Version: SMASH-3.1
smash::SphereModus Class Reference

#include <spheremodus.h>

SphereModus: Provides a modus for expanding matter calculations.

Matter is put in a sphere of radius R with uniform density; isotropic thermal momenta are typically used for initialization, although other initial momentum states are also included, see Bazow:2016oky [7] and Tindall:2016try [58]

To use this modus, choose

General:
Modus: Sphere

in the configuration file.

Options for SphereModus go in the "Modi"→"Sphere" section of the configuration:

Modi:
Sphere:
# definitions here

The following configuration options are understood: Sphere

Definition at line 49 of file spheremodus.h.

Inheritance diagram for smash::SphereModus:
smash::ModusDefault

Public Member Functions

 SphereModus (Configuration modus_config, const ExperimentParameters &parameters)
 Constructor. More...
 
double initial_conditions (Particles *particles, const ExperimentParameters &parameters)
 Generates initial state of the particles in the system according to specified parameters: number of particles of each species, momentum and coordinate space distributions. More...
 
bool is_sphere () const
 
double radius () const
 
- Public Member Functions inherited from smash::ModusDefault
int impose_boundary_conditions (Particles *, const OutputsList &={})
 Enforces sensible positions for the particles. More...
 
bool is_collider () const
 
bool is_box () const
 
bool is_list () const
 
bool is_sphere () const
 
double sqrt_s_NN () const
 
double impact_parameter () const
 
void sample_impact () const
 sample impact parameter for collider modus More...
 
double velocity_projectile () const
 
double velocity_target () const
 
FermiMotion fermi_motion () const
 
double max_timestep (double) const
 
double equilibration_time () const
 
double length () const
 
double radius () const
 
bool calculation_frame_is_fixed_target () const
 
double nuclei_passing_time () const
 Get the passing time of the two nuclei in a collision. More...
 
Grid< GridOptions::Normalcreate_grid (const Particles &particles, double min_cell_length, double timestep_duration, CollisionCriterion crit, const bool include_unformed_particles, CellSizeStrategy strategy=CellSizeStrategy::Optimal) const
 Creates the Grid with normal boundary conditions. More...
 
std::unique_ptr< GrandCanThermalizercreate_grandcan_thermalizer (Configuration &conf) const
 Creates GrandCanThermalizer. More...
 

Private Attributes

double radius_
 Sphere radius (in fm) More...
 
double sphere_temperature_
 Temperature for momentum distribution (in GeV) More...
 
const double start_time_ = 0.
 Starting time for the Sphere. More...
 
const bool use_thermal_ = false
 Whether to use a thermal initialization for all particles instead of specific numbers. More...
 
const double mub_
 Baryon chemical potential for thermal initialization; only used if use_thermal_ is true. More...
 
const double mus_
 Strange chemical potential for thermal initialization; only used if use_thermal_ is true. More...
 
const double muq_
 Charge chemical potential for thermal initialization; only used if use_thermal_ is true. More...
 
const bool account_for_resonance_widths_
 In case of thermal initialization: true – account for resonance spectral functions, while computing multiplicities and sampling masses, false – simply use pole masses. More...
 
const std::map< PdgCode, int > init_multipl_
 Particle multiplicities at initialization; required if use_thermal_ is false. More...
 
std::map< PdgCode, double > average_multipl_
 Average multiplicities in case of thermal initialization. More...
 
const SphereInitialCondition init_distr_
 Initialization scheme for momenta in the sphere; used for expanding metric setup. More...
 
const double radial_velocity_
 Wether to add a constant radial velocity profile to the momenta of the particles in the sphere. More...
 
const std::optional< PdgCodejet_pdg_
 Optional PDG code of the particle to use as a jet, i.e. More...
 
const double jet_mom_
 Initial momentum of the jet particle; only used if jet_pdg_ is not nullopt. More...
 

Friends

std::ostream & operator<< (std::ostream &out, const SphereModus &m)
 Writes the initial state for the Sphere to the output stream. More...
 

Constructor & Destructor Documentation

◆ SphereModus()

smash::SphereModus::SphereModus ( Configuration  modus_config,
const ExperimentParameters parameters 
)
explicit

Constructor.

Takes all there is to take from the (truncated!) configuration object (only contains configuration for this modus).

Parameters
[in]modus_configThe configuration object that sets all initial conditions of the experiment.
[in]parametersUnused, but necessary because of templated initialization

Definition at line 37 of file spheremodus.cc.

39  : radius_(modus_config.take({"Sphere", "Radius"})),
40  sphere_temperature_(modus_config.take({"Sphere", "Temperature"})),
41  start_time_(modus_config.take({"Sphere", "Start_Time"}, 0.)),
43  modus_config.take({"Sphere", "Use_Thermal_Multiplicities"}, false)),
44  mub_(modus_config.take({"Sphere", "Baryon_Chemical_Potential"}, 0.)),
45  mus_(modus_config.take({"Sphere", "Strange_Chemical_Potential"}, 0.)),
46  muq_(modus_config.take({"Sphere", "Charge_Chemical_Potential"}, 0.)),
48  modus_config.take({"Sphere", "Account_Resonance_Widths"}, true)),
50  ? std::map<PdgCode, int>()
51  : modus_config.take({"Sphere", "Init_Multiplicities"})
52  .convert_for(init_multipl_)),
54  modus_config.take({"Sphere", "Initial_Condition"},
57  modus_config.take({"Sphere", "Add_Radial_Velocity"}, -1.)),
58  /* Note that it is crucial not to take other keys from the Jet section
59  * before Jet_PDG, since we want here the take to throw in case the user
60  * had a Jet section without the mandatory Jet_PDG key. If all other keys
61  * are taken first, the section is removed from modus_config, because
62  * empty, and that has_value({"Sphere", "Jet"}) method would return false.
63  */
64  jet_pdg_(modus_config.has_value({"Sphere", "Jet"})
65  ? make_optional<PdgCode>(
66  modus_config.take({"Sphere", "Jet", "Jet_PDG"}))
67  : std::nullopt),
68 
69  jet_mom_(modus_config.take({"Sphere", "Jet", "Jet_Momentum"}, 20.)) {}
const bool account_for_resonance_widths_
In case of thermal initialization: true – account for resonance spectral functions,...
Definition: spheremodus.h:115
const bool use_thermal_
Whether to use a thermal initialization for all particles instead of specific numbers.
Definition: spheremodus.h:94
const double muq_
Charge chemical potential for thermal initialization; only used if use_thermal_ is true.
Definition: spheremodus.h:109
double sphere_temperature_
Temperature for momentum distribution (in GeV)
Definition: spheremodus.h:87
const double start_time_
Starting time for the Sphere.
Definition: spheremodus.h:89
const SphereInitialCondition init_distr_
Initialization scheme for momenta in the sphere; used for expanding metric setup.
Definition: spheremodus.h:130
const std::optional< PdgCode > jet_pdg_
Optional PDG code of the particle to use as a jet, i.e.
Definition: spheremodus.h:144
const double mub_
Baryon chemical potential for thermal initialization; only used if use_thermal_ is true.
Definition: spheremodus.h:99
const double jet_mom_
Initial momentum of the jet particle; only used if jet_pdg_ is not nullopt.
Definition: spheremodus.h:148
const std::map< PdgCode, int > init_multipl_
Particle multiplicities at initialization; required if use_thermal_ is false.
Definition: spheremodus.h:120
const double mus_
Strange chemical potential for thermal initialization; only used if use_thermal_ is true.
Definition: spheremodus.h:104
const double radial_velocity_
Wether to add a constant radial velocity profile to the momenta of the particles in the sphere.
Definition: spheremodus.h:136
double radius_
Sphere radius (in fm)
Definition: spheremodus.h:85
@ ThermalMomentaBoltzmann
A thermalized ensemble is generated, with momenta sampled from a Maxwell-Boltzmann distribution.

Member Function Documentation

◆ initial_conditions()

double smash::SphereModus::initial_conditions ( Particles particles,
const ExperimentParameters parameters 
)

Generates initial state of the particles in the system according to specified parameters: number of particles of each species, momentum and coordinate space distributions.

Susbsequently makes the total 3-momentum 0.

Parameters
[out]particlesAn empty list that gets filled up by this function
[in]parametersThe initialization parameters of the box
Returns
The starting time of the simulation

Definition at line 115 of file spheremodus.cc.

116  {
117  FourVector momentum_total(0, 0, 0, 0);
118  const double T = this->sphere_temperature_;
119  const double V = 4.0 / 3.0 * M_PI * radius_ * radius_ * radius_;
120  /* Create NUMBER OF PARTICLES according to configuration */
121  if (use_thermal_) {
122  if (average_multipl_.empty()) {
123  for (const ParticleType &ptype : ParticleType::list_all()) {
124  if (HadronGasEos::is_eos_particle(ptype)) {
125  const double n = HadronGasEos::partial_density(
127  average_multipl_[ptype.pdgcode()] = n * V * parameters.testparticles;
128  }
129  }
130  }
131  double nb_init = 0.0, ns_init = 0.0, nq_init = 0.0;
132  for (const auto &mult : average_multipl_) {
133  const int thermal_mult_int = random::poisson(mult.second);
134  particles->create(thermal_mult_int, mult.first);
135  nb_init += mult.second * mult.first.baryon_number();
136  ns_init += mult.second * mult.first.strangeness();
137  nq_init += mult.second * mult.first.charge();
138  logg[LSphere].debug(mult.first, " initial multiplicity ",
139  thermal_mult_int);
140  }
141  logg[LSphere].info("Initial hadron gas baryon density ", nb_init);
142  logg[LSphere].info("Initial hadron gas strange density ", ns_init);
143  logg[LSphere].info("Initial hadron gas charge density ", nq_init);
144  } else {
145  for (const auto &p : init_multipl_) {
146  particles->create(p.second * parameters.testparticles, p.first);
147  logg[LSphere].debug("Particle ", p.first, " initial multiplicity ",
148  p.second);
149  }
150  }
151  std::unique_ptr<QuantumSampling> quantum_sampling;
153  quantum_sampling = std::make_unique<QuantumSampling>(init_multipl_, V, T);
154  }
155  /* loop over particle data to fill in momentum and position information */
156  for (ParticleData &data : *particles) {
157  Angles phitheta;
158  /* thermal momentum according Maxwell-Boltzmann distribution */
159  double momentum_radial = 0.0, mass = data.pole_mass();
160  /* assign momentum_radial according to requested distribution */
161  switch (init_distr_) {
163  momentum_radial = sample_momenta_IC_ES(T);
164  break;
166  momentum_radial = sample_momenta_1M_IC(T, mass);
167  break;
169  momentum_radial = sample_momenta_2M_IC(T, mass);
170  break;
172  momentum_radial = sample_momenta_non_eq_mass(T, mass);
173  break;
175  default:
177  ? data.type().mass()
178  : HadronGasEos::sample_mass_thermal(data.type(), 1.0 / T);
179  momentum_radial = sample_momenta_from_thermal(T, mass);
180  break;
182  /*
183  * **********************************************************************
184  * Sampling the thermal momentum according Bose/Fermi/Boltzmann
185  * distribution.
186  * We take the pole mass as the mass.
187  * **********************************************************************
188  */
189  mass = data.type().mass();
190  momentum_radial = quantum_sampling->sample(data.pdgcode());
191  break;
192  }
193  phitheta.distribute_isotropically();
194  logg[LSphere].debug(data.type().name(), "(id ", data.id(),
195  ") radial momentum ", momentum_radial, ", direction",
196  phitheta);
197  data.set_4momentum(mass, phitheta.threevec() * momentum_radial);
198  momentum_total += data.momentum();
199  /* uniform sampling in a sphere with radius r */
200  double position_radial;
201  position_radial = std::cbrt(random::canonical()) * radius_;
202  Angles pos_phitheta;
203  pos_phitheta.distribute_isotropically();
204  data.set_4position(
205  FourVector(start_time_, pos_phitheta.threevec() * position_radial));
206  data.set_formation_time(start_time_);
207  }
208 
209  /* boost in radial direction with an underlying velocity field of the form u_r
210  * = u_0 * r / R */
211  if (radial_velocity_ > 0.0) {
212  if (radial_velocity_ > 1.0) {
213  throw std::invalid_argument(
214  "Additional velocity cannot be greater than 1!");
215  }
216  for (ParticleData &data : *particles) {
217  double particle_radius = std::sqrt(data.position().sqr3());
218  auto e_r = data.position().threevec() / particle_radius;
219  auto radial_velocity =
220  -1.0 * radial_velocity_ * e_r * particle_radius / radius_;
221  data.set_4momentum(data.momentum().lorentz_boost(radial_velocity));
222  momentum_total += data.momentum();
223  }
224  }
225 
226  /* Make total 3-momentum 0 */
227  for (ParticleData &data : *particles) {
228  data.set_4momentum(data.momentum().abs(),
229  data.momentum().threevec() -
230  momentum_total.threevec() / particles->size());
231  }
232 
233  /* Add a single highly energetic particle in the center of the sphere (jet) */
234  if (jet_pdg_) {
235  auto &jet_particle = particles->create(jet_pdg_.value());
236  jet_particle.set_formation_time(start_time_);
237  jet_particle.set_4position(FourVector(start_time_, 0., 0., 0.));
238  jet_particle.set_4momentum(ParticleType::find(jet_pdg_.value()).mass(),
239  ThreeVector(jet_mom_, 0., 0.));
240  }
241 
242  /* Recalculate total momentum */
243  momentum_total = FourVector(0, 0, 0, 0);
244  for (ParticleData &data : *particles) {
245  momentum_total += data.momentum();
246  /* IC: debug checks */
247  logg[LSphere].debug() << data;
248  }
249  /* allows to check energy conservation */
250  logg[LSphere].debug() << "Sphere initial total 4-momentum [GeV]: "
251  << momentum_total;
252  return start_time_;
253 }
static double partial_density(const ParticleType &ptype, double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute partial density of one hadron sort.
Definition: hadgas_eos.cc:270
static double sample_mass_thermal(const ParticleType &ptype, double beta)
Sample resonance mass in a thermal medium.
Definition: hadgas_eos.cc:385
static bool is_eos_particle(const ParticleType &ptype)
Check if a particle belongs to the EoS.
Definition: hadgas_eos.h:355
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
Definition: particletype.cc:99
static const ParticleTypeList & list_all()
Definition: particletype.cc:51
double mass() const
Definition: particletype.h:145
std::map< PdgCode, double > average_multipl_
Average multiplicities in case of thermal initialization.
Definition: spheremodus.h:125
@ IC_ES
Off-equilibrium distribution used in massless comparisons of SMASH to the extended universe metric.
@ ThermalMomentaQuantum
A thermalized ensemble is generated, with momenta of baryons(mesons) sampled from a Fermi(Bose) distr...
@ IC_Massive
A generalization of IC_ES for the non-zero mass case; note that there is currently no analytical comp...
@ IC_2M
Off-equilibrium distribution used in massless comparisons of SMASH to the extended universe metric.
@ IC_1M
Off-equilibrium distribution used in massless comparisons of SMASH to the extended universe metric.
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
constexpr int p
Proton.
constexpr int n
Neutron.
int poisson(const T &lam)
Returns a Poisson distributed random number.
Definition: random.h:226
T canonical()
Definition: random.h:113
static constexpr int LSphere
Definition: spheremodus.cc:35
double sample_momenta_from_thermal(const double temperature, const double mass)
Samples a momentum from the Maxwell-Boltzmann (thermal) distribution in a faster way,...
double sample_momenta_IC_ES(const double temperature)
Sample momenta according to the momentum distribution in Bazow:2016oky .
double sample_momenta_non_eq_mass(const double temperature, const double mass)
Samples a momentum via rejection method from the non-equilibrium distribution.
double sample_momenta_1M_IC(const double temperature, const double mass)
Samples a momentum from the non-equilibrium distribution 1M_IC from Bazow:2016oky .
double sample_momenta_2M_IC(const double temperature, const double mass)
Samples a momentum from the non-equilibrium distribution 2M_IC from Bazow:2016oky .

◆ is_sphere()

bool smash::SphereModus::is_sphere ( ) const
inline
Returns
If the modus is sphere modus, which is always true

Definition at line 79 of file spheremodus.h.

79 { return true; }

◆ radius()

double smash::SphereModus::radius ( ) const
inline
Returns
radius

Definition at line 81 of file spheremodus.h.

81 { return radius_; }

Member Data Documentation

◆ radius_

double smash::SphereModus::radius_
private

Sphere radius (in fm)

Definition at line 85 of file spheremodus.h.

◆ sphere_temperature_

double smash::SphereModus::sphere_temperature_
private

Temperature for momentum distribution (in GeV)

Definition at line 87 of file spheremodus.h.

◆ start_time_

const double smash::SphereModus::start_time_ = 0.
private

Starting time for the Sphere.

Definition at line 89 of file spheremodus.h.

◆ use_thermal_

const bool smash::SphereModus::use_thermal_ = false
private

Whether to use a thermal initialization for all particles instead of specific numbers.

Definition at line 94 of file spheremodus.h.

◆ mub_

const double smash::SphereModus::mub_
private

Baryon chemical potential for thermal initialization; only used if use_thermal_ is true.

Definition at line 99 of file spheremodus.h.

◆ mus_

const double smash::SphereModus::mus_
private

Strange chemical potential for thermal initialization; only used if use_thermal_ is true.

Definition at line 104 of file spheremodus.h.

◆ muq_

const double smash::SphereModus::muq_
private

Charge chemical potential for thermal initialization; only used if use_thermal_ is true.

Definition at line 109 of file spheremodus.h.

◆ account_for_resonance_widths_

const bool smash::SphereModus::account_for_resonance_widths_
private

In case of thermal initialization: true – account for resonance spectral functions, while computing multiplicities and sampling masses, false – simply use pole masses.

Definition at line 115 of file spheremodus.h.

◆ init_multipl_

const std::map<PdgCode, int> smash::SphereModus::init_multipl_
private

Particle multiplicities at initialization; required if use_thermal_ is false.

Definition at line 120 of file spheremodus.h.

◆ average_multipl_

std::map<PdgCode, double> smash::SphereModus::average_multipl_
private

Average multiplicities in case of thermal initialization.

Saved to avoid recalculating at every event

Definition at line 125 of file spheremodus.h.

◆ init_distr_

const SphereInitialCondition smash::SphereModus::init_distr_
private

Initialization scheme for momenta in the sphere; used for expanding metric setup.

Definition at line 130 of file spheremodus.h.

◆ radial_velocity_

const double smash::SphereModus::radial_velocity_
private

Wether to add a constant radial velocity profile to the momenta of the particles in the sphere.

The underlying velocity field has the form u = u_0 * r / R.

Definition at line 136 of file spheremodus.h.

◆ jet_pdg_

const std::optional<PdgCode> smash::SphereModus::jet_pdg_
private

Optional PDG code of the particle to use as a jet, i.e.

a single high energy particle at the center (0,0,0) of the expanding sphere. This particle will be placed at t=0 and will initially be moving along the x axis, in the positive or negative direction depending on the sign of its momentum.

Definition at line 144 of file spheremodus.h.

◆ jet_mom_

const double smash::SphereModus::jet_mom_
private

Initial momentum of the jet particle; only used if jet_pdg_ is not nullopt.

Definition at line 148 of file spheremodus.h.


The documentation for this class was generated from the following files: