::boost ( double  beta_scalar)

Boosts the nuclei into the computational frame, such that the nucleons have the appropriate momentum and the nuclei are lorentz-contracted.

Note that the usual boost cannot be applied for nuclei, since the particles would end up with different times and the binding energy needs to be taken into account.

Parameters
[in]beta_scalarvelocity in z-direction used for boost.

Definition at line 409 of file nucleus.cc.

409  {
410  double beta_squared = beta_scalar * beta_scalar;
411  double one_over_gamma = std::sqrt(1.0 - beta_squared);
412  double gamma = 1.0 / one_over_gamma;
413  /* We are talking about a /passive/ lorentz transformation here, as
414  * far as I can see, so we need to boost in the direction opposite to
415  * where we want to go
416  * ( The vector we transform - p - stays unchanged, but we go into
417  * a system that moves with -beta. Now in this frame, it seems
418  * like p has been accelerated with +beta.
419  * ) */
420  for (auto i = begin(); i != end(); i++) {
421  /* a real Lorentz Transformation would leave the particles at
422  * different times here, which we would then have to propagate back
423  * to equal times. Since we know the result, we can simply multiply
424  * the z-value with 1/gamma. */
425  FourVector this_position = i->position();
426  this_position.set_x3(this_position.x3() * one_over_gamma);
427  i->set_4position(this_position);
428  /* The simple Lorentz transformation of momenta does not take into account
429  * that nucleus has binding energy. Here we apply the method used
430  * in the JAM code \iref{Nara:1999dz}: p' = p_beam + gamma*p_F.
431  * This formula is derived under assumption that all nucleons have
432  * the same binding energy. */
433  FourVector mom_i = i->momentum();
434  i->set_4momentum(i->pole_mass(), mom_i.x1(), mom_i.x2(),
435  gamma * (beta_scalar * mom_i.x0() + mom_i.x3()));
436  }
437 }

◆ fill_from_list()

void smash::Nucleus::fill_from_list ( const std::map< PdgCode, int > &  particle_list,
int  testparticles 
)

Adds particles from a map PDG code => Number_of_particles_with_that_PDG_code to the nucleus.

E.g., the map [2212: 6, 2112: 7] initializes C-13 (6 protons and 7 neutrons). The particles are only created, no position or momenta are yet assigned. It is also possible to use any other PDG code, in addition to nucleons.

Parameters
[out]particle_listThe particle slots that are created.
[in]testparticlesNumber of test particles to use.

Definition at line 439 of file nucleus.cc.

440  {
441  testparticles_ = testparticles;
442  for (auto n = particle_list.cbegin(); n != particle_list.cend(); ++n) {
443  const ParticleType &current_type = ParticleType::find(n->first);
444  double current_mass = current_type.mass();
445  for (unsigned int i = 0; i < n->second * testparticles_; i++) {
446  // append particle to list and set its PDG code.
447  particles_.emplace_back(current_type);
448  particles_.back().set_4momentum(current_mass, 0.0, 0.0, 0.0);
449  }
450  }
451 }
std::vector< ParticleData > particles_
Particles associated with this nucleus.
Definition: nucleus.h:288
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
Definition: particletype.cc:99

◆ shift()

void smash::Nucleus::shift ( double  z_offset,
double  x_offset,
double  simulation_time 
)

Shifts the nucleus to correct impact parameter and z displacement.

Parameters
[in]z_offsetis the shift in z-direction
[in]x_offsetis the shift in x-direction
[in]simulation_timeset the time and formation_time of each particle to this value.

Definition at line 453 of file nucleus.cc.

453  {
454  // Move the nucleus in z and x directions, and set the time.
455  for (auto i = begin(); i != end(); i++) {
456  FourVector this_position = i->position();
457  this_position.set_x3(this_position.x3() + z_offset);
458  this_position.set_x1(this_position.x1() + x_offset);
459  this_position.set_x0(simulation_time);
460  i->set_4position(this_position);
461  i->set_formation_time(simulation_time);
462  }
463 }

◆ rotate()

virtual void smash::Nucleus::rotate ( )
inlinevirtual

Rotates the nucleus.

(Due to spherical symmetry of nondeformed nuclei, there is nothing to do.)

Reimplemented in smash::DeformedNucleus.

Definition at line 147 of file nucleus.h.

147 {}

◆ copy_particles()

void smash::Nucleus::copy_particles ( Particles particles)

Copies the particles from this nucleus into the particle list.

Parameters
[out]particlesParticle list with all constituents of a nucleus

Definition at line 465 of file nucleus.cc.

465  {
466  for (auto p = begin(); p != end(); p++) {
467  external_particles->insert(*p);
468  }
469 }

◆ size()

size_t smash::Nucleus::size ( ) const
inline

Number of numerical (=test-)particles in the nucleus:

Definition at line 157 of file nucleus.h.

157 { return particles_.size(); }

◆ number_of_particles()

size_t smash::Nucleus::number_of_particles ( ) const
inline

Number of physical particles in the nucleus:

Exceptions
TestparticleConfusionif the number of the nucleons is not a multiple of testparticles_.

Definition at line 165 of file nucleus.h.

165  {
166  size_t nop = particles_.size() / testparticles_;
167  /* If size() is not a multiple of testparticles_, this will throw an
168  * error. */
169  if (nop * testparticles_ != particles_.size()) {
170  throw TestparticleConfusion(
171  "Number of test particles and test particles"
172  "per particle are incompatible.");
173  }
174  return nop;
175  }

◆ number_of_protons()

size_t smash::Nucleus::number_of_protons ( ) const
inline

Number of physical protons in the nucleus:

Returns
number of protons
Exceptions
Testparticleconfusionif the number of the protons is not a multiple of testparticles_.

Definition at line 184 of file nucleus.h.

184  {
185  size_t proton_counter = 0;
186  /* If n_protons is not a multiple of testparticles_, this will throw an
187  * error. */
188  for (auto &particle : particles_) {
189  if (particle.type().pdgcode() == pdg::p) {
190  proton_counter++;
191  }
192  }
193 
194  size_t n_protons = proton_counter / testparticles_;
195 
196  if (n_protons * testparticles_ != proton_counter) {
197  throw TestparticleConfusion(
198  "Number of test protons and test particles"
199  "per proton are incompatible.");
200  }
201 
202  return n_protons;
203  }

◆ center()

FourVector smash::Nucleus::center ( ) const

Calculate geometrical center of the nucleus.

Returns
\(\mathbf{r}_s = \frac{1}{N} \sum_{i=1}^N \mathbf{r}_i\) (for a nucleus with N particles that are at the positions \(\mathbf{r}_i\)).

Definition at line 471 of file nucleus.cc.

471  {
472  FourVector centerpoint(0.0, 0.0, 0.0, 0.0);
473  for (auto p = cbegin(); p != cend(); p++) {
474  centerpoint += p->position();
475  }
476  centerpoint /= size();
477  return centerpoint;
478 }
size_t size() const
Number of numerical (=test-)particles in the nucleus:
Definition: nucleus.h:157

◆ set_label()

void smash::Nucleus::set_label ( BelongsTo  label)
inline

Sets target / projectile labels on nucleons.

Definition at line 213 of file nucleus.h.

213  {
214  for (ParticleData &data : particles_) {
215  data.set_belongs_to(label);
216  }
217  }

◆ align_center()

void smash::Nucleus::align_center ( )
inline

Shifts the nucleus so that its center is at (0,0,0)

See also
center()

Definition at line 223 of file nucleus.h.

223  {
224  FourVector centerpoint = center();
225  for (auto p = particles_.begin(); p != particles_.end(); ++p) {
226  p->set_4position(p->position() - centerpoint);
227  }
228  }

◆ nucleon_density()

double smash::Nucleus::nucleon_density ( double  r,
double  ,
double   
) const
virtual

Return the Woods-Saxon probability density for the given position.

This corresponds to the nuclear density at the very same position.

Parameters
[in]rThe radius at which to sample
Returns
The Woods-Saxon density

Reimplemented in smash::DeformedNucleus.

Definition at line 487 of file nucleus.cc.

487  {
488  return get_saturation_density() /
489  (std::exp((r - nuclear_radius_) / diffusiveness_) + 1.);
490 }
double get_saturation_density() const
Definition: nucleus.h:336

◆ nucleon_density_unnormalized()

double smash::Nucleus::nucleon_density_unnormalized ( double  r,
double  ,
double   
) const
virtual

Return the unnormalized Woods-Saxon distribution for the given position without deformation.

Parameters
[in]rThe radius
Returns
The unnormalized Woods-Saxon distribution

Reimplemented in smash::DeformedNucleus.

Definition at line 492 of file nucleus.cc.

492  {
493  return 1.0 / (std::exp((r - nuclear_radius_) / diffusiveness_) + 1.);
494 }

◆ calculate_saturation_density()

double smash::Nucleus::calculate_saturation_density ( ) const
virtual
Returns
the normalized ground state density for the corresponding Woods-Saxon parameter. This is done by integrating the Woods-Saxon distribution and setting the normalization such that the integral of the Woods-Saxon distribution yields the number of particles in the nucleus \(\int\rho(r)d^3r = N_{particles}\).

Reimplemented in smash::DeformedNucleus.

Definition at line 496 of file nucleus.cc.

496  {
497  Integrator2d integrate;
498  // Transform integral from (0, oo) to (0, 1) via r = (1 - t) / t.
499  // To prevent overflow, the integration is only performed to t = 0.01 which
500  // corresponds to r = 99fm. Additionally the precision settings in the
501  // Integrator2d scheme are equally important. However both these point affect
502  // the result only after the seventh digit which should not be relevant here.
503  const auto result = integrate(0.01, 1, -1, 1, [&](double t, double cosx) {
504  const double r = (1 - t) / t;
505  return twopi * std::pow(r, 2.0) *
506  nucleon_density_unnormalized(r, cosx, 0.0) / std::pow(t, 2.0);
507  });
508  const auto rho0 = number_of_particles() / result.value();
509  return rho0;
510 }
virtual double nucleon_density_unnormalized(double r, double, double) const
Return the unnormalized Woods-Saxon distribution for the given position without deformation.
Definition: nucleus.cc:492
static Integrator integrate
Definition: decaytype.cc:143
constexpr double twopi
.
Definition: constants.h:45

◆ set_saturation_density()

virtual void smash::Nucleus::set_saturation_density ( double  density)
inlinevirtual

Sets the saturation density of the nucleus.

See also
saturation_density_

Definition at line 261 of file nucleus.h.

261  {
262  saturation_density_ = density;
263  }
double saturation_density_
Saturation density of this nucleus.
Definition: nucleus.h:292

◆ random_euler_angles()

void smash::Nucleus::random_euler_angles ( )
protected

Randomly generate Euler angles.

Necessary for rotation of deformed and custom nuclei, whenever a new nucleus of this kind is initialized.

Definition at line 480 of file nucleus.cc.

480  {
481  // Sample euler_theta_ such that cos(theta) is uniform
482  euler_phi_ = twopi * random::uniform(0., 1.);
483  euler_theta_ = std::acos(2 * random::uniform(0., 1.) - 1);
484  euler_psi_ = twopi * random::uniform(0., 1.);
485 }
double euler_theta_
Euler angel theta.
Definition: nucleus.h:303
double euler_phi_
Euler angel phi.
Definition: nucleus.h:301
double euler_psi_
Euler angel psi.
Definition: nucleus.h:305

◆ begin()

std::vector<ParticleData>::iterator smash::Nucleus::begin ( )
inline

For iterators over the particle list:

Definition at line 309 of file nucleus.h.

309  {
310  return particles_.begin();
311  }

◆ end()

std::vector<ParticleData>::iterator smash::Nucleus::end ( )
inline

For iterators over the particle list:

Definition at line 313 of file nucleus.h.

313 { return particles_.end(); }

◆ cbegin()

std::vector<ParticleData>::const_iterator smash::Nucleus::cbegin ( ) const
inline

For const iterators over the particle list:

Definition at line 315 of file nucleus.h.

315  {
316  return particles_.cbegin();
317  }

◆ cend()

std::vector<ParticleData>::const_iterator smash::Nucleus::cend ( ) const
inline

For const iterators over the particle list:

Definition at line 319 of file nucleus.h.

319  {
320  return particles_.cend();
321  }

◆ set_diffusiveness()

void smash::Nucleus::set_diffusiveness ( double  diffuse)
inline

Sets the diffusiveness of the nucleus.

See also
diffusiveness_

Definition at line 326 of file nucleus.h.

326 { diffusiveness_ = diffuse; }

◆ get_diffusiveness()

double smash::Nucleus::get_diffusiveness ( ) const
inline
Returns
the diffusiveness of the nucleus
See also
diffusiveness_

Definition at line 331 of file nucleus.h.

331 { return diffusiveness_; }

◆ get_saturation_density()

double smash::Nucleus::get_saturation_density ( ) const
inline
Returns
the saturation density of the nucleus
See also
saturation_density_

Definition at line 336 of file nucleus.h.

336 { return saturation_density_; }

◆ default_nuclear_radius()

double smash::Nucleus::default_nuclear_radius ( )
inline

Default nuclear radius calculated as:

  • \( r = r_\mathrm{proton} \ A^{1/3} \qquad \qquad \qquad \ \) for A <= 16
  • \( r = 1.12 \ A^{1/3} - 0.86 \ A^{-1/3} \qquad \) for A > 16
Returns
default radius for the nucleus in fm

Definition at line 344 of file nucleus.h.

344  {
345  int A = number_of_particles();
346 
347  if (A <= 16) {
348  // radius: rough guess for all nuclei not listed explicitly with A <= 16
349  return (proton_radius_ * std::cbrt(A));
350  } else {
351  // radius taken from \iref{Rybczynski:2013yba}
352  return (1.12 * std::pow(A, 1.0 / 3.0) - 0.86 * std::pow(A, -1.0 / 3.0));
353  }
354  }
double proton_radius_
Single proton radius in fm.
Definition: nucleus.h:282

◆ set_nuclear_radius()

void smash::Nucleus::set_nuclear_radius ( double  rad)
inline

Sets the nuclear radius.

See also
nuclear_radius

Definition at line 359 of file nucleus.h.

359 { nuclear_radius_ = rad; }

◆ get_nuclear_radius()

double smash::Nucleus::get_nuclear_radius ( ) const
inline
Returns
the nuclear radius
See also
nuclear_radius

Definition at line 364 of file nucleus.h.

364 { return nuclear_radius_; }

Member Data Documentation

◆ diffusiveness_

double smash::Nucleus::diffusiveness_
private

Diffusiveness of Woods-Saxon distribution of this nucleus in fm (for diffusiveness_ == 0, we obtain a hard sphere).

Definition at line 275 of file nucleus.h.

◆ nuclear_radius_

double smash::Nucleus::nuclear_radius_
private

Nuclear radius of this nucleus.

Definition at line 277 of file nucleus.h.

◆ proton_radius_

double smash::Nucleus::proton_radius_ = 1.2
private

Single proton radius in fm.

See also
default_nuclear_radius

Definition at line 282 of file nucleus.h.

◆ testparticles_

size_t smash::Nucleus::testparticles_ = 1
private

Number of testparticles per physical particle.

Definition at line 284 of file nucleus.h.

◆ particles_

std::vector<ParticleData> smash::Nucleus::particles_
protected

Particles associated with this nucleus.

Definition at line 288 of file nucleus.h.

◆ saturation_density_

double smash::Nucleus::saturation_density_ = nuclear_density
protected

Saturation density of this nucleus.

Definition at line 292 of file nucleus.h.

◆ euler_phi_

double smash::Nucleus::euler_phi_
protected

Euler angel phi.

Definition at line 301 of file nucleus.h.

◆ euler_theta_

double smash::Nucleus::euler_theta_
protected

Euler angel theta.

Definition at line 303 of file nucleus.h.

◆ euler_psi_

double smash::Nucleus::euler_psi_
protected

Euler angel psi.

Definition at line 305 of file nucleus.h.


The documentation for this class was generated from the following files: