 |
Version: SMASH-2.0
|
|
#include <grandcan_thermalizer.h>
The GrandCanThermalizer class implements the following functionality:
- Create a lattice and find the local rest frame energy density in each cell from the particles.
- Remove particles from the cells, where the energy density is high enough. Save the energy, momentum and quantum numbers of the removed particles.
- Sample new particles instead of the removed ones according to the grand-canonical thermal distribution, but with an additional constraint: the energy, momentum and quantum numbers should be the same as those of the removed particles.
The step 3. is a challenging task, so several algorithms are implemented that try to fulfil the requirements. The algorithms are a trade-off between mathematical rigour and computational speed. All of them are shown to reproduce the mean values of multiplicities correctly. However, this is not the case for multiplicity fluctuations. For details see Oliinychenko:2016vkg [36].
Definition at line 227 of file grandcan_thermalizer.h.
|
| GrandCanThermalizer (const std::array< double, 3 > lat_sizes, const std::array< int, 3 > n_cells, const std::array< double, 3 > origin, bool periodicity, double e_critical, double t_start, double delta_t, ThermalizationAlgorithm algo, bool BF_microcanonical) |
| Default constructor for the GranCanThermalizer to allocate the lattice. More...
|
|
| GrandCanThermalizer (Configuration &conf, const std::array< double, 3 > lat_sizes, const std::array< double, 3 > origin, bool periodicity) |
|
bool | is_time_to_thermalize (std::unique_ptr< Clock > &clock) const |
| Check that the clock is close to n * period of thermalization, since the thermalization only happens at these times. More...
|
|
void | update_thermalizer_lattice (const Particles &particles, const DensityParameters &par, bool ignore_cells_under_threshold=true) |
| Compute all the thermodynamical quantities on the lattice from particles. More...
|
|
ThreeVector | uniform_in_cell () const |
|
void | renormalize_momenta (ParticleList &plist, const FourVector required_total_momentum) |
| Changes energy and momenta of the particles in plist to match the required_total_momentum. More...
|
|
void | sample_multinomial (HadronClass particle_class, int N) |
| The sample_multinomial function samples integer numbers n_i distributed according to the multinomial distribution with sum N: \( p(n_1, n_2, \dots) = \prod a_i^{n_i} \times \frac{N!}{n_1!n_2! \dots} \) if \( \sum n_i = N \) and \( p = 0 \) otherwise. More...
|
|
void | sample_in_random_cell_BF_algo (ParticleList &plist, const double time, size_t type_index) |
| The total number of particles of species type_index is defined by mult_int_ array that is returned by. More...
|
|
void | thermalize_BF_algo (QuantumNumbers &conserved_initial, double time, int ntest) |
| Samples particles according to the BF algorithm by making use of the. More...
|
|
template<typename F > |
void | compute_N_in_cells_mode_algo (F &&condition) |
| Computes average number of particles in each cell for the mode algorithm. More...
|
|
template<typename F > |
ParticleData | sample_in_random_cell_mode_algo (const double time, F &&condition) |
| Samples one particle and the species, cell, momentum and coordinate are chosen from the corresponding distributions. More...
|
|
void | thermalize_mode_algo (QuantumNumbers &conserved_initial, double time) |
| Samples particles to the according to the mode algorithm. More...
|
|
void | thermalize (const Particles &particles, double time, int ntest) |
| Main thermalize function, that chooses the algorithm to follow (BF or mode sampling). More...
|
|
void | print_statistics (const Clock &clock) const |
| Generates standard output with information about the thermodynamic properties of the lattice, the thermalized region and the volume to be thermalized above the critical energy density. More...
|
|
RectangularLattice< ThermLatticeNode > & | lattice () const |
| Getter function for the lattice. More...
|
|
double | e_crit () const |
| Get the critical energy density. More...
|
|
ParticleList | particles_to_remove () const |
| List of particles to be removed from the simulation. More...
|
|
ParticleList | particles_to_insert () const |
| List of newly created particles to be inserted in the simulation. More...
|
|
◆ GrandCanThermalizer() [1/2]
smash::GrandCanThermalizer::GrandCanThermalizer |
( |
const std::array< double, 3 > |
lat_sizes, |
|
|
const std::array< int, 3 > |
n_cells, |
|
|
const std::array< double, 3 > |
origin, |
|
|
bool |
periodicity, |
|
|
double |
e_critical, |
|
|
double |
t_start, |
|
|
double |
delta_t, |
|
|
ThermalizationAlgorithm |
algo, |
|
|
bool |
BF_microcanonical |
|
) |
| |
Default constructor for the GranCanThermalizer to allocate the lattice.
- Parameters
-
[in] | lat_sizes | Size of lattice in x,y and z-direction in fm. |
[in] | n_cells | Number of cells in x, y and z-direction. |
[in] | origin | Coordinates of the left, down, near corner of the lattice in fm. |
[in] | periodicity | Boolean to decide, if the lattice is periodically extended to infinity or not |
[in] | e_critical | Critical energy density above which the cells are thermalized |
[in] | t_start | Starting time of the simulation |
[in] | delta_t | Timestep of the simulation |
[in] | algo | Choice of algorithm for the canonical sampling |
[in] | BF_microcanonical | Enforce energy conservation in BF sampling algorithms or nor |
Definition at line 106 of file grandcan_thermalizer.cc.
121 lat_ = make_unique<RectangularLattice<ThermLatticeNode>>(
122 lat_sizes, n_cells, origin, periodicity, upd);
123 const std::array<double, 3> abc =
lat_->cell_sizes();
◆ GrandCanThermalizer() [2/2]
smash::GrandCanThermalizer::GrandCanThermalizer |
( |
Configuration & |
conf, |
|
|
const std::array< double, 3 > |
lat_sizes, |
|
|
const std::array< double, 3 > |
origin, |
|
|
bool |
periodicity |
|
) |
| |
|
inline |
- See also
- GrandCanThermalizer Exactly the same but taking values from config
Definition at line 251 of file grandcan_thermalizer.h.
255 lat_sizes, conf.take({
"Cell_Number"}), origin, periodicity,
256 conf.take({
"Critical_Edens"}), conf.take({
"Start_Time"}),
257 conf.take({
"Timestep"}),
259 conf.take({
"Microcanonical"},
false)) {}
◆ is_time_to_thermalize()
bool smash::GrandCanThermalizer::is_time_to_thermalize |
( |
std::unique_ptr< Clock > & |
clock | ) |
const |
|
inline |
Check that the clock is close to n * period of thermalization, since the thermalization only happens at these times.
- Parameters
-
[in] | clock | Current system time |
Definition at line 265 of file grandcan_thermalizer.h.
266 const double t = clock->current_time();
269 t < t_start_ + n * period_ + clock->timestep_duration());
◆ update_thermalizer_lattice()
void smash::GrandCanThermalizer::update_thermalizer_lattice |
( |
const Particles & |
particles, |
|
|
const DensityParameters & |
par, |
|
|
bool |
ignore_cells_under_threshold = true |
|
) |
| |
Compute all the thermodynamical quantities on the lattice from particles.
- Parameters
-
[in] | particles | Current list of particles |
- See also
- Particles
- Parameters
-
[in] | par | Parameters necessary for density determination |
- See also
- DensityParameters
- Parameters
-
[in] | ignore_cells_under_threshold | Boolean that is true by default |
Definition at line 130 of file grandcan_thermalizer.cc.
136 for (
auto &node : *
lat_) {
140 if (!ignore_cells_under_treshold ||
141 node.Tmu0().x0() + std::abs(node.Tmu0().x1()) +
142 std::abs(node.Tmu0().x2()) + std::abs(node.Tmu0().x3()) >=
144 node.compute_rest_frame_quantities(
eos_);
146 node = ThermLatticeNode();
◆ uniform_in_cell()
ThreeVector smash::GrandCanThermalizer::uniform_in_cell |
( |
| ) |
const |
- Returns
- 3 vector uniformly sampled from the rectangular cell.
Definition at line 151 of file grandcan_thermalizer.cc.
153 +0.5 *
lat_->cell_sizes()[0]),
155 +0.5 *
lat_->cell_sizes()[1]),
157 +0.5 *
lat_->cell_sizes()[2]));
◆ renormalize_momenta()
void smash::GrandCanThermalizer::renormalize_momenta |
( |
ParticleList & |
plist, |
|
|
const FourVector |
required_total_momentum |
|
) |
| |
Changes energy and momenta of the particles in plist to match the required_total_momentum.
The procedure is described in Oliinychenko:2016vkg [36].
- Parameters
-
[in] | plist | List of particles |
- See also
- ParticleList
- Parameters
-
[in] | required_total_momentum | The necessary total momentum of the cell |
Definition at line 160 of file grandcan_thermalizer.cc.
163 QuantumNumbers conserved = QuantumNumbers(plist);
165 required_total_momentum);
167 const ThreeVector mom_to_add =
168 (required_total_momentum.threevec() - conserved.momentum().threevec()) /
171 for (
auto &particle : plist) {
172 particle.set_4momentum(particle.type().mass(),
173 particle.momentum().threevec() + mom_to_add);
177 conserved = QuantumNumbers(plist);
178 const ThreeVector beta_CM_generated = conserved.momentum().velocity();
179 const ThreeVector beta_CM_required = required_total_momentum.velocity();
182 double E_expected = required_total_momentum.abs();
183 for (
auto &particle : plist) {
184 particle.boost_momentum(beta_CM_generated);
185 E += particle.momentum().x0();
189 double a, a_min, a_max, er;
190 const int max_iter = 100;
192 if (E_expected >= E) {
200 a = 0.5 * (a_min + a_max);
202 for (
const auto &particle : plist) {
203 const double p2 = particle.momentum().threevec().sqr();
204 const double E2 = particle.momentum().x0() * particle.momentum().x0();
205 E += std::sqrt(E2 + a * (a + 2.0) * p2);
216 }
while (std::abs(er) > tolerance && iter < max_iter);
220 for (
auto &particle : plist) {
221 particle.set_4momentum(particle.type().mass(),
222 (1 + a) * particle.momentum().threevec());
223 particle.boost_momentum(-beta_CM_required);
◆ sample_multinomial()
void smash::GrandCanThermalizer::sample_multinomial |
( |
HadronClass |
particle_class, |
|
|
int |
N |
|
) |
| |
The sample_multinomial function samples integer numbers n_i distributed according to the multinomial distribution with sum N: \( p(n_1, n_2, \dots) = \prod a_i^{n_i} \times \frac{N!}{n_1!n_2! \dots} \) if \( \sum n_i = N \) and \( p = 0 \) otherwise.
- Parameters
-
[in] | particle_class | A certain group of hadron species |
- See also
- HadronClass
- Parameters
-
[out] | N | Number of particles to be sampled |
- Todo:
- (oliiny) what to do with this output?
Definition at line 227 of file grandcan_thermalizer.cc.
234 for (
size_t i_type = 0; (i_type <
N_sorts_) && (N_to_sample > 0); i_type++) {
235 if (
get_class(i_type) != particle_class) {
◆ sample_in_random_cell_BF_algo()
void smash::GrandCanThermalizer::sample_in_random_cell_BF_algo |
( |
ParticleList & |
plist, |
|
|
const double |
time, |
|
|
size_t |
type_index |
|
) |
| |
The total number of particles of species type_index is defined by mult_int_ array that is returned by.
- See also
- sample_multinomial. This function samples mult_int_[type_index] particles. It chooses randomly the cell to sample and picks up momentum and coordinate from the corresponding distributions.
- Parameters
-
- See also
- ParticleList of newly produced particles
- Parameters
-
[in] | time | Current time in the simulation to become zero component of sampled particles |
[in] | type_index | Species that should be sampled |
Definition at line 252 of file grandcan_thermalizer.cc.
258 const ThermLatticeNode cell = (*lat_)[cell_index];
259 const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
260 const double N_this_cell =
263 cell.mub(), cell.mus(), cell.muq());
268 for (
int i = 0; i <
mult_int_[type_index]; i++) {
271 double partial_sum = 0.0;
272 int index_only_thermalized = -1;
273 while (partial_sum < r) {
274 index_only_thermalized++;
275 partial_sum +=
N_in_cells_[index_only_thermalized];
278 const ThermLatticeNode cell = (*lat_)[cell_index];
279 const ThreeVector cell_center =
lat_->cell_center(cell_index);
285 particle.set_4position(FourVector(time, cell_center +
uniform_in_cell()));
289 phitheta.distribute_isotropically();
290 particle.set_4momentum(m, phitheta.threevec() * momentum_radial);
291 particle.boost_momentum(-cell.v());
292 particle.set_formation_time(time);
294 plist.push_back(particle);
◆ thermalize_BF_algo()
void smash::GrandCanThermalizer::thermalize_BF_algo |
( |
QuantumNumbers & |
conserved_initial, |
|
|
double |
time, |
|
|
int |
ntest |
|
) |
| |
Samples particles according to the BF algorithm by making use of the.
- See also
- sample_in_random_cell_BF_algo. Quantum numbers of the sampled particles are required to be equal to the original particles in this region.
- Parameters
-
[in] | conserved_initial | The quantum numbers of the total ensemble of of particles in the region to be thermalized |
[in] | time | Current time of the simulation |
[in] | ntest | Number of testparticles |
- Returns
- Particle list with newly sampled particles according to Becattini-Feroni algorithm
Definition at line 298 of file grandcan_thermalizer.cc.
302 const ThermLatticeNode cell = (*lat_)[cell_index];
303 const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
304 for (
size_t i = 0; i <
N_sorts_; i++) {
309 cell.mus(), cell.muq());
314 for (
size_t i = 0; i <
N_sorts_; i++) {
320 conserved_initial.baryon_number());
325 const auto Nbar_antibar = bessel_sampler_B.sample();
332 for (
size_t i = 0; i <
N_sorts_; i++) {
336 std::pair<int, int> NS_antiS;
338 random::BesselSampler bessel_sampler_S(
341 conserved_initial.strangeness() - S_sampled);
342 NS_antiS = bessel_sampler_S.sample();
344 NS_antiS = std::make_pair(
347 if (NS_antiS.first - NS_antiS.second !=
348 conserved_initial.strangeness() - S_sampled) {
357 for (
size_t i = 0; i <
N_sorts_; i++) {
361 std::pair<int, int> NC_antiC;
363 random::BesselSampler bessel_sampler_C(
366 conserved_initial.charge() - ch_sampled);
367 NC_antiC = bessel_sampler_C.sample();
369 NC_antiC = std::make_pair(
372 if (NC_antiC.first - NC_antiC.second !=
373 conserved_initial.charge() - ch_sampled) {
384 for (
size_t itype = 0; itype <
N_sorts_; itype++) {
389 const double e_init = conserved_initial.momentum().x0();
392 e_tot += particle.momentum().x0();
394 if (std::abs(e_tot - e_init) > 0.01 * e_init) {
396 " too far from ", e_init);
◆ compute_N_in_cells_mode_algo()
template<typename F >
void smash::GrandCanThermalizer::compute_N_in_cells_mode_algo |
( |
F && |
condition | ) |
|
|
inline |
Computes average number of particles in each cell for the mode algorithm.
- Parameters
-
[in] | condition | Specifies the current mode (1 to 7) |
Definition at line 339 of file grandcan_thermalizer.h.
343 const ThermLatticeNode cell = (*lat_)[cell_index];
344 const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
347 if (condition(i->strangeness(), i->baryon_number(), i->charge())) {
◆ sample_in_random_cell_mode_algo()
template<typename F >
ParticleData smash::GrandCanThermalizer::sample_in_random_cell_mode_algo |
( |
const double |
time, |
|
|
F && |
condition |
|
) |
| |
|
inline |
Samples one particle and the species, cell, momentum and coordinate are chosen from the corresponding distributions.
The condition function limits the choice of possible species.
Condition is a function of the signature of quantum number S, B and Q. bool condition(int strangeness, int baryon_number, int charge);
- Parameters
-
[in] | time | Current time in simulation |
[in] | condition | Specifies the actual mode (1 to 7) |
Definition at line 370 of file grandcan_thermalizer.h.
374 double partial_sum = 0.0;
375 int index_only_thermalized = -1;
376 while (partial_sum < r) {
377 index_only_thermalized++;
378 partial_sum +=
N_in_cells_[index_only_thermalized];
381 const ThermLatticeNode cell = (*lat_)[cell_index];
382 const ThreeVector cell_center =
lat_->cell_center(cell_index);
383 const double gamma = 1.0 / std::sqrt(1.0 - cell.v().sqr());
384 const double N_in_cell =
N_in_cells_[index_only_thermalized];
388 ParticleTypePtr type_to_sample;
390 if (!condition(i->strangeness(), i->baryon_number(), i->charge())) {
401 ParticleData particle(*type_to_sample);
403 const double m = type_to_sample->mass();
405 particle.set_4position(FourVector(time, cell_center +
uniform_in_cell()));
409 phitheta.distribute_isotropically();
410 particle.set_4momentum(m, phitheta.threevec() * momentum_radial);
411 particle.boost_momentum(-cell.v());
412 particle.set_formation_time(time);
◆ thermalize_mode_algo()
void smash::GrandCanThermalizer::thermalize_mode_algo |
( |
QuantumNumbers & |
conserved_initial, |
|
|
double |
time |
|
) |
| |
Samples particles to the according to the mode algorithm.
Quantum numbers of the sampled particles are required to be as in conserved_initial.
- Parameters
-
[in] | conserved_initial | Quantum numbers of the original particles in the region to be thermalized |
[in] | time | Current time of the simulation |
Definition at line 404 of file grandcan_thermalizer.cc.
407 int S_plus = 0, S_minus = 0, B_plus = 0, B_minus = 0, E_plus = 0, E_minus = 0;
409 auto condition1 = [](int, int, int) {
return true; };
411 while (conserved_initial.momentum().x0() > energy ||
412 S_plus < conserved_initial.strangeness()) {
414 energy +=
p.momentum().x0();
415 if (
p.pdgcode().strangeness() > 0) {
417 S_plus +=
p.pdgcode().strangeness();
422 auto condition2 = [](
int S, int, int) {
return (
S < 0); };
424 while (S_plus + S_minus > conserved_initial.strangeness()) {
426 const int s_part =
p.pdgcode().strangeness();
428 if (S_plus + S_minus + s_part >= conserved_initial.strangeness()) {
435 auto condition3 = [](
int S, int, int) {
return (
S == 0); };
436 QuantumNumbers conserved_remaining =
440 while (conserved_remaining.momentum().x0() > energy ||
441 B_plus < conserved_remaining.baryon_number()) {
443 energy +=
p.momentum().x0();
444 if (
p.pdgcode().baryon_number() > 0) {
446 B_plus +=
p.pdgcode().baryon_number();
451 auto condition4 = [](
int S,
int B, int) {
return (
S == 0) && (B < 0); };
453 while (B_plus + B_minus > conserved_remaining.baryon_number()) {
455 const int bar =
p.pdgcode().baryon_number();
456 if (B_plus + B_minus + bar >= conserved_remaining.baryon_number()) {
463 auto condition5 = [](
int S,
int B, int) {
return (
S == 0) && (B == 0); };
464 conserved_remaining = conserved_initial - QuantumNumbers(
sampled_list_);
467 while (conserved_remaining.momentum().x0() > energy ||
468 E_plus < conserved_remaining.charge()) {
470 energy +=
p.momentum().x0();
471 if (
p.pdgcode().charge() > 0) {
473 E_plus +=
p.pdgcode().charge();
478 auto condition6 = [](
int S,
int B,
int C) {
479 return (
S == 0) && (B == 0) && (C < 0);
482 while (E_plus + E_minus > conserved_remaining.charge()) {
484 const int charge =
p.pdgcode().charge();
485 if (E_plus + E_minus + charge >= conserved_remaining.charge()) {
492 auto condition7 = [](
int S,
int B,
int C) {
493 return (
S == 0) && (B == 0) && (C == 0);
495 conserved_remaining = conserved_initial - QuantumNumbers(
sampled_list_);
498 while (conserved_remaining.momentum().x0() > energy) {
501 energy +=
p.momentum().x0();
◆ thermalize()
void smash::GrandCanThermalizer::thermalize |
( |
const Particles & |
particles, |
|
|
double |
time, |
|
|
int |
ntest |
|
) |
| |
Main thermalize function, that chooses the algorithm to follow (BF or mode sampling).
- Parameters
-
[out] | particles | List of sampled particles in thermalized region |
[in] | time | Current time of the simulation |
[in] | ntest | number of testparticles |
Definition at line 505 of file grandcan_thermalizer.cc.
513 QuantumNumbers conserved_initial = QuantumNumbers();
514 ThermLatticeNode node;
515 for (
auto &particle : particles) {
516 const bool is_on_lattice =
517 lat_->value_at(particle.position().threevec(), node);
518 if (is_on_lattice && node.e() >
e_crit_) {
526 conserved_initial.add_values(particle);
530 conserved_initial = QuantumNumbers();
535 if (conserved_initial == QuantumNumbers()) {
540 const size_t lattice_total_cells =
lat_->size();
541 for (
size_t i = 0; i < lattice_total_cells; i++) {
547 "Number of cells in the thermalization region = ",
550 ", in % of lattice: ",
562 throw std::invalid_argument(
563 "This thermalization algorithm is"
564 " not yet implemented");
◆ print_statistics()
void smash::GrandCanThermalizer::print_statistics |
( |
const Clock & |
clock | ) |
const |
Generates standard output with information about the thermodynamic properties of the lattice, the thermalized region and the volume to be thermalized above the critical energy density.
- Parameters
-
[in] | clock | Current time of the simulation |
Definition at line 573 of file grandcan_thermalizer.cc.
583 struct to_average on_lattice = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
584 struct to_average in_therm_reg = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
585 double e_sum_on_lattice = 0.0, e_sum_in_therm_reg = 0.0;
586 int node_counter = 0;
587 for (
const auto &node : *
lat_) {
588 const double e = node.e();
589 on_lattice.T += node.T() * e;
590 on_lattice.mub += node.mub() * e;
591 on_lattice.mus += node.mus() * e;
592 on_lattice.muq += node.muq() * e;
593 on_lattice.nb += node.nb() * e;
594 on_lattice.ns += node.ns() * e;
595 on_lattice.nq += node.nq() * e;
596 e_sum_on_lattice += e;
598 in_therm_reg.T += node.T() * e;
599 in_therm_reg.mub += node.mub() * e;
600 in_therm_reg.mus += node.mus() * e;
601 in_therm_reg.muq += node.muq() * e;
602 in_therm_reg.nb += node.nb() * e;
603 in_therm_reg.ns += node.ns() * e;
604 in_therm_reg.nq += node.nq() * e;
605 e_sum_in_therm_reg += e;
610 on_lattice.T /= e_sum_on_lattice;
611 on_lattice.mub /= e_sum_on_lattice;
612 on_lattice.mus /= e_sum_on_lattice;
613 on_lattice.muq /= e_sum_on_lattice;
614 on_lattice.nb /= e_sum_on_lattice;
615 on_lattice.ns /= e_sum_on_lattice;
616 on_lattice.nq /= e_sum_on_lattice;
619 in_therm_reg.T /= e_sum_in_therm_reg;
620 in_therm_reg.mub /= e_sum_in_therm_reg;
621 in_therm_reg.mus /= e_sum_in_therm_reg;
622 in_therm_reg.muq /= e_sum_in_therm_reg;
623 in_therm_reg.nb /= e_sum_in_therm_reg;
624 in_therm_reg.ns /= e_sum_in_therm_reg;
625 in_therm_reg.nq /= e_sum_in_therm_reg;
628 std::cout <<
"Current time [fm/c]: " << clock.current_time() << std::endl;
629 std::cout <<
"Averages on the lattice - T[GeV], mub[GeV], mus[GeV], muq[GeV] "
630 <<
"nb[fm^-3], ns[fm^-3], nq[fm^-3]: " << on_lattice.T <<
" "
631 << on_lattice.mub <<
" " << on_lattice.mus <<
" " << on_lattice.muq
632 <<
" " << on_lattice.nb <<
" " << on_lattice.ns <<
" "
633 << on_lattice.nq << std::endl;
635 <<
"Averages in therm. region - T[GeV], mub[GeV], mus[GeV], muq[GeV] "
636 <<
"nb[fm^-3], ns[fm^-3], nq[fm^-3]: " << in_therm_reg.T <<
" "
637 << in_therm_reg.mub <<
" " << in_therm_reg.mus <<
" " << in_therm_reg.muq
638 <<
" " << in_therm_reg.nb <<
" " << in_therm_reg.ns <<
" "
639 << in_therm_reg.nq << std::endl;
640 std::cout <<
"Volume with e > e_crit [fm^3]: "
◆ lattice()
◆ e_crit()
double smash::GrandCanThermalizer::e_crit |
( |
| ) |
const |
|
inline |
◆ particles_to_remove()
ParticleList smash::GrandCanThermalizer::particles_to_remove |
( |
| ) |
const |
|
inline |
◆ particles_to_insert()
ParticleList smash::GrandCanThermalizer::particles_to_insert |
( |
| ) |
const |
|
inline |
◆ list_eos_particles()
ParticleTypePtrList smash::GrandCanThermalizer::list_eos_particles |
( |
| ) |
const |
|
inlineprivate |
Extracts the particles in the hadron gas equation of state from the complete list of particle types in SMASH.
Definition at line 455 of file grandcan_thermalizer.h.
456 ParticleTypePtrList res;
459 res.push_back(&ptype);
◆ get_class()
HadronClass smash::GrandCanThermalizer::get_class |
( |
size_t |
typelist_index | ) |
const |
|
inlineprivate |
Defines the class of hadrons by quantum numbers.
- Parameters
-
[in] | typelist_index | Index for a certain quantum number |
Definition at line 468 of file grandcan_thermalizer.h.
469 const int B =
eos_typelist_[typelist_index]->baryon_number();
◆ mult_class()
double smash::GrandCanThermalizer::mult_class |
( |
const HadronClass |
cl | ) |
const |
|
inlineprivate |
◆ N_in_cells_
std::vector<double> smash::GrandCanThermalizer::N_in_cells_ |
|
private |
◆ cells_to_sample_
std::vector<size_t> smash::GrandCanThermalizer::cells_to_sample_ |
|
private |
◆ eos_
◆ lat_
◆ to_remove_
ParticleList smash::GrandCanThermalizer::to_remove_ |
|
private |
◆ sampled_list_
ParticleList smash::GrandCanThermalizer::sampled_list_ |
|
private |
◆ eos_typelist_
const ParticleTypePtrList smash::GrandCanThermalizer::eos_typelist_ |
|
private |
List of particle types from which equation of state is computed.
Most particles are included, but not all of them. For example, photons and leptons are not included. Heavy hadrons, that can originate from Pythia, but do not interact in SMASH are not included. The latter are excluded to avoid violations of charm and bottomness conservation, when HadronGasEoS is used for forced thermalization.
Definition at line 506 of file grandcan_thermalizer.h.
◆ N_sorts_
const size_t smash::GrandCanThermalizer::N_sorts_ |
|
private |
◆ mult_sort_
std::vector<double> smash::GrandCanThermalizer::mult_sort_ |
|
private |
◆ mult_int_
std::vector<int> smash::GrandCanThermalizer::mult_int_ |
|
private |
◆ mult_classes_
std::array<double, 7> smash::GrandCanThermalizer::mult_classes_ |
|
private |
◆ N_total_in_cells_
double smash::GrandCanThermalizer::N_total_in_cells_ |
|
private |
◆ lat_cell_volume_
double smash::GrandCanThermalizer::lat_cell_volume_ |
|
private |
Volume of a single lattice cell, necessary to convert thermal densities to actual particle numbers.
Definition at line 524 of file grandcan_thermalizer.h.
◆ e_crit_
const double smash::GrandCanThermalizer::e_crit_ |
|
private |
◆ t_start_
const double smash::GrandCanThermalizer::t_start_ |
|
private |
◆ period_
const double smash::GrandCanThermalizer::period_ |
|
private |
◆ algorithm_
Algorithm to choose for sampling of particles obeying conservation laws.
Definition at line 532 of file grandcan_thermalizer.h.
◆ BF_enforce_microcanonical_
const bool smash::GrandCanThermalizer::BF_enforce_microcanonical_ |
|
private |
The documentation for this class was generated from the following files:
LatticeUpdate
Enumerator option for lattice updates.
void sample_multinomial(HadronClass particle_class, int N)
The sample_multinomial function samples integer numbers n_i distributed according to the multinomial ...
GrandCanThermalizer(const std::array< double, 3 > lat_sizes, const std::array< int, 3 > n_cells, const std::array< double, 3 > origin, bool periodicity, double e_critical, double t_start, double delta_t, ThermalizationAlgorithm algo, bool BF_microcanonical)
Default constructor for the GranCanThermalizer to allocate the lattice.
Mesons with strangeness S < 0.
const double t_start_
Starting time of the simulation.
ParticleTypePtrList list_eos_particles() const
Extracts the particles in the hadron gas equation of state from the complete list of particle types i...
const size_t N_sorts_
Number of different species to be sampled.
Non-strange mesons (S = 0) with electric cherge Q < 0.
const ThermalizationAlgorithm algorithm_
Algorithm to choose for sampling of particles obeying conservation laws.
const double period_
Defines periodicity of the lattice in fm.
static double partial_density(const ParticleType &ptype, double T, double mub, double mus, double muq, bool account_for_resonance_widths=false)
Compute partial density of one hadron sort.
void thermalize_BF_algo(QuantumNumbers &conserved_initial, double time, int ntest)
Samples particles according to the BF algorithm by making use of the.
std::array< einhard::Logger<>, std::tuple_size< LogArea::AreaTuple >::value > logg
An array that stores all pre-configured Logger objects.
constexpr double really_small
Numerical error tolerance.
double lat_cell_volume_
Volume of a single lattice cell, necessary to convert thermal densities to actual particle numbers.
int binomial(const int N, const T &p)
Returns a binomially distributed random number.
void update_lattice(RectangularLattice< T > *lat, const LatticeUpdate update, const DensityType dens_type, const DensityParameters &par, const Particles &particles, const bool compute_gradient=false)
Updates the contents on the lattice.
const bool BF_enforce_microcanonical_
Enforce energy conservation as part of BF sampling algorithm or not.
double N_total_in_cells_
Total number of particles over all cells in thermalization region.
Neutral non-strange mesons.
HadronClass get_class(size_t typelist_index) const
Defines the class of hadrons by quantum numbers.
ThreeVector uniform_in_cell() const
Mesons with strangeness S > 0.
Non-strange mesons (S = 0) with electric cherge Q > 0.
int poisson(const T &lam)
Returns a Poisson distributed random number.
void renormalize_momenta(ParticleList &plist, const FourVector required_total_momentum)
Changes energy and momenta of the particles in plist to match the required_total_momentum.
ParticleData sample_in_random_cell_mode_algo(const double time, F &&condition)
Samples one particle and the species, cell, momentum and coordinate are chosen from the corresponding...
void compute_N_in_cells_mode_algo(F &&condition)
Computes average number of particles in each cell for the mode algorithm.
void sample_in_random_cell_BF_algo(ParticleList &plist, const double time, size_t type_index)
The total number of particles of species type_index is defined by mult_int_ array that is returned by...
std::vector< double > N_in_cells_
Number of particles to be sampled in one cell.
ParticleList sampled_list_
Newly generated particles by thermalizer.
std::vector< size_t > cells_to_sample_
Cells above critical energy density.
std::array< double, 7 > mult_classes_
The different hadron species according to the enum defined in.
DensityType
Allows to choose which kind of density to calculate.
static bool is_eos_particle(const ParticleType &ptype)
Check if a particle belongs to the EoS.
HadronGasEos eos_
Hadron gas equation of state.
std::vector< double > mult_sort_
Real number multiplicity for each particle type.
std::vector< int > mult_int_
Integer multiplicity for each particle type.
const ParticleTypePtrList eos_typelist_
List of particle types from which equation of state is computed.
double mult_class(const HadronClass cl) const
void thermalize_mode_algo(QuantumNumbers &conserved_initial, double time)
Samples particles to the according to the mode algorithm.
double sample_momenta_from_thermal(const double temperature, const double mass)
Samples a momentum from the Maxwell-Boltzmann (thermal) distribution in a faster way,...
ParticleList to_remove_
Particles to be removed after this thermalization step.
const double e_crit_
Critical energy density above which cells are thermalized.
static constexpr int LGrandcanThermalizer
std::unique_ptr< RectangularLattice< ThermLatticeNode > > lat_
The lattice on which the thermodynamic quantities are calculated.
static const ParticleTypeList & list_all()