Version: SMASH-1.5
scatteractionsfinder.cc
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2014-2018
4  * SMASH Team
5  *
6  * GNU General Public License (GPLv3 or later)
7  *
8  */
9 
11 
12 #include <algorithm>
13 #include <map>
14 #include <vector>
15 
16 #include "smash/configuration.h"
17 #include "smash/constants.h"
18 #include "smash/crosssections.h"
19 #include "smash/cxx14compat.h"
20 #include "smash/decaymodes.h"
22 #include "smash/isoparticletype.h"
23 #include "smash/logging.h"
24 #include "smash/macros.h"
25 #include "smash/particles.h"
26 #include "smash/scatteraction.h"
28 #include "smash/stringfunctions.h"
29 
30 namespace smash {
193  Configuration config, const ExperimentParameters& parameters,
194  const std::vector<bool>& nucleon_has_interacted, int N_tot, int N_proj)
195  : elastic_parameter_(
196  config.take({"Collision_Term", "Elastic_Cross_Section"}, -1.)),
197  testparticles_(parameters.testparticles),
198  isotropic_(config.take({"Collision_Term", "Isotropic"}, false)),
199  two_to_one_(parameters.two_to_one),
200  incl_set_(parameters.included_2to2),
201  low_snn_cut_(parameters.low_snn_cut),
202  strings_switch_(parameters.strings_switch),
203  use_AQM_(parameters.use_AQM),
204  strings_with_probability_(parameters.strings_with_probability),
205  nnbar_treatment_(parameters.nnbar_treatment),
206  nucleon_has_interacted_(nucleon_has_interacted),
207  N_tot_(N_tot),
208  N_proj_(N_proj),
209  string_formation_time_(config.take(
210  {"Collision_Term", "String_Parameters", "Formation_Time"}, 1.)) {
211  if (is_constant_elastic_isotropic()) {
212  const auto& log = logger<LogArea::FindScatter>();
213  log.info("Constant elastic isotropic cross-section mode:", " using ",
214  elastic_parameter_, " mb as maximal cross-section.");
215  }
216  if (strings_switch_) {
217  auto subconfig = config["Collision_Term"]["String_Parameters"];
218  string_process_interface_ = make_unique<StringProcess>(
219  subconfig.take({"String_Tension"}, 1.0), string_formation_time_,
220  subconfig.take({"Gluon_Beta"}, 0.5),
221  subconfig.take({"Gluon_Pmin"}, 0.001),
222  subconfig.take({"Quark_Alpha"}, 2.0),
223  subconfig.take({"Quark_Beta"}, 5.0),
224  subconfig.take({"Strange_Supp"}, 0.12),
225  subconfig.take({"Diquark_Supp"}, 0.03),
226  subconfig.take({"Sigma_Perp"}, 0.42),
227  subconfig.take({"Leading_Frag_Mean"}, 1.0),
228  subconfig.take({"Leading_Frag_Width"}, 0.6),
229  subconfig.take({"StringZ_A"}, 0.68), subconfig.take({"StringZ_B"}, 0.3),
230  subconfig.take({"String_Sigma_T"}, 0.5),
231  subconfig.take({"Form_Time_Factor"}, 1.0),
232  subconfig.take({"Use_Yoyo_Model"}, true),
233  subconfig.take({"Prob_proton_to_d_uu"}, 1. / 3.));
234  }
235 }
236 
238  const ParticleData& data_b,
239  double dt) const {
240 #ifndef NDEBUG
241  const auto& log = logger<LogArea::FindScatter>();
242 #endif
243 
244  // just collided with this particle
245  if (data_a.id_process() > 0 && data_a.id_process() == data_b.id_process()) {
246 #ifndef NDEBUG
247  log.debug("Skipping collided particles at time ", data_a.position().x0(),
248  " due to process ", data_a.id_process(), "\n ", data_a,
249  "\n<-> ", data_b);
250 #endif
251  return nullptr;
252  }
253  /* If the two particles
254  * 1) belong to the two colliding nuclei
255  * 2) are within the same nucleus
256  * 3) both of them have never experienced any collisons,
257  * then the collision between them are banned. */
258  assert(data_a.id() >= 0);
259  assert(data_b.id() >= 0);
260  if (data_a.id() < N_tot_ && data_b.id() < N_tot_ &&
261  ((data_a.id() < N_proj_ && data_b.id() < N_proj_) ||
262  (data_a.id() >= N_proj_ && data_b.id() >= N_proj_)) &&
263  !(nucleon_has_interacted_[data_a.id()] ||
264  nucleon_has_interacted_[data_b.id()])) {
265  return nullptr;
266  }
267 
268  // Determine time of collision.
269  const double time_until_collision = collision_time(data_a, data_b);
270 
271  // Check that collision happens in this timestep.
272  if (time_until_collision < 0. || time_until_collision >= dt) {
273  return nullptr;
274  }
275 
276  // Create ScatterAction object.
277  ScatterActionPtr act = make_unique<ScatterAction>(
278  data_a, data_b, time_until_collision, isotropic_, string_formation_time_);
279  if (strings_switch_) {
280  act->set_string_interface(string_process_interface_.get());
281  }
282 
283  const double distance_squared = act->transverse_distance_sqr();
284 
285  // Don't calculate cross section if the particles are very far apart.
286  if (distance_squared >= max_transverse_distance_sqr(testparticles_)) {
287  return nullptr;
288  }
289 
290  // Add various subprocesses.
291  act->add_all_scatterings(elastic_parameter_, two_to_one_, incl_set_,
294 
295  // Cross section for collision criterion
296  double cross_section_criterion = act->cross_section() * fm2_mb * M_1_PI /
297  static_cast<double>(testparticles_);
298  // Take cross section scaling factors into account
299  cross_section_criterion *= data_a.xsec_scaling_factor(time_until_collision);
300  cross_section_criterion *= data_b.xsec_scaling_factor(time_until_collision);
301 
302  // distance criterion according to cross_section
303  if (distance_squared >= cross_section_criterion) {
304  return nullptr;
305  }
306 
307 #ifndef NDEBUG
308  log.debug("particle distance squared: ", distance_squared, "\n ", data_a,
309  "\n<-> ", data_b);
310 #endif
311 
312  return std::move(act);
313 }
314 
316  const ParticleList& search_list, double dt) const {
317  std::vector<ActionPtr> actions;
318  for (const ParticleData& p1 : search_list) {
319  for (const ParticleData& p2 : search_list) {
320  if (p1.id() < p2.id()) {
321  // Check if a collision is possible.
322  ActionPtr act = check_collision(p1, p2, dt);
323  if (act) {
324  actions.push_back(std::move(act));
325  }
326  }
327  }
328  }
329  return actions;
330 }
331 
333  const ParticleList& search_list, const ParticleList& neighbors_list,
334  double dt) const {
335  std::vector<ActionPtr> actions;
336  for (const ParticleData& p1 : search_list) {
337  for (const ParticleData& p2 : neighbors_list) {
338  assert(p1.id() != p2.id());
339  // Check if a collision is possible.
340  ActionPtr act = check_collision(p1, p2, dt);
341  if (act) {
342  actions.push_back(std::move(act));
343  }
344  }
345  }
346  return actions;
347 }
348 
350  const ParticleList& search_list, const Particles& surrounding_list,
351  double dt) const {
352  std::vector<ActionPtr> actions;
353  for (const ParticleData& p2 : surrounding_list) {
354  /* don't look for collisions if the particle from the surrounding list is
355  * also in the search list */
356  auto result = std::find_if(
357  search_list.begin(), search_list.end(),
358  [&p2](const ParticleData& p) { return p.id() == p2.id(); });
359  if (result != search_list.end()) {
360  continue;
361  }
362  for (const ParticleData& p1 : search_list) {
363  // Check if a collision is possible.
364  ActionPtr act = check_collision(p1, p2, dt);
365  if (act) {
366  actions.push_back(std::move(act));
367  }
368  }
369  }
370  return actions;
371 }
372 
374  constexpr double time = 0.0;
375 
376  const size_t N_isotypes = IsoParticleType::list_all().size();
377  const size_t N_pairs = N_isotypes * (N_isotypes - 1) / 2;
378 
379  std::cout << N_isotypes << " iso-particle types." << std::endl;
380  std::cout << "They can make " << N_pairs << " pairs." << std::endl;
381  std::vector<double> momentum_scan_list = {0.1, 0.3, 0.5, 1.0,
382  2.0, 3.0, 5.0, 10.0};
383  for (const IsoParticleType& A_isotype : IsoParticleType::list_all()) {
384  for (const IsoParticleType& B_isotype : IsoParticleType::list_all()) {
385  if (&A_isotype > &B_isotype) {
386  continue;
387  }
388  bool any_nonzero_cs = false;
389  std::vector<std::string> r_list;
390  for (const ParticleTypePtr A_type : A_isotype.get_states()) {
391  for (const ParticleTypePtr B_type : B_isotype.get_states()) {
392  if (A_type > B_type) {
393  continue;
394  }
395  ParticleData A(*A_type), B(*B_type);
396  for (auto mom : momentum_scan_list) {
397  A.set_4momentum(A.pole_mass(), mom, 0.0, 0.0);
398  B.set_4momentum(B.pole_mass(), -mom, 0.0, 0.0);
399  ScatterActionPtr act = make_unique<ScatterAction>(
400  A, B, time, isotropic_, string_formation_time_);
401  if (strings_switch_) {
402  act->set_string_interface(string_process_interface_.get());
403  }
404  act->add_all_scatterings(elastic_parameter_, two_to_one_, incl_set_,
408  const double total_cs = act->cross_section();
409  if (total_cs <= 0.0) {
410  continue;
411  }
412  any_nonzero_cs = true;
413  for (const auto& channel : act->collision_channels()) {
414  const auto type = channel->get_type();
415  std::string r;
416  if (is_string_soft_process(type) ||
417  type == ProcessType::StringHard) {
418  r = A_type->name() + B_type->name() + std::string(" → strings");
419  } else {
420  std::string r_type =
421  (type == ProcessType::Elastic)
422  ? std::string(" (el)")
423  : (channel->get_type() == ProcessType::TwoToTwo)
424  ? std::string(" (inel)")
425  : std::string(" (?)");
426  r = A_type->name() + B_type->name() + std::string(" → ") +
427  channel->particle_types()[0]->name() +
428  channel->particle_types()[1]->name() + r_type;
429  }
430  isoclean(r);
431  r_list.push_back(r);
432  }
433  }
434  }
435  }
436  std::sort(r_list.begin(), r_list.end());
437  r_list.erase(std::unique(r_list.begin(), r_list.end()), r_list.end());
438  if (any_nonzero_cs) {
439  for (auto r : r_list) {
440  std::cout << r;
441  if (r_list.back() != r) {
442  std::cout << ", ";
443  }
444  }
445  std::cout << std::endl;
446  }
447  }
448  }
449 }
450 
454  std::string name_;
455 
458 
460  double mass_;
461 
470  FinalStateCrossSection(const std::string& name, double cross_section,
471  double mass)
472  : name_(name), cross_section_(cross_section), mass_(mass) {}
473 };
474 
475 namespace decaytree {
476 
488 struct Node {
489  public:
491  std::string name_;
492 
494  double weight_;
495 
497  ParticleTypePtrList initial_particles_;
498 
500  ParticleTypePtrList final_particles_;
501 
503  ParticleTypePtrList state_;
504 
506  std::vector<Node> children_;
507 
509  Node(const Node&) = delete;
511  Node(Node&&) = default;
512 
523  Node(const std::string& name, double weight,
524  ParticleTypePtrList&& initial_particles,
525  ParticleTypePtrList&& final_particles, ParticleTypePtrList&& state,
526  std::vector<Node>&& children)
527  : name_(name),
528  weight_(weight),
529  initial_particles_(std::move(initial_particles)),
530  final_particles_(std::move(final_particles)),
531  state_(std::move(state)),
532  children_(std::move(children)) {}
533 
545  Node& add_action(const std::string& name, double weight,
546  ParticleTypePtrList&& initial_particles,
547  ParticleTypePtrList&& final_particles) {
548  // Copy parent state and update it.
549  ParticleTypePtrList state(state_);
550  for (const auto& p : initial_particles) {
551  state.erase(std::find(state.begin(), state.end(), p));
552  }
553  for (const auto& p : final_particles) {
554  state.push_back(p);
555  }
556  // Sort the state to normalize the output.
557  std::sort(state.begin(), state.end(),
559  return a->name() < b->name();
560  });
561  // Push new node to children.
562  Node new_node(name, weight, std::move(initial_particles),
563  std::move(final_particles), std::move(state), {});
564  children_.emplace_back(std::move(new_node));
565  return children_.back();
566  }
567 
569  void print() const { print_helper(0); }
570 
574  std::vector<FinalStateCrossSection> final_state_cross_sections() const {
575  std::vector<FinalStateCrossSection> result;
576  final_state_cross_sections_helper(0, result, "", 1.);
577  return result;
578  }
579 
580  private:
587  void print_helper(uint64_t depth) const {
588  for (uint64_t i = 0; i < depth; i++) {
589  std::cout << " ";
590  }
591  std::cout << name_ << " " << weight_ << std::endl;
592  for (const auto& child : children_) {
593  child.print_helper(depth + 1);
594  }
595  }
596 
609  uint64_t depth, std::vector<FinalStateCrossSection>& result,
610  const std::string& name, double weight,
611  bool show_intermediate_states = false) const {
612  // The first node corresponds to the total cross section and has to be
613  // ignored. The second node corresponds to the partial cross section. All
614  // further nodes correspond to branching ratios.
615  if (depth > 0) {
616  weight *= weight_;
617  }
618 
619  std::string new_name;
620  double mass = 0.;
621 
622  if (show_intermediate_states) {
623  new_name = name;
624  if (!new_name.empty()) {
625  new_name += "->";
626  }
627  new_name += name_;
628  new_name += "{";
629  } else {
630  new_name = "";
631  }
632  for (const auto& s : state_) {
633  new_name += s->name();
634  mass += s->mass();
635  }
636  if (show_intermediate_states) {
637  new_name += "}";
638  }
639 
640  if (children_.empty()) {
641  result.emplace_back(FinalStateCrossSection(new_name, weight, mass));
642  return;
643  }
644  for (const auto& child : children_) {
645  child.final_state_cross_sections_helper(depth + 1, result, new_name,
646  weight, show_intermediate_states);
647  }
648  }
649 };
650 
659 static std::string make_decay_name(const std::string& res_name,
660  const DecayBranchPtr& decay,
661  ParticleTypePtrList& final_state) {
662  std::stringstream name;
663  name << "[" << res_name << "->";
664  for (const auto& p : decay->particle_types()) {
665  name << p->name();
666  final_state.push_back(p);
667  }
668  name << "]";
669  return name.str();
670 }
671 
678 static void add_decays(Node& node) {
679  // If there is more than one unstable particle in the current state, then
680  // there will be redundant paths in the decay tree, corresponding to
681  // reorderings of the decays. To avoid double counting, we normalize by the
682  // number of possible decay orderings. Normalizing by the number of unstable
683  // particles recursively corresponds to normalizing by the factorial that
684  // gives the number of reorderings.
685  //
686  // Ideally, the redundant paths should never be added to the decay tree, but
687  // we never have more than two redundant paths, so it probably does not matter
688  // much.
689  uint32_t n_unstable = 0;
690  for (const ParticleTypePtr ptype : node.state_) {
691  if (!ptype->is_stable()) {
692  n_unstable += 1;
693  }
694  }
695  const double norm =
696  n_unstable != 0 ? 1. / static_cast<double>(n_unstable) : 1.;
697 
698  for (const ParticleTypePtr ptype : node.state_) {
699  if (!ptype->is_stable()) {
700  for (const auto& decay : ptype->decay_modes().decay_mode_list()) {
701  ParticleTypePtrList parts;
702  const auto name = make_decay_name(ptype->name(), decay, parts);
703  auto& new_node = node.add_action(name, norm * decay->weight(), {ptype},
704  std::move(parts));
705  add_decays(new_node);
706  }
707  }
708  }
709 }
710 
711 } // namespace decaytree
712 
718 static void deduplicate(std::vector<FinalStateCrossSection>& final_state_xs) {
719  std::sort(final_state_xs.begin(), final_state_xs.end(),
720  [](const FinalStateCrossSection& a,
721  const FinalStateCrossSection& b) { return a.name_ < b.name_; });
722  auto current = final_state_xs.begin();
723  while (current != final_state_xs.end()) {
724  auto adjacent = std::adjacent_find(
725  current, final_state_xs.end(),
726  [](const FinalStateCrossSection& a, const FinalStateCrossSection& b) {
727  return a.name_ == b.name_;
728  });
729  current = adjacent;
730  if (adjacent != final_state_xs.end()) {
731  adjacent->cross_section_ += (adjacent + 1)->cross_section_;
732  final_state_xs.erase(adjacent + 1);
733  }
734  }
735 }
736 
738  const ParticleType& b,
739  double m_a, double m_b,
740  bool final_state) const {
741  typedef std::vector<std::pair<double, double>> xs_saver;
742  std::map<std::string, xs_saver> xs_dump;
743  std::map<std::string, double> outgoing_total_mass;
744 
745  ParticleData a_data(a), b_data(b);
746  constexpr int n_momentum_points = 200;
747  constexpr double momentum_step = 0.02;
748  for (int i = 1; i < n_momentum_points + 1; i++) {
749  const double momentum = momentum_step * i;
750  a_data.set_4momentum(m_a, momentum, 0.0, 0.0);
751  b_data.set_4momentum(m_b, -momentum, 0.0, 0.0);
752  const double sqrts = (a_data.momentum() + b_data.momentum()).abs();
753  const ParticleList incoming = {a_data, b_data};
754  ScatterActionPtr act = make_unique<ScatterAction>(
755  a_data, b_data, 0., isotropic_, string_formation_time_);
756  if (strings_switch_) {
757  act->set_string_interface(string_process_interface_.get());
758  }
759  act->add_all_scatterings(elastic_parameter_, two_to_one_, incl_set_,
762  decaytree::Node tree(a.name() + b.name(), act->cross_section(), {&a, &b},
763  {&a, &b}, {&a, &b}, {});
764  const CollisionBranchList& processes = act->collision_channels();
765  for (const auto& process : processes) {
766  const double xs = process->weight();
767  if (xs <= 0.0) {
768  continue;
769  }
770  if (!final_state) {
771  std::stringstream process_description_stream;
772  process_description_stream << *process;
773  const std::string& description = process_description_stream.str();
774  double m_tot = 0.0;
775  for (const auto& ptype : process->particle_types()) {
776  m_tot += ptype->mass();
777  }
778  outgoing_total_mass[description] = m_tot;
779  if (!xs_dump[description].empty() &&
780  std::abs(xs_dump[description].back().first - sqrts) <
781  really_small) {
782  xs_dump[description].back().second += xs;
783  } else {
784  xs_dump[description].push_back(std::make_pair(sqrts, xs));
785  }
786  } else {
787  std::stringstream process_description_stream;
788  process_description_stream << *process;
789  const std::string& description = process_description_stream.str();
790  ParticleTypePtrList initial_particles = {&a, &b};
791  ParticleTypePtrList final_particles = process->particle_types();
792  auto& process_node =
793  tree.add_action(description, xs, std::move(initial_particles),
794  std::move(final_particles));
795  decaytree::add_decays(process_node);
796  }
797  }
798  xs_dump["total"].push_back(std::make_pair(sqrts, act->cross_section()));
799  // Total cross-section should be the first in the list -> negative mass
800  outgoing_total_mass["total"] = -1.0;
801  if (final_state) {
802  // tree.print();
803  auto final_state_xs = tree.final_state_cross_sections();
804  deduplicate(final_state_xs);
805  for (const auto& p : final_state_xs) {
806  outgoing_total_mass[p.name_] = p.mass_;
807  xs_dump[p.name_].push_back(std::make_pair(sqrts, p.cross_section_));
808  }
809  }
810  }
811 
812  // Nice ordering of channels by summed pole mass of products
813  std::vector<std::string> all_channels;
814  for (const auto channel : xs_dump) {
815  all_channels.push_back(channel.first);
816  }
817  std::sort(all_channels.begin(), all_channels.end(),
818  [&](const std::string& str_a, const std::string& str_b) {
819  return outgoing_total_mass[str_a] < outgoing_total_mass[str_b];
820  });
821 
822  // Print header
823  std::cout << "# Dumping partial " << a.name() << b.name()
824  << " cross-sections in mb, energies in GeV" << std::endl;
825  std::cout << " sqrt_s";
826  // Align everything to 16 unicode characters.
827  // This should be enough for the longest channel name (7 final-state
828  // particles).
829  for (const auto channel : all_channels) {
830  std::cout << utf8::fill_left(channel, 16, ' ');
831  }
832  std::cout << std::endl;
833 
834  // Print out all partial cross-sections in mb
835  for (int i = 1; i < n_momentum_points; i++) {
836  const double momentum = momentum_step * i;
837  a_data.set_4momentum(m_a, momentum, 0.0, 0.0);
838  b_data.set_4momentum(m_b, -momentum, 0.0, 0.0);
839  const double sqrts = (a_data.momentum() + b_data.momentum()).abs();
840  printf("%9.5f", sqrts);
841  for (const auto channel : all_channels) {
842  const xs_saver energy_and_xs = xs_dump[channel];
843  size_t j = 0;
844  for (; j < energy_and_xs.size() && energy_and_xs[j].first < sqrts; j++) {
845  }
846  double xs = 0.0;
847  if (j < energy_and_xs.size() &&
848  std::abs(energy_and_xs[j].first - sqrts) < really_small) {
849  xs = energy_and_xs[j].second;
850  }
851  printf("%16.6f", xs); // Same alignment as in the header.
852  }
853  printf("\n");
854  }
855 }
856 
857 } // namespace smash
void print_helper(uint64_t depth) const
Internal helper function for print, to be called recursively to print all nodes.
Node(const Node &)=delete
Cannot be copied.
std::string name_
Name of the final state.
static double collision_time(const ParticleData &p1, const ParticleData &p2)
Determine the collision time of the two particles.
double mass_
Total mass of final state particles.
static void deduplicate(std::vector< FinalStateCrossSection > &final_state_xs)
Deduplicate the final-state cross sections by summing.
const int testparticles_
Number of test particles.
constexpr double really_small
Numerical error tolerance.
Definition: constants.h:34
const ReactionsBitSet incl_set_
List of included 2<->2 reactions.
bool is_string_soft_process(ProcessType p)
Check if a given process type is a soft string excitation.
const bool two_to_one_
Enable 2->1 processes.
static std::string make_decay_name(const std::string &res_name, const DecayBranchPtr &decay, ParticleTypePtrList &final_state)
Generate name for decay and update final state.
const double low_snn_cut_
Elastic collsions between two nucleons with sqrt_s below low_snn_cut_ are excluded.
const double string_formation_time_
Parameter for formation time.
void isoclean(std::string &s)
Remove ⁺, ⁻, ⁰ from string.
Collection of useful constants that are known at compile time.
double pole_mass() const
Get the particle&#39;s pole mass ("on-shell").
Definition: particledata.h:96
const bool strings_with_probability_
Decide whether to implement string fragmentation based on a probability.
STL namespace.
double max_transverse_distance_sqr(int testparticles) const
The maximal distance over which particles can interact, related to the number of test particles and t...
ActionPtr check_collision(const ParticleData &data_a, const ParticleData &data_b, double dt) const
Check for a single pair of particles (id_a, id_b) if a collision will happen in the next timestep and...
constexpr double fm2_mb
mb <-> fm^2 conversion factor.
Definition: constants.h:28
2->2 inelastic scattering
std::vector< Node > children_
Possible actions after this action.
const FourVector & momentum() const
Get the particle&#39;s 4-momentum.
Definition: particledata.h:139
const std::vector< bool > & nucleon_has_interacted_
Parameter to record whether the nucleon has experienced a collision or not.
Represent a final-state cross section.
Interface to the SMASH configuration files.
std::string fill_left(const std::string &s, size_t width, char fill=' ')
Fill string with characters to the left until the given width is reached.
std::unique_ptr< StringProcess > string_process_interface_
Class that deals with strings, interfacing Pythia.
double x0() const
Definition: fourvector.h:290
const bool strings_switch_
Switch to turn off string excitation.
ParticleTypePtrList initial_particles_
Initial-state particle types in this action.
ActionList find_actions_in_cell(const ParticleList &search_list, double dt) const override
Search for all the possible collisions within one cell.
std::string name_
Name for printing.
elastic scattering: particles remain the same, only momenta change
double weight_
Weight (cross section or branching ratio).
void final_state_cross_sections_helper(uint64_t depth, std::vector< FinalStateCrossSection > &result, const std::string &name, double weight, bool show_intermediate_states=false) const
Internal helper function for final_state_cross_sections, to be called recursively to calculate all fi...
bool is_stable() const
Definition: particletype.h:226
const FourVector & position() const
Get the particle&#39;s position in Minkowski space.
Definition: particledata.h:185
Particle type contains the static properties of a particle species.
Definition: particletype.h:87
ScatterActionsFinder(Configuration config, const ExperimentParameters &parameters, const std::vector< bool > &nucleon_has_interacted, int N_tot, int N_proj)
Constructor of the finder with the given parameters.
void dump_cross_sections(const ParticleType &a, const ParticleType &b, double m_a, double m_b, bool final_state) const
Print out partial cross-sections of all processes that can occur in the collision of a(mass = m_a) an...
void set_4momentum(const FourVector &momentum_vector)
Set the particle&#39;s 4-momentum directly.
Definition: particledata.h:145
IsoParticleType is a class to represent isospin multiplets.
const NNbarTreatment nnbar_treatment_
Switch for NNbar reactions.
uint32_t id_process() const
Get the id of the last action.
Definition: particledata.h:115
hard string process involving 2->2 QCD process by PYTHIA.
FinalStateCrossSection(const std::string &name, double cross_section, double mass)
Construct a final-state cross section.
ParticleTypePtrList final_particles_
Final-state particle types in this action.
void dump_reactions() const
Prints out all the 2-> n (n > 1) reactions with non-zero cross-sections between all possible pairs of...
std::vector< FinalStateCrossSection > final_state_cross_sections() const
const DecayModes & decay_modes() const
constexpr int p
Proton.
const bool use_AQM_
Switch to control whether to use AQM or not.
const int N_proj_
Record the number of the nucleons in the projectile.
const bool isotropic_
Do all collisions isotropically.
const int N_tot_
Record the total number of the nucleons in the two colliding nuclei.
void print() const
Print the decay tree starting with this node.
A pointer-like interface to global references to ParticleType objects.
Definition: particletype.h:660
static void add_decays(Node &node)
Add nodes for all decays possible from the given node and all of its children.
Node of a decay tree, representing a possible action (2-to-2 or 1-to-2).
ParticleTypePtrList state_
Particle types corresponding to the global state after this action.
The Particles class abstracts the storage and manipulation of particles.
Definition: particles.h:33
int id() const
Get the id of the particle.
Definition: particledata.h:70
Node(const std::string &name, double weight, ParticleTypePtrList &&initial_particles, ParticleTypePtrList &&final_particles, ParticleTypePtrList &&state, std::vector< Node > &&children)
double cross_section_
Corresponding cross section in mb.
Node & add_action(const std::string &name, double weight, ParticleTypePtrList &&initial_particles, ParticleTypePtrList &&final_particles)
Add an action to the children of this node.
ActionList find_actions_with_surrounding_particles(const ParticleList &search_list, const Particles &surrounding_list, double dt) const override
Search for all the possible secondary collisions between the outgoing particles and the rest...
Helper structure for Experiment.
ParticleData contains the dynamic information of a certain particle.
Definition: particledata.h:52
const double elastic_parameter_
Elastic cross section parameter (in mb).
Definition: action.h:24
static const IsoParticleTypeList & list_all()
Returns a list of all IsoParticleTypes.
ActionList find_actions_with_neighbors(const ParticleList &search_list, const ParticleList &neighbors_list, double dt) const override
Search for all the possible collisions among the neighboring cells.
const DecayBranchList & decay_mode_list() const
Definition: decaymodes.h:63
const std::string & name() const
Definition: particletype.h:131