Version: SMASH-3.1
bremsstrahlungaction.cc
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2019-2020,2022
4  * SMASH Team
5  *
6  * GNU General Public License (GPLv3 or later)
7  *
8  */
9 
11 
13 #include "smash/outputinterface.h"
14 #include "smash/random.h"
15 
16 namespace smash {
17 static constexpr int LScatterAction = LogArea::ScatterAction::id;
18 
20  const ParticleList &in, const double time, const int n_frac_photons,
21  const double hadronic_cross_section_input)
22  : ScatterAction(in[0], in[1], time),
23  reac_(bremsstrahlung_reaction_type(in)),
24  number_of_fractional_photons_(n_frac_photons),
25  hadronic_cross_section_(hadronic_cross_section_input) {}
26 
29  if (in.size() != 2) {
31  }
32 
33  PdgCode a = in[0].pdgcode();
34  PdgCode b = in[1].pdgcode();
35 
36  switch (pack(a.code(), b.code())) {
37  case (pack(pdg::pi_z, pdg::pi_m)):
38  case (pack(pdg::pi_m, pdg::pi_z)):
40 
41  case (pack(pdg::pi_z, pdg::pi_p)):
42  case (pack(pdg::pi_p, pdg::pi_z)):
44 
45  case (pack(pdg::pi_m, pdg::pi_p)):
46  case (pack(pdg::pi_p, pdg::pi_m)):
48 
49  case (pack(pdg::pi_m, pdg::pi_m)):
51 
52  case (pack(pdg::pi_p, pdg::pi_p)):
54 
55  case (pack(pdg::pi_z, pdg::pi_z)):
57 
58  default:
60  }
61 }
62 
63 void BremsstrahlungAction::perform_bremsstrahlung(const OutputsList &outputs) {
64  for (int i = 0; i < number_of_fractional_photons_; i++) {
66  for (const auto &output : outputs) {
67  if (output->is_photon_output()) {
68  // we do not care about the local density
69  output->at_interaction(*this, 0.0);
70  }
71  }
72  }
73 }
74 
76  // we have only one reaction per incoming particle pair
77  if (collision_processes_bremsstrahlung_.size() != 1) {
78  logg[LScatterAction].fatal()
79  << "Problem in BremsstrahlungAction::generate_final_state().\nThe "
80  "brocess branch has "
82  << " entries. It should however have 1.";
83  throw std::runtime_error("");
84  }
85 
86  auto *proc = collision_processes_bremsstrahlung_[0].get();
87 
88  outgoing_particles_ = proc->particle_list();
89  process_type_ = proc->get_type();
90  FourVector interaction_point = get_interaction_point();
91 
92  // Sample k and theta:
93  // minimum cutoff for k to be in accordance with cross section calculations
94  double delta_k; // k-range
95  double k_min = 0.001;
96  double k_max =
97  (sqrt_s() * sqrt_s() - 2 * outgoing_particles_[0].type().mass() * 2 *
98  outgoing_particles_[1].type().mass()) /
99  (2 * sqrt_s());
100 
101  if ((k_max - k_min) < 0.0) {
102  // Make sure it is kinematically even possible to create a photon that is
103  // in accordance with the cross section cutoff
104  k_ = 0.0;
105  delta_k = 0.0;
106  } else {
107  k_ = random::uniform(k_min, k_max);
108  delta_k = (k_max - k_min);
109  }
110  theta_ = random::uniform(0.0, M_PI);
111 
112  // Sample the phase space anisotropically in the local rest frame
114 
115  // Get differential cross sections
116  std::pair<double, double> diff_xs_pair = brems_diff_cross_sections();
117  double diff_xs_k = diff_xs_pair.first;
118  double diff_xs_theta = diff_xs_pair.second;
119 
120  // Assign weighting factor
121  const double W_theta = diff_xs_theta * (M_PI - 0.0);
122  const double W_k = diff_xs_k * delta_k;
123  weight_ = std::sqrt(W_theta * W_k) /
125 
126  // Scale weight by cross section scaling factor of incoming particles
127  weight_ *= incoming_particles_[0].xsec_scaling_factor() *
128  incoming_particles_[1].xsec_scaling_factor();
129 
130  // Set position and formation time and boost back to computational frame
131  for (auto &new_particle : outgoing_particles_) {
132  // assuming decaying particles are always fully formed
133  new_particle.set_formation_time(time_of_execution_);
134  new_particle.set_4position(interaction_point);
135  new_particle.boost_momentum(
137  }
138 
139  // Photons are not really part of the normal processes, so we have to set a
140  // constant arbitrary number.
141  const auto id_process = ID_PROCESS_PHOTON;
142  Action::check_conservation(id_process);
143 }
144 
146  assert(outgoing_particles_.size() == 3);
147  const double m_a = outgoing_particles_[0].type().mass(),
148  m_b = outgoing_particles_[1].type().mass(),
149  m_c = outgoing_particles_[2].type().mass();
150  const double sqrts = sqrt_s();
151  const double E_ab = sqrts - m_c - k_; // Ekin of the pion pair in cm frame
152  const double pcm = pCM(sqrts, E_ab, m_c); // cm momentum of (π pair - photon)
153  const double pcm_pions = pCM(E_ab, m_a, m_b); // cm momentum within pion pair
154 
155  // Photon angle: Phi random, theta from theta_ sampled above
156  const Angles phitheta_photon(random::uniform(0.0, twopi), std::cos(theta_));
157  outgoing_particles_[2].set_4momentum(m_c, pcm * phitheta_photon.threevec());
158  // Boost velocity to cm frame of the two pions
159  const ThreeVector beta_cm_pion_pair_photon =
160  pcm * phitheta_photon.threevec() / std::sqrt(pcm * pcm + E_ab * E_ab);
161 
162  // Sample pion pair isotropically
163  Angles phitheta;
164  phitheta.distribute_isotropically();
165  outgoing_particles_[0].set_4momentum(m_a, pcm_pions * phitheta.threevec());
166  outgoing_particles_[1].set_4momentum(m_b, -pcm_pions * phitheta.threevec());
167  outgoing_particles_[0].boost_momentum(beta_cm_pion_pair_photon);
168  outgoing_particles_[1].boost_momentum(beta_cm_pion_pair_photon);
169 }
170 
172  double reaction_cross_section) {
173  CollisionBranchPtr dummy_process = std::make_unique<CollisionBranch>(
174  incoming_particles_[0].type(), incoming_particles_[1].type(),
175  reaction_cross_section, ProcessType::Bremsstrahlung);
176  add_collision(std::move(dummy_process));
177 }
178 
180  CollisionBranchList process_list;
181  // ParticleList final_state_particles;
182  static const ParticleTypePtr photon_particle =
184  static const ParticleTypePtr pi_z_particle = &ParticleType::find(pdg::pi_z);
185  static const ParticleTypePtr pi_p_particle = &ParticleType::find(pdg::pi_p);
186  static const ParticleTypePtr pi_m_particle = &ParticleType::find(pdg::pi_m);
187 
188  // Create interpolation objects, if not yet existent; only trigger for one
189  // of them as either all or none is created
192  }
193 
194  // Find cross section corresponding to given sqrt(s)
195  double sqrts = sqrt_s();
196  double xsection;
197 
199  // Here the final state is determined by the the final state provided by the
200  // sampled process using Monte Carlo techniqus
201 
202  // In the case of two oppositely charged pions as incoming particles,
203  // there are two potential final states: pi+ + pi- and pi0 + pi0
204  double xsection_pipi = (*pipi_pipi_opp_interpolation)(sqrts);
205  double xsection_pi0pi0 = (*pipi_pi0pi0_interpolation)(sqrts);
206 
207  // Prevent negative cross sections due to numerics in interpolation
208  xsection_pipi = (xsection_pipi <= 0.0) ? really_small : xsection_pipi;
209  xsection_pi0pi0 = (xsection_pi0pi0 <= 0.0) ? really_small : xsection_pi0pi0;
210 
211  // Necessary only to decide for a final state with pi+ and pi- as incoming
212  // particles.
213  CollisionBranchList process_list_pipi;
214 
215  // Add both processes to the process_list
216  process_list_pipi.push_back(std::make_unique<CollisionBranch>(
217  incoming_particles_[0].type(), incoming_particles_[1].type(),
218  *photon_particle, xsection_pipi, ProcessType::Bremsstrahlung));
219  process_list_pipi.push_back(std::make_unique<CollisionBranch>(
220  *pi_z_particle, *pi_z_particle, *photon_particle, xsection_pi0pi0,
222 
223  // Decide for one of the possible final states
224  double total_cross_section = xsection_pipi + xsection_pi0pi0;
225  const CollisionBranch *proc =
226  choose_channel<CollisionBranch>(process_list_pipi, total_cross_section);
227 
228  xsection = proc->weight();
229 
230  process_list.push_back(std::make_unique<CollisionBranch>(
231  proc->particle_list()[0].type(), proc->particle_list()[1].type(),
232  *photon_particle, xsection, ProcessType::Bremsstrahlung));
233 
234  } else if (reac_ == ReactionType::pi_m_pi_m ||
238  // Here the final state hadrons are identical to the initial state hadrons
240  xsection = (*pipi_pipi_same_interpolation)(sqrts);
241  } else {
242  // One pi0 in initial and final state
243  xsection = (*pipi0_pipi0_interpolation)(sqrts);
244  }
245 
246  // Prevent negative cross sections due to numerics in interpolation
247  xsection = (xsection <= 0.0) ? really_small : xsection;
248 
249  process_list.push_back(std::make_unique<CollisionBranch>(
250  incoming_particles_[0].type(), incoming_particles_[1].type(),
251  *photon_particle, xsection, ProcessType::Bremsstrahlung));
252 
253  } else if (reac_ == ReactionType::pi_z_pi_z) {
254  // Here we have a hard-coded final state that differs from the initial
255  // state, namely: pi0 + pi0 -> pi+- + pi-+ + gamma
256  xsection = (*pi0pi0_pipi_interpolation)(sqrts);
257 
258  // Prevent negative cross sections due to numerics in interpolation
259  xsection = (xsection <= 0.0) ? really_small : xsection;
260 
261  process_list.push_back(std::make_unique<CollisionBranch>(
262  *pi_p_particle, *pi_m_particle, *photon_particle, xsection,
264  } else {
265  throw std::runtime_error("Unknown ReactionType in BremsstrahlungAction.");
266  }
267 
268  return process_list;
269 }
270 
272  static const ParticleTypePtr pi_z_particle = &ParticleType::find(pdg::pi_z);
273  const double collision_energy = sqrt_s();
274  double dsigma_dk;
275  double dsigma_dtheta;
276 
278  if (outgoing_particles_[0].type() != *pi_z_particle) {
279  // pi+- + pi+-- -> pi+- + pi+- + gamma
280  dsigma_dk =
281  (*pipi_pipi_opp_dsigma_dk_interpolation)(k_, collision_energy);
282  dsigma_dtheta = (*pipi_pipi_opp_dsigma_dtheta_interpolation)(
283  theta_, collision_energy);
284  } else {
285  // pi+- + pi+-- -> pi0 + pi0 + gamma
286  dsigma_dk = (*pipi_pi0pi0_dsigma_dk_interpolation)(k_, collision_energy);
287  dsigma_dtheta =
288  (*pipi_pi0pi0_dsigma_dtheta_interpolation)(theta_, collision_energy);
289  }
290  } else if (reac_ == ReactionType::pi_p_pi_p ||
292  dsigma_dk = (*pipi_pipi_same_dsigma_dk_interpolation)(k_, collision_energy);
293  dsigma_dtheta =
294  (*pipi_pipi_same_dsigma_dtheta_interpolation)(theta_, collision_energy);
295  } else if (reac_ == ReactionType::pi_z_pi_p ||
297  dsigma_dk = (*pipi0_pipi0_dsigma_dk_interpolation)(k_, collision_energy);
298  dsigma_dtheta =
299  (*pipi0_pipi0_dsigma_dtheta_interpolation)(theta_, collision_energy);
300  } else if (reac_ == ReactionType::pi_z_pi_z) {
301  dsigma_dk = (*pi0pi0_pipi_dsigma_dk_interpolation)(k_, collision_energy);
302  dsigma_dtheta =
303  (*pi0pi0_pipi_dsigma_dtheta_interpolation)(theta_, collision_energy);
304  } else {
305  throw std::runtime_error(
306  "Unkown channel when computing differential cross sections for "
307  "bremsstrahlung processes.");
308  }
309 
310  // Prevent negative cross sections due to numerics in interpolation
311  dsigma_dk = (dsigma_dk < 0.0) ? really_small : dsigma_dk;
312  dsigma_dtheta = (dsigma_dtheta < 0.0) ? really_small : dsigma_dtheta;
313 
314  // Combine differential cross sections to a pair
315  std::pair<double, double> diff_x_sections = {dsigma_dk, dsigma_dtheta};
316 
317  return diff_x_sections;
318 }
319 
321  // Read in tabularized values for sqrt(s), k and theta
322  std::vector<double> sqrts = BREMS_SQRTS;
323  std::vector<double> photon_momentum = BREMS_K;
324  std::vector<double> photon_angle = BREMS_THETA;
325 
326  // Read in tabularized total cross sections
327  std::vector<double> sigma_pipi_pipi_opp = BREMS_PIPI_PIPI_OPP_SIG;
328  std::vector<double> sigma_pipi_pipi_same = BREMS_PIPI_PIPI_SAME_SIG;
329  std::vector<double> sigma_pipi0_pipi0 = BREMS_PIPI0_PIPI0_SIG;
330  std::vector<double> sigma_pipi_pi0pi0 = BREMS_PIPI_PI0PI0_SIG;
331  std::vector<double> sigma_pi0pi0_pipi = BREMS_PI0PI0_PIPI_SIG;
332 
333  // Read in tabularized differential cross sections dSigma/dk
334  std::vector<double> dsigma_dk_pipi_pipi_opp = BREMS_PIPI_PIPI_OPP_DIFF_SIG_K;
335  std::vector<double> dsigma_dk_pipi_pipi_same =
337  std::vector<double> dsigma_dk_pipi0_pipi0 = BREMS_PIPI0_PIPI0_DIFF_SIG_K;
338  std::vector<double> dsigma_dk_pipi_pi0pi0 = BREMS_PIPI_PI0PI0_DIFF_SIG_K;
339  std::vector<double> dsigma_dk_pi0pi0_pipi = BREMS_PI0PI0_PIPI_DIFF_SIG_K;
340 
341  // Read in tabularized differential cross sections dSigma/dtheta
342  std::vector<double> dsigma_dtheta_pipi_pipi_opp =
344  std::vector<double> dsigma_dtheta_pipi_pipi_same =
346  std::vector<double> dsigma_dtheta_pipi0_pipi0 =
348  std::vector<double> dsigma_dtheta_pipi_pi0pi0 =
350  std::vector<double> dsigma_dtheta_pi0pi0_pipi =
352 
353  // Create interpolation objects containing linear interpolations for
354  // total cross sections
355  pipi_pipi_opp_interpolation = std::make_unique<InterpolateDataLinear<double>>(
356  sqrts, sigma_pipi_pipi_opp);
358  std::make_unique<InterpolateDataLinear<double>>(sqrts,
359  sigma_pipi_pipi_same);
361  std::make_unique<InterpolateDataLinear<double>>(sqrts, sigma_pipi0_pipi0);
363  std::make_unique<InterpolateDataLinear<double>>(sqrts, sigma_pipi_pi0pi0);
365  std::make_unique<InterpolateDataLinear<double>>(sqrts, sigma_pi0pi0_pipi);
366 
367  // Create interpolation objects containing bicubic interpolations for
368  // differential dSigma/dk
370  std::make_unique<InterpolateData2DSpline>(photon_momentum, sqrts,
371  dsigma_dk_pipi_pipi_opp);
373  std::make_unique<InterpolateData2DSpline>(photon_momentum, sqrts,
374  dsigma_dk_pipi_pipi_same);
376  std::make_unique<InterpolateData2DSpline>(photon_momentum, sqrts,
377  dsigma_dk_pipi0_pipi0);
379  std::make_unique<InterpolateData2DSpline>(photon_momentum, sqrts,
380  dsigma_dk_pipi_pi0pi0);
382  std::make_unique<InterpolateData2DSpline>(photon_momentum, sqrts,
383  dsigma_dk_pi0pi0_pipi);
384 
385  // Create interpolation objects containing bicubic interpolations for
386  // differential dSigma/dtheta
388  std::make_unique<InterpolateData2DSpline>(photon_angle, sqrts,
389  dsigma_dtheta_pipi_pipi_opp);
391  std::make_unique<InterpolateData2DSpline>(photon_angle, sqrts,
392  dsigma_dtheta_pipi_pipi_same);
394  std::make_unique<InterpolateData2DSpline>(photon_angle, sqrts,
395  dsigma_dtheta_pipi0_pipi0);
397  std::make_unique<InterpolateData2DSpline>(photon_angle, sqrts,
398  dsigma_dtheta_pipi_pi0pi0);
400  std::make_unique<InterpolateData2DSpline>(photon_angle, sqrts,
401  dsigma_dtheta_pi0pi0_pipi);
402 }
403 } // namespace smash
FourVector total_momentum_of_outgoing_particles() const
Calculate the total kinetic momentum of the outgoing particles.
Definition: action.cc:157
ParticleList outgoing_particles_
Initially this stores only the PDG codes of final-state particles.
Definition: action.h:363
const double time_of_execution_
Time at which the action is supposed to be performed (absolute time in the lab frame in fm).
Definition: action.h:369
virtual double check_conservation(const uint32_t id_process) const
Check various conservation laws.
Definition: action.cc:475
double sqrt_s() const
Determine the total energy in the center-of-mass frame [GeV].
Definition: action.h:271
ParticleList incoming_particles_
List with data of incoming particles.
Definition: action.h:355
FourVector get_interaction_point() const
Get the interaction point.
Definition: action.cc:68
ProcessType process_type_
type of process
Definition: action.h:372
Angles provides a common interface for generating directions: i.e., two angles that should be interpr...
Definition: angles.h:59
ThreeVector threevec() const
Definition: angles.h:288
void distribute_isotropically()
Populate the object with a new direction.
Definition: angles.h:199
void sample_3body_phasespace()
Sample the final state anisotropically, considering the differential cross sections with respect to t...
ReactionType
Enum for encoding the photon process.
const ReactionType reac_
Reaction process as determined from incoming particles.
double k_
Sampled value of k (photon momentum)
const int number_of_fractional_photons_
Number of photons created for each hadronic scattering, needed for correct weighting.
void add_dummy_hadronic_process(double reaction_cross_section)
Adds one hadronic process with a given cross-section.
void generate_final_state() override
Generate the final-state for the Bremsstrahlung process.
static ReactionType bremsstrahlung_reaction_type(const ParticleList &in)
Determine photon process from incoming particles.
BremsstrahlungAction(const ParticleList &in, const double time, const int n_frac_photons, const double hadronic_cross_section_input)
Construct a ScatterActionBrems object.
void perform_bremsstrahlung(const OutputsList &outputs)
Create the final state and write to output.
CollisionBranchList brems_cross_sections()
Computes the total cross section of the bremsstrahlung process.
double hadronic_cross_section() const
Return the total cross section of the underlying hadronic scattering It is necessary for the weightin...
CollisionBranchList collision_processes_bremsstrahlung_
Holds the bremsstrahlung branch.
double weight_
Weight of the produced photon.
void create_interpolations()
Create interpolation objects for tabularized cross sections: total cross section, differential dSigma...
double theta_
Sampled value of theta (angle of the photon)
std::pair< double, double > brems_diff_cross_sections()
Computes the differential cross sections dSigma/dk and dSigma/dtheta of the bremsstrahlung process.
CollisionBranch is a derivative of ProcessBranch, which is used to represent particular final-state c...
The FourVector class holds relevant values in Minkowski spacetime with (+, −, −, −) metric signature.
Definition: fourvector.h:33
ThreeVector velocity() const
Get the velocity (3-vector divided by zero component).
Definition: fourvector.h:333
A pointer-like interface to global references to ParticleType objects.
Definition: particletype.h:676
static const ParticleType & find(PdgCode pdgcode)
Returns the ParticleType object for the given pdgcode.
Definition: particletype.cc:99
PdgCode stores a Particle Data Group Particle Numbering Scheme particle type number.
Definition: pdgcode.h:111
std::int32_t code() const
Definition: pdgcode.h:322
ParticleList particle_list() const
double weight() const
ScatterAction is a special action which takes two incoming particles and performs a scattering,...
Definition: scatteraction.h:30
void add_collision(CollisionBranchPtr p)
Add a new collision channel.
The ThreeVector class represents a physical three-vector with the components .
Definition: threevector.h:31
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
Definition: logging.cc:39
constexpr int pi_p
π⁺.
constexpr int pi_z
π⁰.
constexpr int photon
Photon.
constexpr int pi_m
π⁻.
T uniform(T min, T max)
Definition: random.h:88
Definition: action.h:24
static std::unique_ptr< InterpolateData2DSpline > pipi_pi0pi0_dsigma_dk_interpolation
const std::initializer_list< double > BREMS_PIPI_PIPI_SAME_DIFF_SIG_K
dSigma/dk for π+ + π+ -> π+ + π+ + γ or π- + π- -> π- + π- + γ
T pCM(const T sqrts, const T mass_a, const T mass_b) noexcept
Definition: kinematics.h:79
const std::initializer_list< double > BREMS_PIPI_PI0PI0_SIG
Total π+- + π-+ -> π0 + π0 + γ cross section.
static std::unique_ptr< InterpolateDataLinear< double > > pipi_pipi_opp_interpolation
const std::initializer_list< double > BREMS_PIPI_PIPI_OPP_SIG
Total π+- + π-+ -> π+- + π-+ + γ cross section.
const std::initializer_list< double > BREMS_PIPI_PI0PI0_DIFF_SIG_THETA
dSigma/dtheta for π+- + π-+ -> π0 + π0 + γ
const std::initializer_list< double > BREMS_PIPI0_PIPI0_DIFF_SIG_K
dSigma/dk for π0 + π -> π0 + π + γ
const std::initializer_list< double > BREMS_PIPI_PIPI_SAME_SIG
Total π+ + π+ -> π+ + π+ + γ or π- + π- -> π- + π- + γ cross section.
static std::unique_ptr< InterpolateDataLinear< double > > pipi_pipi_same_interpolation
static std::unique_ptr< InterpolateData2DSpline > pipi0_pipi0_dsigma_dtheta_interpolation
constexpr std::uint32_t ID_PROCESS_PHOTON
Process ID for any photon process.
Definition: constants.h:118
static std::unique_ptr< InterpolateData2DSpline > pipi_pipi_opp_dsigma_dk_interpolation
static std::unique_ptr< InterpolateData2DSpline > pi0pi0_pipi_dsigma_dk_interpolation
static std::unique_ptr< InterpolateDataLinear< double > > pipi0_pipi0_interpolation
@ Bremsstrahlung
See here for a short description.
const std::initializer_list< double > BREMS_PIPI_PIPI_OPP_DIFF_SIG_THETA
dSigma/dtheta for π+- + π-+ -> π+- + π-+ + γ
static std::unique_ptr< InterpolateData2DSpline > pipi0_pipi0_dsigma_dk_interpolation
const std::initializer_list< double > BREMS_PI0PI0_PIPI_SIG
Total π0 + π0 -> π+- + π-+ + γ cross section.
const std::initializer_list< double > BREMS_K
photon momentum
constexpr double twopi
.
Definition: constants.h:45
const std::initializer_list< double > BREMS_SQRTS
Center-of-mass energy.
const std::initializer_list< double > BREMS_THETA
theta angle with respect to collision axis of incoming pions
const std::initializer_list< double > BREMS_PI0PI0_PIPI_DIFF_SIG_THETA
dSigma/dtheta for π0 + π0 -> π+- + π-+ + γ
static std::unique_ptr< InterpolateDataLinear< double > > pipi_pi0pi0_interpolation
static std::unique_ptr< InterpolateData2DSpline > pipi_pipi_same_dsigma_dtheta_interpolation
constexpr uint64_t pack(int32_t x, int32_t y)
Pack two int32_t into an uint64_t.
const std::initializer_list< double > BREMS_PIPI0_PIPI0_SIG
Total π0 + π -> π0 + π + γ cross section.
const std::initializer_list< double > BREMS_PI0PI0_PIPI_DIFF_SIG_K
dSigma/dk for π0 + π0 -> π+- + π-+ + γ
const std::initializer_list< double > BREMS_PIPI_PI0PI0_DIFF_SIG_K
dSigma/dk for π+- + π-+ -> π0 + π0 + γ
static std::unique_ptr< InterpolateDataLinear< double > > pi0pi0_pipi_interpolation
static std::unique_ptr< InterpolateData2DSpline > pipi_pipi_same_dsigma_dk_interpolation
static std::unique_ptr< InterpolateData2DSpline > pipi_pi0pi0_dsigma_dtheta_interpolation
static std::unique_ptr< InterpolateData2DSpline > pi0pi0_pipi_dsigma_dtheta_interpolation
constexpr double really_small
Numerical error tolerance.
Definition: constants.h:37
static constexpr int LScatterAction
const std::initializer_list< double > BREMS_PIPI_PIPI_OPP_DIFF_SIG_K
dSigma/dk for π+- + π-+ -> π+- + π-+ + γ
static std::unique_ptr< InterpolateData2DSpline > pipi_pipi_opp_dsigma_dtheta_interpolation
const std::initializer_list< double > BREMS_PIPI0_PIPI0_DIFF_SIG_THETA
dSigma/dtheta for π0 + π -> π0 + π + γ
const std::initializer_list< double > BREMS_PIPI_PIPI_SAME_DIFF_SIG_THETA
dSigma/dtheta for π+ + π+ -> π+ + π+ + γ or π- + π- -> π- + π- + γ